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Type 2 diabetes (T2D) is a rising global health problem mainly caused by obesity and a
sedentary lifestyle. In healthy individuals, white adipose tissue (WAT) has a relevant
homeostatic role in glucose metabolism, energy storage, and endocrine signaling. Mast
cells contribute to these functions promoting WAT angiogenesis and adipogenesis. In
patients with T2D, inflammation dramatically impacts WAT functioning, which results in
the recruitment of several leukocytes, including monocytes, that enhance this
inflammation. Accordingly, the macrophages population rises as the WAT inflammation
increases during the T2D status worsening. Since mast cell progenitors cannot arrive at
WAT, the amount of WAT mast cells depends on how the new microenvironment affects
progenitor and differentiated mast cells. Here, we employed a flow cytometry-based
approach to analyze the number of mast cells from omental white adipose tissue (o-WAT)
and subcutaneous white adipose tissue (s-WAT) in a cohort of 100 patients with obesity.
Additionally, we measured the number of mast cell progenitors in a subcohort of 15
patients. The cohort was divided in three groups: non-T2D, pre-T2D, and T2D.
Importantly, patients with T2D have a mild condition (HbA1c <7%). The number of
mast cells and mast cell progenitors was lower in patients with T2D in both o-WAT and
s-WAT in comparison to subjects from the pre-T2D and non-T2D groups. In the case of
mast cells in o-WAT, there were statistically significant differences between non-T2D and
T2D groups (p = 0.0031), together with pre-T2D and T2D groups (p=0.0097). However,
in s-WAT, the differences are only between non-T2D and T2D groups (p=0.047). These
differences have been obtained with patients with a mild T2D condition. Therefore, little
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changes in T2D status have a huge impact on the number of mast cells in WAT, especially
in o-WAT. Due to the importance of mast cells in WAT physiology, their decrease can
reduce the capacity of WAT, especially o-WAT, to store lipids and cause hypoxic cell
deaths that will trigger inflammation.
Keywords: mast cell, T2D, adipose tissue, obesity, flow cytometry, angiogenesis, inflammation, adipogenesis
INTRODUCTION

The incidence of diabetes has increased four-fold in the last three
decades, becoming the ninth death cause worldwide (1) and will
affect 693 million people by 2045 (2). Of all the cases of patients
with diabetes, type 2 diabetes (T2D) accounts for 90% (1). The
development of T2D is strongly associated with obesity, which is
driven by poor dietary habits and a sedentary lifestyle (1, 2).

When the caloric intake exceeds the energetic demands,
adipocytes in white adipose tissue (WAT) store the excess
energy as lipids, mainly triglycerides. Thus, when this positive
energy imbalance continues for a long time, the WAT has to
expand. So, adipocytes extend WAT via hypertrophy or
hyperplasia. Adipocyte hyperplasia promotes insulin sensitivity
and tissue homeostasis (3, 4). Conversely, adipocyte hypertrophy
enhances insulin resistance and inflammation (3, 4).
Interestingly, there are differences in adipose tissue depending
on the depot location, including gene expression, metabolic
features, and adipokine secretion (5, 6).

Noteworthy, subcutaneous white adipose tissue (s-WAT) has a
higher adipogenic capacity than omental white adipose tissue (o-
WAT). Therefore, when o-WAT expands, the amount of free fatty
acids in the tissue increases. These free fatty acids trigger
lipotoxicity and inflammation, producing tissue malfunctioning
(7, 8). Consequently, the expansion of o-WAT, but not s-WAT, is a
risk factor for developing T2D and cardiometabolic diseases (6, 9).

Mast cells are tissue-resident leukocytes located in all
vascularized tissues. Depending on their location, they can
develop two different phenotypes and become either
connective tissue or mucosal mast cells (10, 11). Despite their
widely known role in inflammation, mast cells also contribute to
anti-inflammatory responses releasing TGF-beta and IL-10 (10,
12) and secreting proteases that can degrade pro-inflammatory
cytokines (13). Additionally, they also participate in
angiogenesis, lymphangiogenesis, tissue repair, and wound
healing (12, 14). In these processes, it is crucial to remodel the
extracellular matrix (ECM). Therefore, mast cells secrete
proteases that directly digest the ECM or cause the proteolytic
activation of ECM metalloproteases (13). In adipose tissue, mast
cells have additional functions. They promote lipid uptake by
macrophages and foam cell formation (15). In response to high
glucose levels, mast cells release 15-deoxy-delta prostaglandin J2
(16, 17), which binds the peroxisome proliferator-activated
receptor (PPAR) g in pre-adipocytes promoting their
differentiation to adipocytes (16, 17). Noteworthy, the absence
of mast cells impairs the adipocyte differentiation (18).

