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Introduction: Predicting the binding specificity of T Cell Receptors (TCR) to MHC-peptide
complexes (pMHCs) is essential for the development of repertoire-based biomarkers. This
affinity may be affected by different components of the TCR, the peptide, and the MHC
allele. Historically, the main element used in TCR-peptide binding prediction was the
Complementarity Determining Region 3 (CDR3) of the beta chain. However, recently the
contribution of other components, such as the alpha chain and the other V gene CDRs
has been suggested. We use a highly accurate novel deep learning-based TCR-peptide
binding predictor to assess the contribution of each component to the binding.

Methods: We have previously developed ERGO-I (pEptide tcR matchinG predictiOn), a
sequence-based T-cell receptor (TCR)-peptide binding predictor that employs natural
language processing (NLP) -based methods. We improved it to create ERGO-II by
adding the CDR3 alpha segment, the MHC typing, V and J genes, and T cell type
(CD4+ or CD8+) as to the predictor. We then estimate the contribution of each component
to the prediction.

Results and Discussion: ERGO-II provides for the first time high accuracy prediction
of TCR-peptide for previously unseen peptides. For most tested peptides and all
measures of binding prediction accuracy, the main contribution was from the beta
chain CDR3 sequence, followed by the beta chain V and J and the alpha chain, in that
order. The MHC allele was the least contributing component. ERGO-II is accessible as
a webserver at http://tcr2.cs.biu.ac.il/ and as a standalone code at https://github.com/
IdoSpringer/ERGO-II.

Keywords: TCR - T cell receptor, TCR repertoire analysis, peptide binding, epitope specificity, machine learning,
deep learning, long short-term memory (LSTM), autoencoder (AE)
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HIGHLIGHTS

A high accuracy TCR-peptide binding predictor discerns the
relative impact of T Cell Receptor alpha and beta CDR3, MHC, V
and J genes to peptide binding prediction.
INTRODUCTION

T lymphocytes (T cells) are pivotal in the cellular immune
response (1, 2) as they recognize specific antigenic peptides
bound to major histocompatibility complexes (MHCs) (3, 4).
This recognition is governed by the heterodimeric ab T-cell
receptor (2). Within the TCRb chain, the complementarity-
determining region (CDR) 1 and CDR2 loops of the TCR
contact the MHC alpha-helices while the hypervariable CDR3
regions interact mainly with the peptide (1, 2). In both TCRa
and TCRb chains, CDR3 loops have the highest sequence
diversity and are the principal determinants of receptor
binding specificity. The CDR1 and CDR2 are determined by
the V gene used in the TCR, while CDR3 is determined both by
V, (D in the TCRb) and J, and by the addition and removal of
nucleotides at the VD and DJ junctions (VJ in the alpha
chain) (1).

The contribution of the different components of the T-cell
receptor and the peptide- bound MHC (pMHC) to the binding
has never been fully resolved. Estimating this contribution is
important for the prediction of peptide-TCR binding and the
design of novel TCRs. We have previously developed ERGO-I
(pEptide tcR matchinG predictiOn), a highly specific and generic
sequence-based TCR-peptide binding predictor based on novel
deep learning methods which utilizes parallel embeddings of
TCR and peptides in a joint neural network (5). ERGO-I was
only based on the beta chain CDR3 sequence. The prediction
accuracy of ERGO-I for the binding of an unseen TCR to a
known peptide varied drastically, with the Area Under Curve
(AUC) ranging from 0.71 to 0.97. We hypothesized that the
difference resulted from the varying relative contribution of the
beta chain CDR3 sequence to the TCR-peptide binding
prediction accuracy. To test that, we developed ERGO-II
characterized by extended embedding that contain other
components and tested their contribution to the TCR-pMHC
binding prediction accuracy.

Experimentally, our understanding of the TCR repertoires’
diversity, structure, and function has been based on sequencing
of the b chain repertoire alone (6), but recent advances in single-
cell sequencing have shown that TCR’s antigen specificity is
determined by the paired sequences of juxtaposed hypervariable
CDR3 regions on both TCRa and TCRb chains (7). The antigen
specificity of each chain was found to be largely dependent on its
paired chain, suggesting that both TCRa and TCRb are needed
for the task of TCRs antigenic specificity prediction (6).

Computationally, multiple elements beyond the beta CDR3
have been shown to affect TCR-peptide binding. Glanville et al.
(4) in GLIPH, have included CDR3 sequences’ motifs and
length, MHC alleles, V-J genes, and clonal expansion level.
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More recent tools have also used additional components. For
examplesTCRbuilder (8) models binding between all TCR CDRs
and the peptide, and TCRGP (9) used CDR3 segments from both
alpha and beta chains. Alpha CDR3 motifs have, in some cases,
played a more dominant role in the selection of anti-viral
repertoire than beta CDR3 motifs (10, 11).

