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There is some evidence that lactobacilli can strengthen the immune system of chickens.
This study evaluated the effects of in ovo and oral administration of a lactobacilli cocktail on
cytokine gene expression, antibody-mediated immune responses, and spleen cellularity in
chickens. Lactobacilli were administered either in ovo at embryonic day 18, orally at days
1, 7, 14, 21, and 28 post-hatches, or a combination of both in ovo and post-hatch
inoculation. On day 5 and 10 post-hatch, spleen and bursa of Fabricius were collected for
gene expression and cell composition analysis. On days 14 and 21 post-hatch, birds were
immunized with sheep red blood cells (SRBC) and keyhole limpet hemocyanin (KLH), and
sera were collected on days 7, 14, and 21 post-primary immunization. Birds that received
lactobacilli (107 CFU) via in ovo followed by weekly oral administration showed a greater
immune response by enhancing antibody responses, increasing the percentage of
CD4+ and CD4+CD25+ T cells in the spleen and upregulating the expression of
interferon (IFN)-a, IFN-b, interleukin (IL)-8, IL-13, and IL-18 in the spleen and
expression of IFN-g, IL-2, IL-6, IL-8, IL-12, and IL-18 in the bursa. These findings
suggest that pre-and post-hatch administration of lactobacilli can modulate the immune
response in newly hatched chickens.

Keywords: lactobacilli, chicken, cytokine, lymphocyte, antibody, immune response
INTRODUCTION

In commercial poultry production, newly hatched chicks may be held off feeding because of the
variation in hatching time, and this might lead to feed deprivation for up to 72 hours in early
hatched chicks (1). However, there is some evidence that delaying access to feed and water can
adversely impact performance and immune responses in neonatal chickens (2). For example,
delayed access to feed and water limits the development of lymphoid organs which subsequently
affects the frequency of circulating lymphocytes and delays antibody mediated response following
org April 2021 | Volume 12 | Article 6643871
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vaccination (3, 4). Furthermore, post-hatch environmental
stressors such as hatchery processing, treatments and vaccine
administration, beak trimming, transportation, heat, and high
stocking density can negatively influence the immune system of
newly hatched chicks, making them susceptible to pathogens
(5, 6).

Antibiotic growth promoters (AGPs) have been used widely
in the poultry industry to control infectious disease, improve
performance, and minimize the negative effects associated with
post-hatch environmental stressors (7). However, the use of
AGPs is gradually being phased out because of concerns
associated with emergence of antimicrobial resistance
microorganisms as well as antibiotic residues in animal
products (8, 9). Several feed additives have been introduced to
the poultry industry as a potential alternative for AGP; among
them, probiotics have gain significant attention because of their
ability to confer health benefits to the birds (10, 11). Lactobacilli
are considered as the most common probiotics and natural
inhabitants of the chicken intestinal tract (12). These bacteria
exert their intestinal health benefits through different
mechanisms such as competitive exclusion, antimicrobial
activities, maintenance of intestinal barrier functions, and
modulation of the immune system (13, 14). In this context, we
have previously demonstrated that probiotics are able to modify
the expression of a wide array of genes involved in immune
induction of different subsets of the immune system such as
cytokines (interferon (IFN)-g, interleukin (IL)-12, IL-13 and
IL-6) that can directly or indirectly enhance serum IgM and
IgY antibody production in response to antigens (15, 16).

Probiotics can be administered through different methods
such as feed, water, and spray (17). In ovo delivery of selected
probiotics into the amniotic sac of embryonated eggs, is a
candidate route that may facilitate early colonization of
beneficial bacteria in the intestine and alleviate the adverse
effects associated with environmental stressors and delayed
access to feed and water (18). Interaction between the gut
microbiome and the host immune system plays a critical role
in the development of immunity to invading microbes (19).
Some studies have shown that early colonization of the intestine
with beneficial bacteria can modulate the immune system of
chickens and modify the gut microbiota composition by
reducing the colonization of pathogens in the intestine (20–
23). It has also been demonstrated that continuous inoculation of
probiotics is required to sustain intestinal colonization and
extend their health benefits (24). Therefore, the present study
was undertaken to evaluate and compare one time in ovo
inoculation of a selected lactobacilli mixture versus weekly oral
administration, and the combination of both delivery methods
on innate and adaptive immune responses in chickens.
MATERIALS AND METHODS

Experimental Animals and Housing
Two hundred and forty embryonated commercial broiler
chicken eggs were obtained from the Arkell Poultry Research
Frontiers in Immunology | www.frontiersin.org 2
Station, University of Guelph. Embryonated eggs were incubated
at recommended temperature and relative humidity. Post-hatch,
day old chicks were group housed according to treatment in
separate floor pens (30 birds per pen) at Arkell Poultry Research.
The research was approved by the University of Guelph Animal
Care Committee according to the guidelines of the Canadian
Council on Animal Care.

Bacterial Strains and Culture Conditions
Wildtype Lactobacillus spp (L. salivarius-JB/SL-26, L. johnsonii-
JB/SL-39, L. reuteri-JB/SL-42, and L. crispatus-JB/SL-44), were
previously isolated in our lab. Lactobacillus strains were
genotyped and characterized accordingly (25, 26). Throughout
this study, all Lactobacillus isolates were cultured in MRS broth
(Gibco, Ca) and maintained under anaerobic conditions (37 °C
and no shaking) until required. Bacteria quantification (colony
forming unit; CFU/ml) was performed by 10-fold serial dilution
on MRS agar under anaerobic conditions (37 °C and no shaking)
for purposes of preparing and confirming inoculums. Overnight
Lactobacillus spp cultures were washed (4000 rpm for 10 min)
and resuspended in phosphate-buffered saline (PBS). Bacterial
inoculums, equal parts mixture of individual strains (107 CFU/
ml) were prepared in PBS and kept on ice until required for
inoculations. Lactobacilli used in the present study have been
isolated from the intestines of healthy broiler chickens
(unpublished data). Therefore, these bacteria are considered as
members of the chicken intestinal microbiome.