When adipose tissue becomes insulin resistant, its physiology
is altered. Firstly, it changes the adipokine profile (19). That
org 2
affects mainly o-WAT since it secretes more pro-inflammatory
adipokines than s-WAT (6). Secondly, some stress signals trigger
the NLRP3 (NOD-, LRR- and pyrin domain-containing protein
3) inflammasome causing tissue inflammation (20, 21). These
new conditions in the tissue microenvironment hamper
adipogenesis (3, 4). This occurs by interfering with the PPAR-g
signaling pathway (22), which is critical for adipocyte
hyperplasia (23, 24). The malfunctioning of the adipose
tissue causes hyperglycemia and hyperlipidemia (24, 25). This
leads to ectopic lipid accumulation in skeletal and heart muscle
and several hepatic disorders, including hepatic steatosis
(26–28).

Tissue-resident leukocytes, mainly macrophages and mast
cells, play a key role in the homeostasis of the adipose tissue
(8, 15, 16, 29). Nevertheless, the leukocytes recruited at WAT
in patients with T2D mainly play a pro-inflammatory role
(30, 31). Peripheral monocytes are recruited and differentiated
to M1 macrophages that will produce more pro-inflammatory
cytokines (7, 30). Such will recruit more monocytes forming
a feed-forward loop (8, 29). Thus, as long as the glycemic control
worsens, the number of macrophages sharply rises (7, 24, 29).
However, the case of mast cells is not so straightforward. There
is a tiny amount of mast cell progenitors circulating in peripheral
blood (32). Noteworthy, these circulating mast cell progenitors
arrive at some tissues, like the intestinal mucosa, but they do
not enter in the WAT (33). Accordingly, several studies with
murine models have demonstrated that the adipose tissue
mast cell population depends on a local pool of embryonic
mast cell progenitors instead of the circulating mast cell
progenitors (11, 33, 34). Due to the scarce amount of
circulating mast cell progenitors and their inability to reach
adipose tissue, the number of mast cells will depend on how
microenvironmental changes affect progenitor and differentiated
mast cells.
MATERIALS AND METHODS

Biochemical Parameters
Following the American Diabetes Association guidelines (35),
T2D diagnosis requires two measures of fasting glucose.
Accordingly, each patient gave 2 blood samples. The first one
between 6 and 9 months before the surgery and it was used to
measure the fasting plasma glucose. The second one was
obtained on the day of the surgery before entering the
operating room for a complete analysis. In both cases, the
clinical analysis laboratory of San Cecilio University Hospital
May 2021 | Volume 12 | Article 664576
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conducted the blood tests within 24h following approved
protocols. Besides, fasting was defined as the absence of caloric
intake for at least 8h.

For all patients, the Homeostatic Model Assessment for
Insulin Resistance (HOMA-IR) was calculated with the data
from the second blood test to evaluate insulin resistance.

Cohort
This study includes 100 patients with morbid obesity who
underwent laparoscopic bariatric surgery (gastric sleeve and
gastric bypass). Patients with morbid obesity were further
classified into non-T2D, pre-T2D, and T2D groups following
the criteria of the American Diabetes Association (35). Patients
with type I diabetes, gestational diabetes, genetic diabetes
syndromes, diseases of the exocrine pancreas, drug-induced
diabetes, and autoimmune diseases did not enter the cohort.

In addition to this, five patients without obesity, who
underwent colonoscopy, provided samples of healthy mucosa.
Such were employed as negative controls for the presence of a
local pool of mast cell progenitors.

Sample Processing
For each patient, two biopsies of adipose tissue were collected
from laparoscopic bariatric surgery at San Cecilio University
Hospital (Granada, Spain). The o-WAT (omental white adipose
tissue) biopsies were taken from the greater omentum, close to the
stomach. Alternatively, s-WAT (subcutaneous white adipose
tissue) was sampled near the surgical incision. The biopsies
were conserved in PBS and ice right after their extraction.