Another important element affecting binding is the
interaction with the MHC. Conventionally, the Va and Vb
CDR1 and CDR2 loops, encoded entirely within the germline
Va and Vb regions, have been thought to predominate the TCRs
interaction with the MHC. However, recent structural evidence
suggests interactions between the CDR3 region, which
predominantly drives antigen specificity, and the MHC (12,
13): Specific amino acids from MHC genes which contact or
are spatially proximal to the TCR or peptide in the TCR–
peptide–MHC complex have been shown to bias V gene usage
(14). Thus, TCR-peptide binding prediction accuracy may be
affected by the MHC class and allele. Thus, beyond the TCR beta
CDR3 seqeunce (7, 10, 15), ERGO-II also includes T cell type. As
both V alpha and beta genes have been shown to bias the naïve
CD4+ and CD8+ subsets preference (16, 17), with some
segments increasing the odds of being CD4+ (or CD8+) up to
five-fold (16).

In the following sections, we describe ERGO-II, show that it
obtains a high accuracy in multiple tests, and use it to compute
the contribution of each component of the TCR-p-MHC
complex to the TCR-peptide binding prediction.

We found that the main contributor is the beta chain CDR3
sequence, followed by the beta chain V and J and the alpha chain,
in that order.
MATERIALS AND METHODS

Model Architecture
Similar to ERGO-I (5), ERGO-II is based on the dual encoding
of the TCR and the peptide. In the current formalism, additional
features are included: the alpha chain, V and J genes, and the
T-Cell type are associated with the TCR encoding, while the
MHC is associated with the peptide encoding. All features
are encoded and concatenated. The encodings are used as
the input of a multilayer perceptron (MLP) to predict the
binding probability. For the TCR alpha and beta CDR3
sequences, two encoding methods were tested: Long Short
Term Memory (LSTM) acceptor encoding and Autoencoder-
based encoding. The autoencoder model is pretrained with
external TCR data, and its parameters are fine-tuned while
training the ERGO-II classifier, while the LSTM parameters are
randomly initialized. As explored in ERGO-I, the autoencoder
pretrained embeddings are more stable to TCR perturbations.
However, in the autoencoder model we limit the length of the
TCR input to 28 amino acids (for practical reasons). The peptide
is always encoded using the LSTM acceptor method. All other
features are encoded using learned embedding matrices, except
for the T-Cell type, which is a binary flag (CD4+/CD8+)
(Figure 1).
April 2021 | Volume 12 | Article 664514

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Springer et al. TCR Components Contribution to Peptide Binding
LSTM Acceptor
First, the amino acids were embedded as 10-dimensional vectors
using an embedding matrix. Each amino acid was assigned a
randomly initialized embedding vector. The TCR or the peptide
was fed into an LSTM network as a sequence of vectors. The
LSTM network outputs a vector for every prefix of the sequence.
The last output was used as the encoding of the whole sequence.
We used different embedding matrices and LSTM parameters for
the TCRa, TCRb, and the peptide encodings. The embedding
dimension of the amino acids was 10. We use a two-layered
stacked LSTM, with 500 units at each layer. A dropout rate of 0.1
was set between the layers.

TCR Autoencoders
The TCRa autoencoder was trained with TCRa sequences and the
TCRb autoencoder was trained with TCRb beta sequences. The TCR
autoencoders were trained before training the ERGO-II prediction
model. The autoencoders’ parameters were then further updated
during the ERGO-II model training process. The detailed training
and evaluation process and the hyper-parameter configuration of the
TCR autoencoder are detailed in the materials and method section of
the ERGO-I manuscript (5).

Additional data: The TCR autoencoder was trained on data which
was derived from a prospective clinical study (NCT00809276) by
Kanakry et al. (18) The dataset is freely available at the Adaptive
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database (www.adaptivebiotech.com) that provides open access to a
variety of datasets of TCRs next-generation sequencing.

Categorical Features Encoding
The features beyond the CDR3 sequences may be considered as
categorical features. We considered the V, J genes, and the MHC
allele as categorical features. To encode these features, we used a
50-dimensional embedding vector for each feature. Different
embedding matrices were learned for the Va, Vb, Ja, Jb genes
and the MHC allele. We did not use an explicit grouping of
features so that every unique feature value got a different row in
the embedding matrix (e.g. TRAV9 is not the same as TRAV9-3
or TRAV9-1, HLA-A*02:01 and HLA-A*02 have different
encodings). We tried using binary encoding by numbering all
values and replacing every feature value with its binary
representation. However, this led to lower accuracies than the
embedding matrix in all tests (results are not reported).