Experimental Design
In ovo inoculations: On embryonic day 18 (ED18), eggs were
disinfected with 70% ethanol and a hole was punched into the
shell with a 23-gauge needle. Eggs were randomly assigned to
each experimental group. Eggs were injected with 100 mL of a
cocktail of Lactobacillus spp (106 or 107 CFU/100 ml/egg; (L.
salivarius-JB/SL-26, L. johnsonii-JB/SL-39, L. reuteri-JB/SL-42,
and L. crispatus-JB/SL-44), or PBS (lactobacilli diluent) into the
amniotic sac using a 23-gauge 2.5 cm needle (21). Each
Lactobacillus strain was grown separately and prepared at the
certain dose in PBS. The multi-strain cocktail was prepared by
mixing equal amounts of each strain. Untreated group (no
injections) was used as negative control. Following in ovo
injections, eggs were allocated into 8 experimental groups
summarized in Table 1. All eggs were incubated in the same
incubator and the same hatchery in Arkell Research Station,
University of Guelph.

Immunization and Sample Collection
Immunization and sample collection was performed as described
previously (21). On days 14 and 21 post-hatch, birds were
immunized intramuscularly with 0.25 ml of 2% sheep red blood
cells (SRBC) (PML Microbiologicals, Mississauga, ON, CAN) and
100 mg of keyhole limpet hemocyanin (KLH) (Sigma-Aldrich,
Oakville, ON, CAN) in 0.25 ml PBS. The untreated group were
inoculated intramuscularly with 0.5 ml of PBS. Blood samples were
collected from the wing vein of 12 birds per treatment group on
days 0, 7, 14, and 21 post primary immunization. Blood samples
were kept at room temperature (RT) for two hours (hrs) and
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centrifuged at 580 × g for 10 mins for serum separation. Serum
samples were collected and stored at −20°C for antibody analysis.
On days 5 and 10 post-hatch, 6 birds per treatment were
euthanized and the bursa of Fabricius and spleen were collected,
kept in RNAlater (Invitrogen, Burlington, ON, CAN) and stored at
−80°C for gene expression analysis. Splenic tissues were also
collected in 1X Hanks’ balanced salt solution (HBSS) (Gibco,
Grand Island, NY) and stored on ice.

Spleen Mononuclear Cells Preparation and
Flow Cytometry Analysis
Mononuclear cells were prepared from the spleens of 6 birds per
treatment group as previously described (21). Briefly, tissue
samples were rinsed with HBSS and passed through a 40-mm
nylon cell strainer using the flat end plunger of a 1-ml syringe in
5 ml complete RPMI (Invitrogen, Burlington, ON, CAN)
medium (10% fetal bovine serum and 1% Penicillin-
Streptomycin: Gibco, Grand Island, NY). Cell suspension were
subsequently overlaid on 4 ml Histopaque-1077 (Sigma,
Oakville, ON) for density gradient separation (400 g for
20 min). The white buffy coat at the interface were harvested
and washed twice with RPMI medium. Mononuclear cells were
counted using an automated cell counter MOXI Z (Orflo,
Ketchum, ID, USA) after which 100 µl of mononuclear cell
suspension, from each group was seeded in round bottom 96-
well plates at a density of 5 x 105 cells/well in RPMI medium.

Mononuclear cells were washed twice with flow cytometry
staining buffer (FACS buffer; PBS containing 1% bovine serum
albumin) and stained for 30 min at 4°C in the dark with
fluorescent monoclonal antibodies consisting of two different
surface staining panels. Panel 1: mouse anti-chicken CD3-PB,
mouse anti-chicken CD4-PE-Cy7, mouse anti-chicken CD8-
APC, and human anti-chicken CD25-FITC. Panel 2: mouse
anti-chicken Bu-1-PB, mouse anti-chicken IgM-APC-Cy7, and
mouse anti-chicken monocyte/macrophage-FITC (KUL01). All
monoclonal antibodies were purchased from SouthernBiotech
(SouthernBiotech, Birmingham, AL, USA) except CD25-FITC
purchased from Bio-Rad (Mississauga, ON, CAN). For both
staining panels, the fixable Live/Dead near- Infrared fluorescent
reactive dye (Thermo Fisher Scientific, CAN) was used for dead
cell exclusion. Following staining, cells were washed twice in
FACS buffer, fixed in 2% paraformaldehyde. Fixed mononuclear
Frontiers in Immunology | www.frontiersin.org 3
cells were acquired on a FACS Canto II flow cytometer (BD
Bioscience, San Jose, CA, USA), and data were analyzed using
FlowJo Software (v.10).

Serological Analysis
(i) SRBC-Specific Antibodies: A direct hemagglutination assay
was performed for detection of antibody responses against SRBC
in sera, as previously described (15). Serum samples were heat-
treated at 56°C for 30 min, then 50 ml of PBS containing 0.05%
bovine serum albumin was added into each well of a 96-well
round-bottom microplate, and two-fold serial dilutions of serum
samples were generated in duplicates. Subsequently, 50 ml of 1%
SRBC in PBS was added to each well, and plates were shaken for
1 min, followed by incubation (24 hrs at 37°C). The results were
considered positive when at least 50% of SRBC agglutination
was observed.