After that, visible blood vessels were removed from the
samples. Then, approximately 2-2.5 g of each sample was
weighed and cut into small pieces. Later, this was digested in
RPMI 1640 medium supplemented with 2 mg/ml collagenase type
I (Sigma) and 5 mM CaCl2 in a final volume of 10 ml, at 37°C
during 2h. Subsequently, samples were washed with 35 ml of PBS,
filtered through a 1 mm sieve, and centrifuged for 10 minutes at
900 x g. After, the pellet was resuspended in 10 ml of PBS, poured
through a 100 mm filter, and centrifuged for 10 minutes at 900 x g.
Finally, the pellet, that includes the stromal vascular fraction, was
resuspended in 500 ml of antibody staining buffer (PBS, 2% fetal
bovine serum, 0.09% albumin, and 0.05% sodium azide) and
mixed with an internal standard (BD Truecount Absolute
Counting Tubes) following manufacturer instructions.

The internal standard consists of a suspension of a known
number of fluorescent microspheres, with size/complexity
values far from any cellular population. The excitation and
emission of these microspheres occur through a broad
spectrum of wavelengths.

Antibody Staining and Flow Cytometry
The stromal vascular fraction was labeled with 2 ml of controls or
fluorophore-conjugated antibodies in Eppendorf tubes at room
temperature for 20 minutes. After that, the cells were fixed, and the
erythrocytes were lysed with 1 ml of BD FACS Lysing Solution for
30 minutes. Then, the samples were centrifuged 10 minutes at
3500 x g, and the pellets were resuspended in 500 ml of PBS.
Subsequently, the samples were stored at 4°C until the next day.
Frontiers in Immunology | www.frontiersin.org 3
Flow cytometry was performed using a FACSARIA III equipment,
and data were acquired on a logarithmic scale. The internal
standard was used to calculate the number of cells per mg of tissue.

The fluorescent-conjugated antibodies used to identify mast
cells were: anti-CD45 PE-CF594 (clone HI30, BD), anti-CD117
APC (clone YB5.B8, BD), anti-FcϵRI PE-Cy7 (clone AER-37,
BioLegend), and CD203c BV421 (clone NP4D6, BioLegend).
Additionally, the antibodies CD34 BV785 (clone 561,
BioLegend) and integrin b7 FITC (clone FIB504, BioLegend)
were used in a subcohort of 15 patients (6 non-T2D, 6 pre-T2D,
and 3 T2D). Compensation beads and isotype controls were
purchased from BD Biosciences. MC were identified as CD45+

CD117+ CD203c+ FcϵRIa+ (Figure 1A).

Statistical Analysis
The data of mast cells per g was log-transformed to promote
symmetry and normality of the analyzed data. The Kolmogorov-
Smirnov test was used to test the normality of the distribution of
the data, and the Levene test was employed to check the
homoscedasticity of the groups. To evaluate the differences
between non-T2D, pre-T2D, and T2D groups the one-way
ANOVA test was used followed by a Tukey HSD. Student’s
t-test was used to analyze the differences between o-WAT and
s-WAT in non-T2D, pre-T2D, and T2D groups independently.
P-values below 0.05 were considered significant. Additionally,
we employed the principal component analysis (PCA), the Linear
Discriminant Analysis (LDA), and Random Forest Analysis to
study the internal structure of our data and to find patterns and
the most important variables to discriminate the three groups of
patients. All the tests were conducted with R software (36).
RESULTS

Cohort Baseline Characteristics
Table 1 shows the average data of age, sex, hypertension, BMI,
waist-hip index, insulin, glucose, HbA1c, HOMA-IR,
triglycerides, cholesterol, LDL, and HDL. In this study, females
account for 66% of the cohort, which may be due to social
constraints in our geographic zone. Of note, the T2D group has
a low HbA1c mean. The American Diabetes Association
considers that the goal for patients with T2D is to have their
HbA1c below 7% since it considerably reduces the risk for
cardiovascular disease. Thus, our subjects with T2D have a
mild condition (37).