Dynamic Configuration
Since not all features are always available, ERGO-II follows
several configurations, each with different input features, and
the architecture of the network depends on which features were
used. The TCR sequences are encoded to a vector of 500
dimensions when using LSTM and 100 when using an
autoencoder. The V and J genes and the MHC are encoded to
FIGURE 1 | Illustration of the model’s architecture. The architecture is flexible and accommodates several feature configurations. TCRb and peptide sequences are
always used, while V and J genes and the TCRa sequence are optional. Va and Ja are only used when TCRa is used. MHC usage is optional. TCRs are encoded
with an autoencoder or an LSTM. Peptides are always encoded with an LSTM. Other features (except for the T-Cell type which is not illustrated) are encoded using
a learned embedding matrix. Two MLP are used, one for samples including TCRa and the other for samples missing the TCRa sequence. We follow the current
color code in the following figures.
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a vector of size 50. The peptide encoding dimension is always 500
(we only use the LSTM). All encodings are concatenated, then
the concatenated vector is fed into a multilayer perceptron
(MLP). Features that were not selected will not contribute to
the concatenated vector. The TCRb chain and the peptide are
always selected. V and J genes are selected (or not selected)
together. Note that when V and J genes are included, they are
included for the chain used (i.e., either only Vb and Jb or both
Vb and Jb and Va and Ja). Figure 1 illustrates the model
flowchart. Several models were trained to evaluate the
contribution of each feature. The same feature combination
was used for the training and evaluation phases.

MLP Classifiers
As mentioned, feature encodings are concatenated and fed into a
multilayer perceptron (two MLP networks are trained, see next
section). Each MLP contains one hidden layer that contains as
many units as the square root of the input vector size. A sigmoid
function is applied to the output of the last layer to get a
probability value. The activation in the MLP was Leaky ReLU
(19). A Dropout rate of 0.1 was set between layers.

Datasets Used
ERGO-II was trained on two large datasets of binding TCR-
peptides (McPAS (20), and VDJdB (21)). As current databases
often supply only partial information (The alpha and beta chains
CDR3 sequence, their V and J genes, the peptide sequence, the
MHC allele and whether the TCR is from a CD4+ or a CD8+ T
cell.), ERGO-II is modular, allowing for a combination of
different inputs. Each component of either TCR or MHC-
peptide was projected into a real vector, using either an
autoencoder or a recurrent neural network (implemented as an
LSTM (5)). The concatenated elements of each pair were then
introduced to a Multi-Layer Perceptron to produce an expected
value of 1 for binding pairs and 0 for non-binding pairs. The
weight of the classifier, the projection, and the initial embedding
were then all trained simultaneously (Figure 1).

The datasets studied were updated versions of the databases
used to train ERGO-I. McPAS-TCR database (20) was
downloaded from http://friedmanlab.weizmann.ac.il/McPAS-
TCR/ in July 2020 and VDJdb database (21) was downloaded
from https://vdjdb.cdr3.net/ in February 2020. We did not use
the 10X Genomics data in the VDJdb database.

Missing Data
In the datasets studied, we ignored samples that lack TCRb or
peptide sequences. We used two methods to deal with other
missing features: For the categorical features (e.g. V, J, MHC) we
included an additional symbol for ‘unknown’ in every
embedding matrix, so a missing feature value was encoded
using the encoding of the unknown symbol. We used the same
‘unknown’ symbol for feature values that appear in the test set
but were never seen during training.

For missing TCRa sequences, the unknown flag induces a
bias towards the unknown flag. We solved this by using two
different MLP networks in the model architecture. One network
(MLP-II) deals with samples that contain TCRa, and the other
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network (MLP-I) deals with samples that have missing TCRa.
All other elements were conserved in the presence or absence of
the alpha chain. We used the same loss function for both MLP
networks. The loss is accumulated over the samples in each
batch, and we back-propagate the parameters in the two MLP
networks (Figure 1).

Configurations and Hyperparameters
Tuning
A Binary Cross-Entropy (BCE) loss was used. We sampled five
times more negative examples than positive examples, hence the
loss is weighted, respectively, by a factor of 5/6 for positive
samples and by 1/6 for negative samples. The optimizer was
Adam with a learning rate of 10-4 and L2 regularization of 10-5.
We used batching with a batch size of 128 in training time and 64
in the validation set. An early stopping mechanism was set to
stop the training process after three following epochs of
decreasing validation Area Under the Curve (AUC) score.

All model hyperparameters were optimized using a grid
search in the hyperparameters space. The hyperparameters to
optimize were the embedding matrix dimension, the LSTM and
Autoencoders dimensions, learning rate, weight decay, activation
functions, and dropout rate.