(ii) KLH-Specific Antibodies: Detection of KLH-specific IgG
(IgY) and IgM titers in serum samples was performed by indirect
enzyme-linked immunosorbent assay (ELISA) as previously
described (16, 21). Briefly, each well of a 96-well flat-bottomed
Maxisorp high binding microplate was coated with 1 mg/ml KLH
in 100 ml of coating buffer (0.1 MNaHCO3, pH 9.6 with 30 mg/ml
BSA) and incubated overnight at 4°C. Plates were washed 4 times
with PBST (0.05% Tween 20; P137 Sigma-Aldrich Inc., St. Louis,
MO) and subsequently, incubated (2 hrs at RT in the dark) in
200 ml/well blocking buffer (PBST containing 0.25% of fish skin;
Sigma-Aldrich, Oakville, ON). Plates were again washed 4 times
with PBST and incubated (2 hrs at RT in the dark) with 100 ml/
well of chicken sera (diluted 1:200 v/v in blocking buffer). Plates
were washed again (4 times in PBST), prior to incubation (1 hr at
RT in the dark) in 100 ml/well of detection antibody (goat anti-
chicken IgY-Fc and IgM-Fc, Bethyl laboratories) conjugated with
horseradish peroxidase (diluted at 1/5000 in blocking buffer).
Following a final wash (4 times in PBST), plates were developed
with 100 ml/well horseradish peroxidase substrate ABTS (2,2’-
Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid; Mandel
Scientific, Guelph, ON, CAN). Absorbance was measured at
405 nm using the microplate reader (Epoch, BioTek
Instruments Inc., Winooski, VT) within 30 min of ABTS
addition. Positive and negative control sera (fetal bovine
serum) were included in each plate to normalize plate-to-plate
variation. Sample/positive (Sp) ratios were calculated according
TABLE 1 | Experimental groups.

Group Abbreviated Names In ovo Injection (ED18)1 Oral Lactobacilli Administration (days 1, 7, 14, 21, 28 post-hatch)

1 In ovo 106 106 CFU Lactobacilli/100 µl/egg None
2 In ovo 107 107 CFU Lactobacilli/100 µl/egg None
3 In ovo 106 + Gav 106 106 CFU Lactobacilli/100 µl/egg 106 CFU Lactobacilli/ml
4 In ovo 107 + Gav 107 107 CFU Lactobacilli/100 µl/egg 107 CFU Lactobacilli/ml
5 Gav2 106 None 106 CFU Lactobacilli/ml
6 Gav 107 None 107 CFU Lactobacilli/ml
7 PBS3 PBS/100 µl/egg None
8 UN4 None None
1Embryonic day 18.
2Gavage.
3Phosphate buffered saline.
4Untreated.
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to the following formula: (mean of test sample - mean of negative
control)/(mean of positive control - mean of negative control).

RNA Extraction and cDNA Synthesis
RNA extraction and reverse transcription were performed as
previously described (21, 27). Total RNA was extracted from
spleen and bursa of Fabricius mononuclear cells using TRIzol®

(Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s
recommendations. Total RNA was treated with DNase (DNA-free
kit, Ambion, Austin, TX) and quantity and purity of RNA samples
weremeasured by a Nanodrop spectrophotmeter (Thermo Scientific,
Wilmington, DE). Reverse-transcription to complementary DNA
(cDNA) was performed using Superscript® II First-Strand Synthesis
kit (Invitrogen) according to the manufacturer’s protocol.

Quantitative Real-Time PCR (qRT-PCR)
qRT-PCR was performed using LightCycler® 480 II system
(Roche Diagnostics GmbH, Mannheim, DE) as described
previously (21, 27). Each reaction consisted of 10 ml of 2X
SYBR Green Master Mix (Roche Diagnostics), 1 ml of forward
and 1 ml of reverse primers (5 mM), 3 ml PCR-grade water and
5 ml of cDNA (1:10, diluted in nuclease free-water). The qRT-
PCR cycling protocol included an initial denaturation step at 95°
CC, followed by amplification for 40-50 cycles consisting of 95°
CC for 10 sec, annealing temperature (Table 2), and extension at
72°CC for 10 sec. All primers used in this study (Table 2) were
synthesized by Sigma-Aldrich (Oakville, ON).
Frontiers in Immunology | www.frontiersin.org 4
Statistical Analysis
The expression levels of all genes were calculated relative to the
housekeeping gene (b-actin) using the LightCycler® 480 software
(Roche Diagnostics), and data were analyzed using the
generalized linear model (GLM) procedure of SAS (SAS
Institute Inc., Cary, NC). Differences among treatments means
were determined using Tukey’s multiple comparison test after
log transformation when error deviations did not have
homogenous variance across the treatments. A P-value of
<0.05 was considered statistically significant.
RESULTS

Hatchability
Embryonated eggs were inoculated via the amniotic sac at ED18
with either a lactobacilli cocktail or PBS. Here we report that in
ovo inoculation with a live lactobacilli cocktail did not affect
embryo development. Moreover, eggs inoculated with the
highest dose at 107 CFU of lactobacilli continued to develop
normally as those inoculated with 106 CFU of lactobacilli. All
embryonated eggs were hatched confirming that neither
lactobacilli inoculation nor PBS injection affected hatchability.
The overall hatchability was estimated at 99.91%. Chicks from
each group showed no adverse effects in their continued growth
post hatch.
TABLE 2 | Primer sequences used for real-time quantitative PCR1.