A Subpopulation of CD34+ Integrin ;4b7+
Mast Cells in Omental and Subcutaneous
White Adipose Tissue but Not in Colonic
Mucosa
Mast cells were identified in the whole cohort as CD45+ CD117+

CD203c+ FcϵRIa+ by flow cytometry (Figures 1A–E). Moreover,
in the subcohort of 15 patients, a CD34+ integrin b7+

subpopulation of mast cells was analyzed. This subpopulation
was found in both types of WAT in these 15 patients (Figure 1E).
Oppositely, this subpopulation was absent in the five samples of
May 2021 | Volume 12 | Article 664576
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colonic mucosa (Figure 1F). Previous studies have shown that
this subpopulation is made of mast cell progenitors in murine
peripheral tissues (38, 39) and human blood (32). Besides, it has
been reported that, in humans, the heterogeneous pool of
progenitor cells in WAT contains cells that can give rise to
mast cells (34). Therefore, the expression of CD34 and integrin
b7 in a small fraction of the mast cell pool strongly suggests the
presence of a stable pool of progenitor cells committed with mast
cell lineage in human WAT.

These mast cell progenitors are more abundant in o-WAT
than in s-WAT and seem to decrease in the T2D group in both
types of WAT (Table 2). The proportion of mast cell progenitors
in the whole population is displayed in Table 3.
Frontiers in Immunology | www.frontiersin.org 4
The Number of Mast Cells in Omental and
Subcutaneous White Adipose Tissue
Decrease in Patients With T2D
Figures 2 and 3 show that the number of mast cells was smaller
in the T2D group in both o-WAT and s-WAT. In the case of
o-WAT (Figure 2 and Supplementary Figure 1), the differences
are between non-T2D and T2D groups (p=0.0031), as well
as pre-T2D and T2D groups (p=0.0097). However, in s-
WAT (Figure 3 and Supplementary Figure 2), the differences
are only between non-T2D and T2D groups (p=0.047).
These results indicate that mast cells of both o-WAT and s-
WAT are negatively affected by the dysregulation of glucose
metabolism, particularly when T2D is reached.
TABLE 1 | Cohort baseline characteristics.

Non-T2D Pre-T2D T2D

Number of patients 41 32 27
Age (years) 43,5 ± 9.1 47.3 ± 11.8 50.5 ± 9.5
Male/Female) 16/25 11/21 7/20
Hypertension (Yes/No) 22/19 22/10 19/8
Body Mass Index (kg/m2) 45.2 ± 6.4 45.1 ± 6.9 43.0 ± 5.9
Waist/Hip Index 0.89 ± 0.08 0.93 ± 0.08 0.93 ± 0.09
Insulin (units/ml) 4.6 ± 2.8 7.8 ± 5.8 10.3 ± 6.1
Glucose (mg/dl) 87.7 ± 9.2 98.8 ± 14.9 154.9 ± 48.9
HbA1c (%) 5.3 ± 0.3 5.8 ± 0.4 6.6 ± 1.0
HOMA-IR 1.02 ± 0.68 1.95 ± 1.62 3.86 ± 2.57
Triglycerides (mg/dl) 138.0 ± 54.7 162.7 ± 68.0 149.7 ± 38.4
Cholesterol (mg/dl) 162.6 ± 38.0 151.6 ± 28.3 147.9 ± 45.0
LDL (mg/dl) 93.2 ± 32.2 83.3 ± 22.7 86.8 ± 40.5
HDL (mg/dl) 40.7 ± 10.9 35.5 ± 9.1 36.8 ± 10.0
May 2021 | Volume 12 | A
The data comes from the big cohort (n=100). Data are expressed as mean ± standard deviation. T2D (type 2 diabetes).
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FIGURE 1 | Flow cytometry. (A–E) Flow cytometry gating employed to identify mast cells and mast cell progenitors in white adipose tissue. The red dots in the
first scatter plot are the autofluorescent beads employed in the quantification. (F) Mast cell progenitor gate in colonic mucosa. MC (mast cells), MCp (Mast cell
progenitors).
rticle 664576