All models were tested with the same grid search. Once the
grid search was finished, we chose new sets of training and test
and reported their results. Note that the results are quite robust
to most parameter changes and that the size of the sample space
is much larger than any of the training sets used during
parameter tuning. Moreover, the TPP-3 task presented here is
performed on peptides never seen in the parameter tuning stage.

All models were implemented with PyTorch, PyTorch-
Lightning and Scikit-Learn packages in Python (22, 23).

Accuracy Tests
Since ERGO-II produces a TCR-pMHC binding prediction and
not a single entry classification tasks, multiple tests can be used to
assess the prediction accuracy. We followed ERGO (5), and
applied some of the tests applied in ERGO-I.

In contrast with most machine learning tasks, where one
attempts to predict the output for a given input (e.g. classifying
an object), TCR binding is a pairing problem, where one is given
a pair of inputs (a peptide and a TCR), and the goal is to predict
whether they would bind. As such, there are many ways to divide
the train and the test, and as a result many possible tests. We
performed four types of tests to assess the accuracy of the pairing
prediction (summarized in Table 1):

• Single Peptide Binding – SPB. Testing whether an unknown
TCR binds a predefined target, using (as training
information) TCRs known to bind to this target (9, 24, 25).
In other words, the target is fixed, and TCRs are divided into
disjoint training and test sets. The outcome of such a
prediction would be the Area Under Curve (AUC) for the
binding of an unseen TCR to this target.

• TCR-Peptide Pairing I - TPP-I. Given a large set of peptides
and TCRs, test whether a randomly chosen TCR binds a
randomly chosen peptide. In this task, all TCR and peptides
April 2021 | Volume 12 | Article 664514
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both belong to training and test sets. However, TCR-peptide
pairs are divided into disjoint training and test sets.

• TCR-Peptide Pairing II - TPP-II is similar to TPP-I, except
that now, TCRs contained in the pairs that belong to the
training set cannot belong to the test set.

• TCR-Peptide Pairing III - TPP-III is a similar test on pairs,
but here neither TCR nor peptide can be in both training and
test set.

ERGO-II was trained only on the TPP-I task, and the test was
on the different tests above.

Data Sampling
The training data was loaded as batches of positive and negative
samples. As in ERGO-I, the databases contained only positive
samples (paired TCR and peptide), and we created internal
negative examples by randomly sampling the data, as
further detailed.

To create negative examples, we randomly chose two samples
from the data. The TCRb sequence, TCRa sequence, V, J genes
and T-Cell type were taken from the first sample. The peptide
and the MHC were taken from the second sample. We merged
those feature values into a new negative pair unless of course the
pair was known to be positive.

A similar process was applied to create a test set containing
both positive and negative examples. The number of negative
examples was five times larger than the number of positive
examples in both train and test sets (due to more negative
sampling). We used 80% of the data for training and the other
20% for evaluation.

The definition of the test data depends on what features were
during training: For instance, assuming we have two samples that
have the same TCRb sequence but different TCRa sequences; If
we did not use the TCRa data during training, we did not
distinguish between those samples, so we did not let the samples
appear in both training and test set. However, if we did train the
model using the TCRa sequence, these examples were
considered different; hence one of them may appear in the test
set. Practically, for every experiment reported, we sieved the test
set to include only samples that are considered outside the
training set, based on the features that were used in the training.

After the regular feature-dependent sieving, the test set was
also filtered according to the prediction task. For the SPB task
Frontiers in Immunology | www.frontiersin.org 5
and the TPP-II task, we took only samples containing new TCRb
sequences. For the TPP-III task, we took only samples containing
new TCRb and new peptides.

Feature Contribution Analysis
We applied ordinary least squares linear regression to fit a
coefficient for the contribution of each feature to the AUC.
The linear regression coefficient reflected the feature
contribution to the validation AUC score. Each feature
configuration was represented as a one-hot vector, i.e., in every
entry, the value was 1 if the feature was used and 0 otherwise. The
analyzed features were TCRa sequence, V and J genes
(represented as a single feature), MHC allele, and T-Cell type
(CD4+/CD8+). Linear regression was applied to the TPP tasks
AUC and the SPB task AUC for the 20 most frequent peptides in
the McPAS database. The TCRb sequence contribution was
computed as the constant term in the linear regression minus
0.5, which is the random baseline AUC. When fitting the TPP
validation AUC, the test types (TPP-I, TPP-II, and TPP-III) were
also represented as a one-hot vector, to infer the effect of the test
type on the validation AUC. The reported results, shown in
Figure 2, are an average of the LSTM-based model coefficients
and the autoencoder-based model coefficients.