Gene2 Primer sequence3 (5’-3’) Annealing temperature GeneBank accession number

IFN-a F: ATCCTGCTGCTCACGCTCCTTCT
R: GGTGTTGCTGGTGTCCAGGATG

64 AB021154

IFN-b F: GCCTCCAGCTCCTTCAGAATACG
R: CTGGATCTGGTTGAGGAGGCTGT

64 AY974089

IFN-g F: ACACTGACAAGTCAAAGCCGCACA
R: AGTCGTTCATCGGGAGCTTGGC

60 X99774

IL-1b F: GTGAGGCTCAACATTGCGCTGTA
R: TGTCCAGGCGGTAGAAGATGAAG

64 Y15006

IL-2 F: TGCAGTGTTACCTGGGAGAAGTGGT
R: ACTTCCGGTGTGATTTAGACCCGT

60 NM_204153.2

IL-6 F: CGTGTGCGAGAACAGCATGGAGA
R: TCAGGCATTTCTCCTCGTCGAAGC

60 NM_204628.1

IL-8 F: CCAAGCACACCTCTCTTCCA
R: GCAAGGTAGGACGCTGGTAA

64 AJ009800

IL-12p40 F: CCAAGACCTGGAGCACACCGAAG
R: CGATCCCTGGCCTGCACAGAGA

60 AY262752.1

IL-13 F: ACTTGTCCAAGCTGAAGCTGTC
R: TCTTGCAGTCGGTCATGTTGTC

60 AJ621250.1

IL-18 F: GAAACGTCAATAGCCAGTTGC
R: TCCCATGCTCTTTCTCACAACA

64 AY628648.2

TGF-b4 F: CGGCCGACGATGAGTGGCTC
R: CGGGGCCCATCTCACAGGGA

60 M31160.1

b-Actin F: CAACACAGTGCTGTCTGGTGGTA
R: ATCGTACTCCTGCTTGCTGATCC

58 X00182
April 202
1The listed oligonucleotides were used to analyze gene expression via real-time quantitative PCR.
2IFN, Interferon; IL, Interleukin.
3F, forward; R, reverse.
4TGF-b, transforming growth factor beta.
1 | Volume 12 | Article 664387
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Cytokine Gene Expression in Spleen
The results for gene expression in spleen are presented in
Figures 1 and 2A, B. Gene expression analysis revealed
differential trends in most cytokines tested. In ovo and/or post-
hatch oral inoculation with lactobacilli cocktail did not alter
expression (P > 0.05) of interleukin (IL)-1b, IL-2, and IL-6
(Figures 1D–F) on days 5 and 10 post-hatch. Expression of
interferon (IFN)-b (Figure 1B) on day 5, IFN-g (Figure 1C) on
day 10, IL-18 (Figure 2D), and transforming growth factor beta
(TGF)-b (Figure 2E) on days 5 and 10 post-hatch were
downregulated in birds that were inoculated in ovo with 106 or
107 CFU of lactobacilli compared to the PBS control group (P <
0.05). In contrast, bird inoculated with 107 CFU of lactobacilli
both in ovo and orally post-hatch had a significant up-regulation
of IFN-a (Figure 1A), IFN-b (Figure 1B), and IL-13 (Figure 2C)
on day 10 post-hatch compared to the PBS control group (P <
0.05). These results further demonstrate that expression of IFN-b
(Figure 1B) was upregulated in birds that were only orally
inoculated with 106 CFU of lactobacilli cocktail on day 10-
post-hatch (P < 0.05).

Cytokine Gene Expression in the Bursa of
Fabricius
Gene expression analysis in in the bursa of Fabircius (Figures 3
and 4) was performed to gain further insight into the possible
mechanism by which lactobacilli may modulate the early
Frontiers in Immunology | www.frontiersin.org 5
development of B cells in the chicken. The results demonstrate
that expression of TGF-b (Figure 4E) was not affected by
lactobacilli treatment (P > 0.05). Post-hatch oral inoculation
only with 106 CFU of lactobacilli significantly increased
expression of IFN-g (Figure 3C) on day 10 post-hatch, when
compared to the PBS control group (P < 0.05). Expression of
IFN-b (Figure 3B), IL-1b (Figure 3D), IL-6 (Figure 3F) and IL-
13 (Figure 4C) on day 10 post-hatch were significantly up-
regulated in birds that received 107 CFUs of lactobacilli orally
(P < 0.05). In ovo inoculation with 107 CFUs of lactobacilli
upregulated the expression of IL-2 (Figure 3E) on day 10 post-
hatch compared to the PBS control group (P < 0.05). Combined
administration of 106 CFU of lactobacilli induced significantly
higher expression of IL-8 (Figure 4A) on day 5 post-hatch (P <
0.05). Chicks that received 107 CFU of lactobacilli both in ovo
and orally post-hatch demonstrated significantly higher
expression of IFN-g (Figure 3C), IL-2 (Figure 3E), IL-6
(Figure 3F), IL-8 (Figure 3G), IL-12 (Figures 4BH), and IL-18
(Figure 4D) on day 10 post-hatch when compared to the PBS
control group (P < 0.05).