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Lopez-Perez et al. Mast Cells Decrease in T2D
There Are Differences in the Number
of Mast Cells Between Omental and
Subcutaneous White Adipose Tissue
in Non-T2D and Pre-T2D Groups but
Not in the T2D Group
Figures 4, 5, and 6 show that the difference in the number of
mast cells between o-WAT and s-WAT becomes smaller in
patients with T2D. Accordingly, these differences are
Frontiers in Immunology | www.frontiersin.org 5
significant only in non-T2D group (p=0.016) and pre-T2D
group (p=0.021). Under normal conditions, the number of
mast cells is higher in o-WAT than in s-WAT. Such occurs
because o-WAT but not s-WAT is in contact with microbial
products from the intestinal microbiota and plays a crucial role
in peritoneal cavity immunology (40–42). Nonetheless, although
in T2D group there is a sharp decrease in the number of mast
cells in both locations, they are not equally affected. These results
TABLE 3 | Proportion of mast cell progenitors in the whole mast cell pool.

Non-T2D Pre-T2D T2D

o-WAT 2.54% ± 4.29 3.04% ± 2.54 0.93% ± 0.75
s-WAT 2.47% ± 1.79 2.04% ± 1.56 0.57% ± 0.27
May 2021 | Volume 12 |
The data comes from the small cohort (n=15). Data are expressed as mean ± standard deviation. T2D, type 2 diabetes; o-WAT, omental white adipose tissue; s-WAT, subcutaneous white
adipose tissue.
FIGURE 2 | Differences in mast cells per gram of tissue in omental white adipose tissue depending on the type 2 diabetes status. The data comes from the big
cohort (n = 100). MC (mast cells), T2D (type 2 diabetes), “ns” (p-value > 0.05), “ ** ” (0,01 > p-value).
TABLE 2 | Number of mast cell progenitors per gram of white adipose tissue.

Non-T2D Pre-T2D T2D

o-WAT 1623.45 ± 3360.70 880.07 ± 1050.14 62.90 ± 24.55
s-WAT 596.23 ± 999.85 302.72 ± 145.38 60.2 ± 30.94
The data comes from the small cohort (n=15). Data are expressed as mean ± standard deviation. T2D, type 2 diabetes; o-WAT, omental white adipose tissue; s-WAT, subcutaneous white
adipose tissue.
Article 664576
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show that T2D condition has a higher impact on the number of
mast cells in o-WAT than in s-WAT.

The Number of Mast Cells Is a Good
Predictor of T2D Status.
To see the patterns between our variables and the three groups of
patients simplifying our high dimensional data, we performed a
principal component analysis (Figure 7). This statistical analysis
serves to summarize the variables dependence structure and to
visualize the observed values. Interestingly, the non-T2D group
tends to have higher numbers of mast cells in both o-WAT and s-
WAT. The HbA1c was not included in this analysis and the
following because it is used to define the groups.

After that, we performed a Linear Discriminant Analysis (LDA)
to seek the linear combinations of the original variables that better
serve to “separate” the observations in the transformed space when
considering the levels of the “Type 2 Diabetes” variable (no, pre,
yes) (Figure 8 and Supplementary Table 1). We can see that the
first linear combination (LD1) separates well those observations.
Negative values of LD1 are associated with “No” values, while
positive ones are more related to “Pre” and “Yes”. Later, we studied
the correlations of each variable with LD1 (Table 4). The stronger
correlations are with age (0.50), waist-hip index (0.43), and the
number of mast cells in o-WAT (-0.38). The negative sign of the
correlation between mast cells and LD1 indicates that the number
Frontiers in Immunology | www.frontiersin.org 6
of mast cells in o-WAT is higher in patients with low LD1 values.
Since the patients in the non-T2D group tend to have negative
values of LD1, this agrees with our previous results.

Finally, we performed the Random Forests Analysis. This
technique also serves to measure the importance of the variables
in discriminating the (three) levels of the categorical variable
“Type 2 Diabetes”. That importance is determined through the
“mean decrease in the Gini index”. Compellingly, the number of
mast cells in o-WAT and s-WAT are respectively the third and
fifth most important variables (Figure 9 and Supplementary
Table 2). They are above some variables frequently studied in
patients with T2D, including HDL, BMI, and waist-hip index.