Statistical Analysis
Each prediction was performed with a five-fold cross validation.
No statistical test was performed on the results, since ERGO-II is
sometime better and sometime worse than state of the art
methods on the SPB task, and existing methods do not
perform the TPP task. In the regression analysis, the
confidence interval of the regression are very small. However,
they are an underestimate of the variance, since some variance is
also due to the difference in machine learning realization. Instead
we present the 10, 25, 75 and 90 percentiles of the distribution of
the beta values over different learning realizations. In the TPP
these variance is very small and is not shown.
RESULTS

ERGO-II was created by adding the CDR3 alpha segment, the
MHC typing, V and J genes, and T cell type (CD4+ or CD8+) to
the ERGO-I predictor. ERGO-II is explained in detailed in the
TABLE 1 | Prediction test types.

Method Test set Train set Question answered

SPB
Single peptide binding

A TCR not known to bind X TCRs known to bind peptide X Does TCR in test bind peptide X?

TPP-I
TCR-Peptide Pairing I

Same TCRs and peptides, but
differently matched, create binding and
non-binding peptides- TCRs pairs that
are different from those in train set

Large set of both binding and
non-binding peptides- TCRs

Does a randomly chosen TCR bind a randomly
chosen peptide?

TPP-II
TCR-Peptide Pairing II

TCRs in the training set cannot exist in
the test set.

Does a randomly chosen TCR bind a chosen
peptide?

TPP-III
TCR-Peptide Pairing III

Both TCRs and peptides in the training
set cannot exist in the test set.

Does a randomly chosen TCR bind a randomly
chosen peptide?
We performed four types of tests to assess the accuracy of the pairing prediction. ERGO-II was trained only on the TPP-I task, and the test was on the different tests above.
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methods, but in short, we create two encodings one of peptide-
MHC and one for the TCR with the alpha and beta CDR3
sequences and the appropriate V and J genes. The encoders are
composed of autoencoders or Long Short TermMemory (LSTM)
networks, followed by a Multi-Layer Perceptron (MLP) to
produce 1 if the TCR and pMHC bind and 0 otherwise. ERGO
contains different MLP for different input configurations
(Figure 1).

To test the accuracy of ERGO-II, we used two types of tests
(See methods). First, we repeated the existing approach, which is
to fix the target peptide and predict whether a TCR would bind it
(further denoted Single Peptide Binding – SPB). Then, we
followed ERGO-I and predicted the random pairing of TCRs
and peptides (i.e. pick a TCR and a pMHC and predict whether
they would bind- TCR Peptide Pairing -TPP). This last approach
is less affected than the SPB by biases in the datasets used in the
analysis (Table 1 and Methods).

We first used the most frequent peptides in the McPAS (20)
database (a list of these peptides is given in Supplement Table
S1), computed the test AUC for the two methods of ERGO-II,
and compared it with the best results of ERGO-I (Table 2). The
reported results in Table 2 are for the five most frequent peptides
in both databases. The same peptides were reported in ERGO-I
for the SPB task.

The performance of ERGO-II on the SPB test was better than
ERGO-I on eight out of ten peptides, and similar on the two
remaining peptides In general, the AE performed better than the
LSTM, as was also observed in ERGO-I. Note that ERGO-II is
trained with more free parameters. Thus, we expect worse results
on the train set, when the composition of the data is similar to
ERGO-I (i.e. mainly CDR3 sequences of the beta chain).

We repeated the analysis by adding one element of the
pMHC-TCR complex at a time: First the beta chain CDR3,
then the alpha chain CDR3, then the appropriate V and J gene,
followed by the MHC allele, and finally a flag for whether the
TCR was a CD4+ or CD8+ receptor (Table 3). For all tested
peptides, adding information increased the AUC, except for the
CD4+/CD8+ flag that for most peptides did not improve
the AUC.

To quantitate the contribution of the different components,
we computed the AUC using all possible combinations of the
different components. We then regressed the AUC on the one-
hot representation of the different components. For example, the
AUC of a combination of CDR3 beta and CDR3 alpha, but not
the V and J information was represented as the sum of the alpha
and beta CDR3 contribution to the AUC. This analysis (Figure 2),
was performed for each of the 19 most frequent peptides in the
McPAS (20) database. Since the beta chain CDR3 is always
included, we treated the constant coefficient in the regression as
the contribution of the beta chain CDR3, and removed from it the
expected 0.5 baseline AUC.

For all peptides except for the A*02:01 Yellow Fever
LLWNGPMAV peptide, the largest contribution is from the
beta chain CDR3 sequence, consistent with the historical focus
on this region. The LLWNGPMAV peptide is known to induce a
TCR-alpha dependent response (26). None of the added
elements had a significant negative effect on the test AUC
Frontiers in Immunology | www.frontiersin.org 6
(single population T-test coefficients vs 0). However, for many
peptides, the contribution of elements beyond the beta CDR3
sequence was very small (e.g. SSYRRPVGI, SSLENFRAYV, and
HGIRNAFSI). On average, the contribution order followed the
one reported in Table 3 – V and J gene are the leading
contributors, followed by the alpha chain CDR3, followed by
MHC, and practically no contribution to the cell type.