Macrophage and Lymphocyte Populations
Results for the flow cytometric analysis of macrophages and
CD3-CD8+ T cells are presented in Figure 5. Birds that received
107 CFU of lactobacilli in ovo had higher frequency and absolute
numbers of macrophages compared to the PBS control group
A B C

D E F

FIGURE 1 | Relative gene expression in the spleen of chickens inoculated with lactobacilli. Spleen samples were collected at days 5 and 10 post-hatch from all
treatment groups: groups 1 and 2 received 106 and 107 CFUs of lactobacilli cocktail in ovo, respectively, at embryonic day eighteen; groups 3 and 4 received 106

and 107 CFUs of lactobacilli, respectively, via both in ovo and oral gavage (on days 1, 7, 14, 21, 28 post-hatch); groups 5 and 6 received 106 and 107 CFUs of
lactobacilli, respectively, via oral gavage; group 7 was served as a negative control group and was injected with phosphate-buffered saline (PBS); group 8 remained
untreated (UN). Fold change was used to characterize differences in gene expression of IFN-a, IFN-b, IFN-g, IL-1b, IL-2 and IL-6 (A–F), in comparison to negative
control group. Statistical significance among treatment groups was calculated using SAS Proc GLM (General Linear Model) followed by Tukey’s comparison test.
Error bars represent standard errors of the mean. Results were considered statistically significant if P < 0.05. Bars with asterisks represent a significant difference
among treatments. The data are representative samples from 6 individual birds.
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(Figures 5A, B) at day 5 post-hatch (P < 0.05). However,
frequency and absolute numbers of CD3-CD8+ T cell subsets
were not affected by treatment groups. Results for the flow
cytometric analysis of B cell (IgM+) and T cell subsets (CD4+,
CD4+CD25+ and CD8+) data are presented in Figure 6. The Bu-
1+IgM+ B cell subsets (Figures 6A, B) and CD3+CD8+ T cell
(Figures 6G, H) and were not affected by any of the treatments at
both time points (P > 0.05). However, birds that received 107

CFU of lactobacilli in ovo only or both in ovo and orally had
higher frequency of CD3+CD4+ T cells (Figure 6C) on day 10
post-hatch; and increased the frequency of CD4+CD25+ T
regulatory (Treg) cells (Figure 6E) on day 5 post-hatch, when
compared to the PBS control group (P < 0.05). In addition,
higher frequency of CD4+CD25+ Treg cells (Figure 6E) was
observed in birds that received 106 CFU of lactobacilli both in
ovo and orally post-hatch compared to the untreated birds on
day 10 post-hatch (P < 0.05).

Antibody-Mediated Immune Responses
Anti-SRBC Response
The production of antigen-specific antibodies represents a major
defense mechanism of humoral immune response. The results
for antibody-mediated immune responses against SRBC are
presented in Figure 7. Higher antibody titers against SRBC
Frontiers in Immunology | www.frontiersin.org 6
were observed in all treatment groups when compared to the
negative control group (non-treated and non-immunized birds,
P < 0.05). In ovo inoculation of eggs with 107 CFUs of lactobacilli
significantly increased serum anti-SRBC antibody titers on days
7 and 14 post-primary immunization, while birds that received
107 CFUs of lactobacilli in ovo and orally post-hatch showed
higher titers of serum anti-SRBC antibodies on days 7 and 21
post-primary immunization when compared to the positive
control group (in ovo injected with PBS and immunized with
SRBC, P < 0.05).

Anti-KLH Response
The results for anti-KLH IgM responses are presented in Figure
8A. On days 7, 14 and 21 post-primary immunization, higher
anti-KLH IgM titers were observed in all immunized groups as
compared to the negative control group (non-treated and non-
immunized birds, P < 0.05). Birds that received 107 CFU
lactobacilli via in ovo, gavage, and both delivery routes
(Groups 4) showed higher levels of anti-KLH IgM titers on day
7 post-primary immunization when compared to the positive
control group (in ovo injected with PBS and immunized with
KLH, P < 0.05). Higher anti-KLH IgM titers were observed in the
group that received 107 CFU lactobacilli via both delivery routes
on day 14 days post-primary immunization (P < 0.05).
A B C

D E

FIGURE 2 | Relative gene expression in the spleen of chickens inoculated with lactobacilli. Spleen samples were collected at days 5 and 10 post-hatch from all
treatment groups: groups 1 and 2 received 106 and 107 CFUs of lactobacilli cocktail in ovo, respectively, at embryonic day eighteen; groups 3 and 4 received 106

and 107 CFUs of lactobacilli, respectively, via both in ovo and oral gavage (on days 1, 7, 14, 21, 28 post-hatch); groups 5 and 6 received 106 and 107 CFUs of
lactobacilli, respectively, via oral gavage; group 7 was served as a negative control group and was injected with phosphate-buffered saline (PBS); group 8 remained
untreated (UN). Fold change was used to characterize differences in gene expression of IL-8, IL-12, IL-13, IL-18 and TGF-b (A–E), in comparison to negative control
group. Statistical significance among treatment groups was calculated using SAS Proc GLM (General Linear Model) followed by Tukey’s comparison test. Error bars
represent standard errors of the mean. Results were considered statistically significant if P < 0.05. Bars with asterisks represent a significant difference among
treatments. The data are representative samples from 6 individual birds.
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The results for anti-KLH IgY responses are presented in
Figure 8B. On days 7, 14 and 21 post-primary immunization,
higher anti-KLH IgY titers were observed in all immunized
groups as compared to the negative control group (non-treated
and non-immunized birds, P < 0.05). On day 21 post-primary
immunization, the birds that received lactobacilli via both
delivery routes (groups 3 and 4) showed higher anti-KLH IgY
titers compared to positive control group (in ovo injected with
PBS and immunized with KLH, P < 0.05); in addition, oral
administration of 107 CFU of lactobacilli increased anti-KLH IgY
titers compared to the positive control group (P < 0.05).
DISCUSSION