These results together indicate that mast cells in adipose
tissue (especially o-WAT) have a strong relationship with T2D
status. Considering this occurs with patients with mild T2D, this
phenomenon is expected to be more prominent in patents with
T2D and poor glycemic control.
DISCUSSION

Mast cells are widely known for their role in inflammation and
allergy. Thus, at first sight, it seems plausible that they play a
deleterious role in obesity and T2D. This statement was
supported by studies about mast cell numbers and mast cell
FIGURE 3 | Differences in mast cells per gram of tissue in subcutaneous white adipose tissue depending on the type 2 diabetes status. The data comes from the
big cohort (n = 100). MC (mast cells), T2D (type 2 diabetes), “ns” (p-value > 0.05), “ * ” (0.05 > p-value > 0.01).
May 2021 | Volume 12 | Article 664576
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FIGURE 5 | Differences in mast cells per gram of tissue between subcutaneous and omental white adipose tissue in patients with pre-type 2 diabetes. The data
comes from the big cohort (n = 100). MC (mast cells), s-WAT (subcutaneous white adipose tissue), o-WAT (omental white adipose tissue), T2D (type 2 diabetes),
“ * ” (0.05 > p-value > 0.01).
FIGURE 4 | Differences in mast cells per gram of tissue between subcutaneous and omental white adipose tissue in patients without type 2 diabetes. The data
comes from the big cohort (n = 100). MC (mast cells), s-WAT (subcutaneous white adipose tissue), o-WAT (omental white adipose tissue), T2D (type 2 diabetes),
“ * ” (0.05 > p-value > 0.01).
Frontiers in Immunology | www.frontiersin.org May 2021 | Volume 12 | Article 6645767
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stabilization in adipose tissue, and knockout models. Firstly, a
previous study reported an increase in the number of mast cells
in adipose tissue as the glycemic control worsens (43). However,
this study worked with histological slides and normalized the
Frontiers in Immunology | www.frontiersin.org 8
number of mast cells with the surface of fibrosis in the tissue
biopsy. This work provides valuable information about the tissue
structure, but the cell counting method is not precise. Besides,
mast cells are present not only in fibrotic tissue but also
FIGURE 6 | Differences in mast cells per gram of tissue between subcutaneous and omental white adipose tissue in patients with type 2 diabetes. The data comes
from the big cohort (n = 100). MC (mast cells), s-WAT (subcutaneous white adipose tissue), o-WAT (omental white adipose tissue), T2D (type 2 diabetes), “ns”
(p-value > 0.05).
FIGURE 7 | Principal component analysis (PCA). This technique allows us to observe the patterns of our data reducing its dimension. The data comes from the big
cohort (n = 100). NO (patients without type 2 diabetes), PRE (patients with pre-type 2 diabetes), YES (patients with type 2 diabetes), BMI (Body Mass Index), MC_V
(mast cells from omental white adipose tissue), MC_S (mast cells from subcutaneous white adipose tissue), WH index (waist hip index).
May 2021 | Volume 12 | Article 664576
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surrounding blood vessels (15). Here, we have digested the whole
sample (2-2.5g), and we have employed a more accurate cell-
counting method. Secondly, other studies in murine models
reported that cromolyn, a mast cell stabilizer, reduces obesity
and adipose tissue fibrosis, while it promotes insulin sensitivity
(44, 45). Even though cromolyn is a widely used drug to treat
asthma (46), its mechanism of action is still poorly understood
(47). Curiously, mucosal mast cells are sensitive to cromolyn, but
connective tissue mast cells are not (47, 48). Also, TNFa
production by cell extracts from the peritoneum shows no
significant difference between wild-type and mast cell-deficient
mice (47). Nevertheless, in both wild-type and mast cell-deficient
mice, cromolyn inhibited TNFa production in a dose-dependent
manner (47). Therefore, the current knowledge suggests that
cromolyn has a positive effect on patients with T2D but acting in
other cell types. Accordingly, cromolyn can inhibit neutrophils
Frontiers in Immunology | www.frontiersin.org 9
(49–51), eosinophils (49, 52), monocytes (49, 52), and
macrophages (52). Finally, the genetic ablation of c-kit, a
critical receptor for mast cell development, protected mice
from weight gain and insulin resistance (44). Nonetheless, c-kit
is also crucial for the development of other leukocyte lineages. So,
further experiments demonstrated that c-kit ablation but not
mast cell depletion is what improves the metabolic profile in
mice (53). Although more genetic models explored the effect of
the absence of mast cells in WAT, the current evidence is that it
does not protect from obesity and insulin resistance (54, 55). In a
nutshell, mast cells are not critical players driving adipose tissue
inflammation in patients with T2D.