An exception to that is the allo-HLA reactive Herpes –
VTEHDTLLY, where the alpha chain CDR3 is more important
than the V gene. This may be due to the binding of this peptide to
multiple MHC, and as such to multiple beta chain V genes.

To address the contribution of each component to the TCR-
pMHC binding using a peptide independent measure, we used
the more complex pairing (TPP) test, where we compute the
AUC of pairing a TCR and a pMHC, and tested whether one
obtains a high score for properly paired TCR and pMHC and low
score for random pairs. As mentioned, we used either known
TCR and peptides, but unknown pairing (TPP-I), known peptide
with new TCR (TPP-II), and unknown TCR and peptide
(TPP-III).

We performed again the sequential addition of features
(Table 4), with the same results and order of importance as
when studying specific peptides. Again adding the T cell type did
not improve the AUC. Similarly, as reported in ERGO-I, the
McPAS (20) database has a higher AUC than the VDJdb (21)
database. Finally, the LSTM had on average a higher AUC than
the AE. Note that in contrast with the SPB, the increase in AUC
is very large from 0.76-0.78 using only the beta chain CDR3
sequence to 0.93-0.96 with all elements added (except for T cell
type). The difference is especially striking in the TPP-II task.

To quantitate the contribution in this test, we again employed
a regression on all combinations and all tests. We combined all
types of TPP and added a coefficient for each. The main
contribution was from the TCR-beta CDR3 sequence, followed
by the V and J genes and followed by alpha. However, in contrast
with the SPB, here there was a positive contribution of the T cell
type, but a negative contribution of the MHC on the test AUC. In
other words, the detailed MHC information leads to overfitting
on the training set. This may be a limitation of the current
encoding, the number of studied pairs, or it may well be that
beyond the distinction between classes, the MHC has a very
limited contribution.

As expected, the TPP-I task had a higher AUC than TPP-II,
and both contribute more to the AUC than TPP-III (Figure 3).
However, the difference is limited. Note again that for a setup
similar to ERGO-I (only beta chain CDR3 sequence), the results
on a test set are worse, since there is more overfitting.

To compare the updated version of ERGO to other state-of-
the-art methods, we evaluated the model SPB performance on 22
epitopes from VDJdb database (21) suggested by Jokinen et al.
(9), who developed TCRGP. We compared ERGO-II to the
mean AUC scores for the VDJdb peptides when using leave-
one-out cross-validation as reported by Jokinen et al., when
utilizing unique TCR (as defined by CDR3 sequence and V-
gene). Jokinen et al. did not include V-genes, and the comparison
with their results was performed exclusively on TCR beta CDR3
sequences. We also compared ERGO-II to the TCRex model by
April 2021 | Volume 12 | Article 664514
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Gielis et al. (24), who used a Random Forest algorithm for
constructing an epitope-specific classifier. TCRex model includes
also V-gene usage. Finally, we compared ERGO-II to Tong et al.
(27), who developed the SETE method by applying principal
component analysis on the 3-mer TCR CDR3 sequence motifs
Frontiers in Immunology | www.frontiersin.org 7
and training gradient boosting decision tree ensemble learning
model. ERGO-II competes with these state-of-the-art results
(Table 5) on 22 VDJdb peptides. It outperforms all other
methods on six peptides and ties with SETE (27) on two
peptides. The reported peptides in Table 5 were taken from
FIGURE 2 | Box plots of the inferred linear regression coefficients of the SPB results on McPAS (20) most frequent 19 peptides, and the average coefficients. The
regression is performed on both AE-based and LSTM-based model results. The box size represents the 25th and 75th percentiles over different realizations, and error
bars are 10th and 90th percentiles.
April 2021 | Volume 12 | Article 664514

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Springer et al. TCR Components Contribution to Peptide Binding
Jokinen et al. (TCRGP) paper. All previous methods report their
performance on those VDJdb peptides, so we used those peptides
for comparison. ERGO-II is highly competitive with other
methods. Note that ERGO-II is never trained on any specific
peptide. Instead, it is built to predict the binding of any peptide-
MHC and TCR pair.
DISCUSSION

The initial concept of dual embedding as implemented in ERGO-
I had a limited accuracy of predicting whether a previously
unseen TCR can bind any peptide from a target protein (TPP
task), and a varying accuracy for the binding prediction of new
TCR to known peptides (SPB task). We hypothesized that the
limited accuracy may result from a lack of essential factors in the
analysis, such as the alpha chain or the MHC. To test the relative
contribution of different components, we developed ERGO-II,
which incorporates both alpha and beta chains, V and J genes,
MHC typing, and the cell type for the evaluation of the SPB score
of several peptides. We found that for most tested peptides the V
and J genes and following it the alpha CDR3 segment
contributed significantly to the prediction, while the
contribution of the MHC differed between the peptides and
cell type contribution was negligible for a known peptide. When
predicting binding to unseen pMHC, the MHC information
contributed to the prediction at the cell type (i.e., CD4+/CD8+)
but we did not detect the influence of the MHC group.