Considering the developing state of the immune system in
neonatal chickens, early establishment of gut microbiota with
beneficial microbes may reduce the risk of post-hatch infection
(22, 28). There is evidence that intestinal colonization with
beneficial bacteria, including lactobacilli can modulate innate
responses as well as cell- and antibody-mediated immune
responses to subsequent antigen inoculation (21, 29, 30). In the
present study, we evaluated the effect of early colonization of the
chicken intestine with lactobacilli on the development of
immune competence in newly hatched chicks.
Frontiers in Immunology | www.frontiersin.org 7
Given the important role of cytokines in the immune system
activation (31), the expression of cytokine genes in lymphoid
organs of chickens was assessed following in ovo and oral
administration of lactobacillus-based probiotic candidate. In
general, combined administration of 107 CFU of lactobacilli
induced overall greater cytokine and chemokine expression in
spleen and bursa of Fabricius than did either administration
method alone. Noticeably, in birds that received 107 CFU/egg of
lactobacilli via both routes, significantly higher expression of
IFN-a, IFN-b and IL-13 was observed in the spleen and
significantly higher expression of IFN-g, IL-2, IL-6, IL-8, IL-12,
and IL-18 was observed in the bursa of Fabricius on day 10 post-
hatch. These findings indicate that the number of lactobacilli as
well as the route and frequency of administration are crucial to
generate robust immune responses. In line with these
observations, Brisbin and colleague (16) demonstrated that oral
treatment of chickens with 107 CFU of lactobacilli (L. salivarius,
L. acidophilus, L. reuteri) increased expression of IFN-g and IL-
12 in splenic mononuclear cells (16). Wang and colleagues (32)
also showed that L. plantarum P-8 enhanced the expression of T
helper (Th)-type 1 and Th-type 2 cytokines in the small intestine
of chickens (32). In another study, Taha-Abdelaziz and
colleagues (33) investigated the effects of different Lactobacillus
strains (L. salivarius, L. johnsonii, L. reuteri, L. crispatus, and L.
gasseri) on cytokine gene expression using a chicken macrophage
A B C

D E F

FIGURE 3 | Relative gene expression in the bursa of Fabricius of chickens inoculated with lactobacilli. The bursa of Fabricius samples were collected at days 5 and
10 post-hatch from all treatment groups: groups 1 and 2 received 106 and 107 CFUs of lactobacilli cocktail in ovo, respectively, at embryonic day eighteen; groups 3
and 4 received 106 and 107 CFUs of lactobacilli, respectively, via both in ovo and oral gavage (on days 1, 7, 14, 21, 28 post-hatch); groups 5 and 6 received 106

and 107 CFUs of lactobacilli, respectively, via oral gavage; group 7 was served as a negative control group and was injected with phosphate-buffered saline (PBS);
group 8 remained untreated (UN). Fold change was used to characterize differences in gene expression of IFN-a, IFN-b, IFN-g, IL-1b, IL-2, and IL-6 (A–F), in
comparison to negative control group. Statistical significance among treatment groups was calculated using SAS Proc GLM (General Linear Model) followed by
Tukey’s comparison test. Error bars represent standard errors of the mean. Results were considered statistically significant if P < 0.05. Bars with asterisks represent
a significant difference among treatments. The data are representative samples from 6 individual birds.
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cell line, with results showing that all Lactobacillus isolates, either
alone or in combination, increased the expression of IFN-g, IL-
1b, IL-12p40, and IL-10 (33).

In the present study, irrespective of the number of lactobacilli,
in ovo administration of lactobacilli downregulated the
expression of IFN-b, IFN-g, TGF-b and IL-18 in the spleen but
had no effect on cytokine and chemokine expression in the bursa
of Fabricius. A previous study by our group demonstrated that in
ovo lactobacilli supplementation did not alter the expression of
cytokines in the bursa of Fabricius; additionally, it was shown
that expression of pro-inflammatory cytokines was
downregulated in the cecal tonsils of lactobacilli-treated birds
(21). It should be noted that in the current study, cytokine and
chemokine expression was measured only on days 5 and 10 post-
hatch. Considering that cytokines and other immune system
genes are inducible and transiently expressed, it is plausible that
expression of some genes studied here (especially in in ovo
groups) might have been altered at some point prior to the
sampling time point. Thus, future studies are required to capture
the expression of these genes at earlier time points.

Macrophages play a key role in host immune defense through
phagocytosis of pathogens and activation of lymphocytes by
processing and presenting antigens to T lymphocytes (34, 35). In
the present study, in ovo administration of 107 CFU of
Frontiers in Immunology | www.frontiersin.org 8
lactobacilli increased the number of KUL01+ cells in the spleen
on day 5 post-hatch, while no significant difference was observed
in chickens that received lactobacilli through both in ovo and oral
routes. This likely indicates the importance for early inoculation
of lactobacilli that can differentially affect macrophage numbers
and function. As such, higher numbers of lactobacilli or more
frequent administration of lactobacilli may not always lead to
enhanced immune responses. In agreement with our finding, a
previous study demonstrated that a Lactobacillus-based probiotic
culture significantly increased the number of macrophages in the
intestine of chickens (36). Therefore, promoting pre-hatch
colonisation of lactobacilli can in fact affect mucosal responses
to subsequent stimulation.

In the avian immune system, CD4+ T cells play a key role in
adaptive immunity by activation of B cells in addition to their
role in the induction and recruitment of macrophages to the site
of infection (37). In the present study, the groups that received
107 CFU of lactobacilli in ovo, and those that received combined
administration (107 CFU), had higher numbers of CD4+ cells
compared to the control. The notable increase in CD4+ T cells
population following in ovo and post-hatch lactobacilli
administration indicates that these bacteria could promote the
development of lymphoid organs, thus potentially improve
resistance of young chickens to microbial pathogens. In
A B C

D E

FIGURE 4 | Relative gene expression in the bursa of Fabricius of chickens inoculated with lactobacilli. The bursa of Fabricius samples were collected at days 5 and
10 post-hatch from all treatment groups: groups 1 and 2 received 106 and 107 CFUs of lactobacilli cocktail in ovo, respectively, at embryonic day eighteen; groups 3
and 4 received 106 and 107 CFUs of lactobacilli, respectively, via both in ovo and oral gavage (on days 1, 7, 14, 21, 28 post-hatch); groups 5 and 6 received 106

and 107 CFUs of lactobacilli, respectively, via oral gavage; group 7 was served as a negative control group and was injected with phosphate-buffered saline (PBS);
group 8 remained untreated (UN). Fold change was used to characterize differences in gene expression of IL-8, IL-12, IL-13, IL-18 and TGF-b (A–E), in comparison
to negative control group. Statistical significance among treatment groups was calculated using SAS Proc GLM (General Linear Model) followed by Tukey’s
comparison test. Error bars represent standard errors of the mean. Results were considered statistically significant if P < 0.05. Bars with asterisks represent a
significant difference among treatments. The data are representative samples from 6 individual birds.
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agreement with these results, Asgari and colleagues (38)
demonstrated that dietary supplementation with L. acidophilus
(109 CFU/kg) significantly increases the percentage of CD4+ T
cells in chickens’ peripheral blood (38). Bai and colleagues (39)
have also demonstrated that dietary supplementation of L.
fermentum significantly increases proportions of CD3+ and
CD4+ T lymphocytes in intestinal intraepithelial lymphocytes
(IELs) of chickens (39). Another study demonstrated that oral
treatment with L. reuteri, L. salivarius and L. acidophilus
increased the number of CD4+ T lymphocytes in chicken
intestine (40). Interestingly, despite their ability to increase the
number of CD4+ T cells, the number of cytotoxic CD8+ T
cells was not affected by any of the concentrations or delivery
routes of lactobacilli used in this study. These results are
inconsistent with previous studies that demonstrated that
lactobacilli supplementation significantly increases CD8+ T
lymphocytes in IELs and spleen (38–40). This could be
Frontiers in Immunology | www.frontiersin.org 9
explained by differences in strains and concentration of
lactobacilli used in these studies.

Similar to the results obtained for CD4+ T cells, in ovo
administration of 107 CFU of lactobacilli, either as a single
dose or combined with post-hatch oral treatment, increased
the number of CD4+CD25+ T cells. In chickens, CD4+ CD25+

T cells have been shown to exhibit immunoregulatory properties
by secreting immunosuppressive cytokines such as IL-10 and
TGF-b that limit inflammatory response towards the end of the
inflammatory processes (41). Therefore, the higher number of
CD4+CD25+ T cells observed in lactobacilli-treated group
supports the role of probiotic lactobacilli in maintaining the
immune system homeostasis (42, 43). Results from some human
studies suggest a role for lactobacilli in the modulation of
monocyte-derived dendritic cells (DCs) and the development
of Treg cells (44, 45). However, the exact mechanism by which
these lactobacilli affect T cells is still unclear. It has been
A B

C D

FIGURE 5 | Changes in the frequency of spleen innate immune cells mediated by lactobacilli inoculation. Spleen samples were collected at days 5 and 10 post-
hatch from all treatment groups: groups 1 and 2 received 106 and 107 CFUs of lactobacilli cocktail in ovo, respectively, at embryonic day eighteen; groups 3 and 4
received 106 and 107 CFUs of lactobacilli, respectively, via both in ovo and oral gavage (on days 1, 7, 14, 21, 28 post-hatch); groups 5 and 6 received 106 and 107

CFUs of lactobacilli, respectively, via oral gavage; group 7 was served as a negative control group and was injected with phosphate-buffered saline (PBS); group 8
remained untreated (UN). Spleen mononuclear cells were stained and flow cytometric analysis was performed to determine the respective frequency and absolute
numbers of monocyte/macrophages (KUL01+; A, B) and CD3-CD8+ T cells (C, D). Statistical significance among treatment groups was calculated using SAS Proc
GLM (General Linear Model) followed by Tukey’s comparison test. Error bars represent standard errors of the mean. Results were considered statistically significant if
P < 0.05. Bars with asterisks represent a significant difference among treatments. The data are representative samples from 6 individual birds.
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suggested that some lactobacilli (such as L. reuteri and L. casei)
modulate monocyte-derived DCs by binding to the lectin DC-
specific intercellular adhesion molecule 3-grabbing nonintegrin
which triggers DCs to induce the development of IL-10-
producing Treg cells.

While probiotic lactobacilli demonstrated the ability to
increase the numbers of different T cell subsets, they do not
seem to demonstrate such effects on Bu-1+ IgM+ B cell
populations in the spleen. In agreement with our results,
previous studies showed that various Lactobacillus isolates had
no effects on Bu-1 mRNA expression levels (39, 46). It was
suggested that lactobacilli modulate the immune system mainly
Frontiers in Immunology | www.frontiersin.org 10
through interaction with T lymphocytes rather than B cells,
implicating a T-dependent B cell activation mechanism.