Paired ab repertoire contains useful information about TCR-
MHC recognition, and ab pairings appear to synergistically
Frontiers in Immunology | www.frontiersin.org 8
drive TCR-MHC interactions (7). Vab gene pairings were
found to be the TCR most informative feature of T cell lineage,
supporting the existence of germline-encoded paired ab TCR-
MHC interaction motifs (7). This is in line with the germline-
encoded theory of MHC-TCR restriction, that TCR-MHC bias
results from of co-evolution of TCR and MHC genes (28), with
evolutionarily conserved “recognition motifs”, i.e., amino acid
motifs in the TCRs that are biased for evolutionarily conserved
recognition motifs in the MHC molecules (8).

The SPB prediction results on McPAS’s 19 most frequent
peptides showed different patterns of the contribution of the
alpha, V, J genes and MHC components. With CDR3 beta at the
baseline of prediction, as it is considered the most important
determinant of binding prediction, different pMHC benefited
differently from the other components of the p-MHC-TCR
complex. For example: prediction results for LLWNGPMAV
yellow fever viral peptide were highly influenced by the alpha
CDR3 component. This may be explained by the fact that most
data was of paired alpha-beta chains, but also by the
immunodominant response to this yellow fever viral epitope,
which has been found to be biased for alpha V gene 12-2 (26).

Another peptide with a biased alpha V gene contribution is
the melanocytes-associated ELAGIGILTV (29) peptide. Here,
the fact that most (> 87%) TCRs that bind this peptide have
TRAV12-2 gene (29) may explain the large contribution of the V
gene to the SPB predictions. As we had almost no alpha CDR3
data for the wild-type epitope we could not establish a
contribution of the alpha CDR3 component on prediction
results. However, for the modified MART-1/Melan-A26-35
peptide used to stabilize pMHC binding, EAAGIGILTV, where
TABLE 2 | Area Under Curve (AUC) of Single Peptide Binding (SPB) prediction task of the five most frequent peptides in McPAS (20) and VDJdb (21) databases.

Peptide McPAS Peptide VDJdb

AE LSTM ERGO-I AE LSTM ERGO-I

LPRRSGAAGA 0.827 0.820 0.772 KLGGALQAK 0.765 0.758 0.731
GILGFVFTL 0.876 0.886 0.843 GILGFVFTL 0.874 0.864 0.820
NLVPMVATV 0.884 0.886 0.835 NLVPMVATV 0.818 0.827 0.686
GLCTLVAML 0.861 0.871 0.816 AVFDRKSDAK 0.750 0.737 0.695
SSYRRPVGI 0.975 0.975 0.980 RAKFKQLL 0.820 0.774 0.828
April 2021 |
 Volume 12 | Article
The results are for AE-based and LSTM-based models, including TCRa, V, J genes, MHC and T-Cell type data usage. A comparison to ERGO-I best result is shown. Bolded values are the
best results on a certain peptide.
TABLE 3 | Area Under Curve (AUC) of Single Peptide Binding (SPB) prediction task of the five most frequent peptides in McPAS (20) database.

Peptide Model TCRb +TCRa + V, J + MHC + T-cell type

LPRRSGAAGA AE 0.639 0.704 0.822 0.830 0.827
LSTM 0.656 0.726 0.825 0.835 0.820

GILGFVFTL AE 0.691 0.663 0.773 0.882 0.876
LSTM 0.690 0.713 0.796 0.894 0.886

NLVPMVATV AE 0.761 0.722 0.784 0.890 0.884
LSTM 0.706 0.712 0.820 0.891 0.886

GLCTLVAML AE 0.677 0.704 0.818 0.862 0.861
LSTM 0.683 0.698 0.814 0.873 0.871

SSYRRPVGI AE 0.937 0.968 0.969 0.974 0.975
LSTM 0.952 0.970 0.971 0.974 0.975
The results are for AE-based and LSTM-based models. Features in the head of the column are added to the previous features from the left columns. Bolded values are the best results.
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TABLE 4 | Area Under Curve (AUC) of TCR-Peptide Pairing (TPP) prediction tasks with either known peptide or TCR (but unknown pairing, TPP-I), known peptide
unseen TCR (TPP-II), and unseen peptide and TCR (TPP-III).