In addition to their role in eliciting innate and cell-mediated
immune responses, probiotic lactobacilli have shown to enhance
antibody-mediated responses to various antigens (47–49). KLH
and SRBC are often used as gold standards to assess B cell
functional responsiveness due to their non-toxic nature as a
xenogeneic antigen. Both SRBC and KLH are considered
thymus-dependent antigens, which require the cooperation of
T helper cell for B cell activation and proliferation (50). The
results of the current study demonstrated that in ovo
administration of 107 CFU of lactobacilli, either as a single
A B C
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FIGURE 6 | Changes in the frequency of spleen lymphocytes cells mediated by lactobacilli inoculation. Spleen samples were collected at days 5 and 10 post-hatch
from all treatment groups: groups 1 and 2 received 106 and 107 CFUs of lactobacilli cocktail in ovo, respectively, at embryonic day eighteen; groups 3 and 4
received 106 and 107 CFUs of lactobacilli, respectively, via both in ovo and oral gavage (on days 1, 7, 14, 21, 28 post-hatch); groups 5 and 6 received 106 and 107

CFUs of lactobacilli, respectively, via oral gavage; group 7 was served as a negative control group and was injected with phosphate-buffered saline (PBS); group 8
remained untreated (UN). Spleen mononuclear cells were stained and flow cytometric analysis was performed to determine the respective frequency and absolute
numbers of B cells (Bu-1+ IgM+;A, B) and (C) T cell subsets (CD3+CD4+, CD3+CD4+CD25+, CD3+CD8+; C–H). Statistical significance among treatment groups was
calculated using SAS Proc GLM (General Linear Model) followed by Tukey’s comparison test. Error bars represent standard errors of the mean. Results were
considered statistically significant if P < 0.05. Bars with asterisks represent a significant difference among treatments. The data are representative samples from 6
individual birds.
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dose or combined with post-hatch oral treatment, significantly
enhanced antibody responses to SRBC, suggesting the
importance of early inoculation of lactobacilli in adaptive
immune response activation. With respect to anti-KLH
antibody titers, the group that received the combination of in
ovo and weekly oral administration of lactobacilli (107 CFU)
consistently increased IgM titers on days 7 and 14- and IgY titer
on day 21 post-primary immunization. These results are
consistent with our earlier findings that oral and in ovo
administration of lactobacilli enhanced IgY and IgM antibody
responses against KLH (16, 21). Collectively, the notable increase
in SRBC and KLH antibody responses following treatment with
lactobacilli is indicative of adjuvant properties of probiotic
lactobacilli. The exact mechanisms underlying this effect
remains to be elucidated. It could be attributed to their
interactions with pattern recognition receptors (expressed by
cells of innate immune system) and subsequent production of
cytokines (IL-4, IL-10, and IL-13) involved in B cell development
and antibody production (51).

In conclusion, the results of the present study demonstrate
that inoculation with a mixture of lactobacilli via the in ovo route
or early post-hatch administration via oral gavage could trigger
innate and adaptive immune response. Administration of
lactobacilli could also enhance the development of lymphoid
organs, providing early protection to hatchlings. More
importantly, overall improved immune responses were attained
when these lactobacilli were administered in ovo followed by
weekly oral administration to hatched chicks. Further studies are
Frontiers in Immunology | www.frontiersin.org 11
required to evaluate the effects of these lactobacilli on the
development of gut-associated lymphoid tissues and other
lymphoid organs and assess their protective efficacy against
infectious agents.
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FIGURE 8 | Serum anti-KLH antibodies titers as a measure of immune
competence. Serum anti-KLH IgM (A) and IgY (B) titers were determined by
indirect ELISA. Serum samples were collected post-hatch from chickens
immunized with KLH and pre-treated with a lactobacilli cocktail as follow:
groups 1 and 2 received 106 and 107 CFUs of lactobacilli cocktail in ovo,
respectively, at embryonic day eighteen; groups 3 and 4 received 106 and
107 CFUs of lactobacilli, respectively, via both in ovo and oral gavage (on
days 1, 7, 14, 21, 28 post-hatch); groups 5 and 6 received 106 and 107

CFUs of lactobacilli, respectively, via oral gavage; group 7 was injected with
phosphate-buffered saline (PBS); group 8 remained untreated (UN). On days
14 and 21 post-hatch, birds were immunized intramuscularly with 100 mg
KLH in 0.25 ml PBS. The untreated group (UN) was inoculated
intramuscularly with 0.5 ml of PBS and served as the negative control.
Statistical significance among treatment groups was calculated using SAS
Proc GLM (General Linear Model) followed by Tukey’s comparison test. Error
bars represent standard errors of the mean. Results were considered
statistically significant if P < 0.05. Bars with asterisks represent a significant
difference among treatments. The data are representative samples from 12
individual birds.
FIGURE 7 | Serum anti-SRBC antibody titers as determined by direct
hemagglutination assay. Serum samples were collected post-hatch from
chickens immunized with SRBC and pre-treated with a lactobacilli cocktail as
follow: groups 1 and 2 received 106 and 107 CFUs of lactobacilli cocktail in
ovo, respectively, at embryonic day eighteen; groups 3 and 4 received 106

and 107 CFUs of lactobacilli, respectively, via both in ovo and oral gavage (on
days 1, 7, 14, 21, 28 post-hatch); groups 5 and 6 received 106 and 107

CFUs of lactobacilli, respectively, via oral gavage; group 7 was injected with
phosphate-buffered saline (PBS); group 8 remained untreated (UN). On days
14 and 21 post-hatch, birds were immunized intramuscularly with 2% SRBC
in 0.25 ml of ml PBS. The untreated group (UN) was inoculated
intramuscularly with 0.5 ml of PBS and served as the negative control.
Statistical significance among treatment groups was calculated using SAS
Proc GLM (General Linear Model) followed by Tukey’s comparison test. Error
bars represent standard errors of the mean. Results were considered
statistically significant if P < 0.05. Bars with asterisks represent a significant
difference among treatments. The data are representative samples from 12
individual birds.
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