Dataset Features McPAS VDJdb (without 10x)

Model AE LSTM AE LSTM
Test

TPP-I TCRb 0.768 0.784 0.736 0.636
TCRb + V, J 0.909 0.915 0.813 0.799
TCRb + MHC 0.798 0.806 0.758 0.756
TCRb + T-cell type 0.858 0.861 0.788 0.787
TCRb + TCRa 0.831 0.855 0.783 0.800
TCRb + TCRa + V, J 0.920 0.925 0.833 0.835
TCRb + TCRa + V, J + MHC 0.936 0.939 0.832 0.849
TCRb + TCRa + V, J + MHC + T-cell type 0.935 0.933 0.862 0.866

TPP-II TCRb 0.756 0.770 0.723 0.625
TCRb + V, J 0.893 0.900 0.786 0.770
TCRb + MHC 0.782 0.791 0.737 0.738
TCRb + T-cell type 0.846 0.852 0.772 0.774
TCRb + TCRa 0.806 0.832 0.751 0.767
TCRb + TCRa + V, J 0.903 0.913 0.801 0.805
TCRb + TCRa + V, J + MHC 0.924 0.928 0.800 0.818
TCRb + TCRa + V, J + MHC + T-cell type 0.922 0.923 0.834 0.840

TPP-III TCRb 0.623 0.652 0.740 0.369
TCRb + V, J 0.882 0.914 0.944 0.925
TCRb + MHC 0.595 0.611 0.814 0.777
TCRb + T-cell type 0.872 0.943 0.833 0.703
TCRb + TCRa 0.766 0.652 0.666 0.685
TCRb + TCRa + V, J 0.894 0.900 0.611 0.666
TCRb + TCRa + V, J + MHC 0.897 0.925 0.962 0.833
TCRb + TCRa + V, J + MHC + T-cell type 0.946 0.927 0.870 0.851
Frontiers in Immunology
 | www.frontiersin.org 9
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Several feature configurations were examined. The results are the test AUC using either AE-based model or LSTM-based model on McPAS (20) and VDJdb (21) (without 10X Genomics
data) databases. Bolded values are the best results on a certain TPP task.
FIGURE 3 | The inferred linear regression coefficients of the TCR Peptide Pairing (TPP) results on the McPAS (20) database, matching the Area Under Curve (AUC)
contribution. The included variables in the linear regression were the different types of the TPP evaluations, as well as the various features of ERGO-II. All variables
were represented as one-hot vectors according to their usage in the different experiments (see Methods and Table 1). The left part of the graph shows that the
more complex the TPP task, the lower the AUC contribution. Results are reported for AE-based and LSTM-based models. The different models perform similarly and
the standard deviation between the models’ inferred coefficients is bounded by 0.013.
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the natural alanine at position 2 has been modified to leucine
(30), we had sufficient data on the alpha CDR3 component and
this improved the prediction.

Study Limitations
Most current algorithms are trained with a pre-defined peptide,
and testing for different TCRs whether they bind this peptide.
This is very prone to sampling biases, some of which may be
biologically relevant – for example, the TRAV12-2 bias towards
several epitopes, such as MART-1 and LLWNGPMAV, a yellow-
fever epitope. However, other biases such as implicit information
leakage from the training set to the test may stem from the
fundamental bias in the experimental data that evolved around
specific peptide-MHC-TCR triads found in specific pathologies,
such as tumor-infiltrating lymphocytes. This presents two
challenges: first, unless aggressive dataset curation is done, this
Frontiers in Immunology | www.frontiersin.org 10
will necessarily produce extremely similar sequences in the
training and validation datasets, potentially inflating
performance. Second, even in cases where certain TCR-pMHC
triads are overrepresented, it does not necessarily mean that they
are more important. In ERGO-II we have made two main steps
to reduce the sampling bias: A) We added a test, where we test
the prediction of TCR-pMHC binding for a previously unseen
peptide. B) We train over random sets of TCR-pMHC pairs, and
not a single peptide. This obviously does not remove all biases,
but limits them. Further elaboration is needed to determine the
cause for different patterns of contributions of the alpha CDR3,
MHC typing, V and J genes found in different peptides and check
if all prediction weights are coming from bona fide features of the
biology or if some may result from spurious features.

The current analysis was sequence-based but used highly
non-linear functions. Such functions can capture indirect links,
such as the ones influenced by the secondary structure of the
molecules and three-dimensional aspects of the interactions.
Still, better structural measures may lead to clearer definitions
of the relative contribution of each component.

Our results serve as an important additional step toward the
development of predictive tools for biomarker development.
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