The BMI is similar regardless of the T2D status. Therefore, it
suggests that the problem is not the expansion of the adipose
tissue itself but the mechanism to achieve it. When adipocytes
expand the adipose tissue in response to an increase in the
nutrients available, oxygen diffusion drops. This mild hypoxia
produces stress signals that promote angiogenesis (56). Of note,
angiogenesis is impaired in patients with T2D (57). Thus,
hypoxic stress becomes greater, and some cells die because of
it. These dead cells in the hypoxic areas of the tissue trigger
inflammation and fibrosis (3, 4, 7, 21, 56).

Mast cells sense this hypoxic condition via reactive oxygen
species (ROS) (15) and hypoxia-inducible factor 1a (HIF1a)
production (58). Then, to promote angiogenesis, they release
pro-angiogenic factors (VEGF, bFGF, TGF-beta), proteases to
remodel the ECM, histamine to increase vascular permeability,
and heparin (15). Moreover, mast cells downregulate the
production of pro-inflammatory cytokines in response to
hypoxic conditions (58). Apart from this, mast cells interact
with endothelial cells to promote their proliferation (15) and the
FIGURE 8 | Linear discriminant analysis (LDA). This technique finds the linear combinations of variables that better separate the observations. The data comes from
the big cohort (n = 100). NO (patients without type 2 diabetes), PRE (patients with pre-type 2 diabetes), YES (patients with type 2 diabetes), LD1 (linear discriminant 1),
LD2 (linear discriminant 2).
TABLE 4 | Correlation of LD1 with the variables.

Variable Correlation Coefficient

Age 0.502
Waist-hip index 0.434
MC (o-WAT) -0.380
HDL -0.350
LDL -0.319
Hypertension 0.300
Triglycerides 0.289
Sex (Male) -0.280
MC (s-WAT) -0.082
BMI 0.063
The data comes from the big cohort (n=100). MC, mast cells; o-WAT, omental white
adipose tissue; s-WAT, subcutaneous white adipose tissue.
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release of angiogenic factors (59). Consequently, in the absence
of mast cells, the adipose tissue is less vascularized (60).

Furthermore, mast cells also contribute to foam cell
formation (15) and pre-adipocyte to adipocyte differentiation
(16–18). Therefore, the mast cell population reduction will affect
the adipose tissue capacity to uptake and store lipids. Thus, the
amount of free fatty acids will increase, causing hyperlipidemia.
Such activates TLR2 and TLR4 on macrophages promoting
inflammation (4, 21). Also, it boosts gluconeogenesis in the
liver, prompting hyperglycemia (61) and causing hepatic
steatosis (8). Finally, hyperlipidemia is an indicator of poor
prognosis for the development of cardiovascular diseases (62).

Unfortunately, there are very few studies about mast cells in
WAT, and most of them employ murine models. So, little is
known about mast cells in human WAT. Moreover, many of the
studies about mast cells in humans use histological slides instead
of flow cytometry. Besides, the differences between humans and
mice can also affect.

In mice, fibrosis in WAT causes tissue dysfunction. However,
the situation in humans is more complicated. Fibrosis in human s-
WAT was associated with a pathological metabolic profile, bigger
adipocytes, and low weight loss after bariatric surgery (63).
Inversely, fibrosis in o-WAT is associated with smaller
adipocytes (64, 65). Since fibrosis in o-WAT limits adipocyte
hypertrophy, it provides a better metabolic profile (64, 65). Mast
cells locate in large numbers in fibrotic tissue. Where they can
produce or degrade collagen depending on the molecular context
(66). In adipose tissue fibrosis, it is unknown the role they play (66).
Nonetheless, in the liver, mast cells play an antifibrotic role (67).
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Previously, we reported three key aspects about the changes in
adipose tissue physiology after weight loss induced by bariatric
surgery (68). Firstly, WAT undergoes extensive tissue
remodeling that increases insulin sensitivity. Secondly, pre-
adipocytes increase their number. Thirdly, the size of
adipocytes decreases. These three changes strongly suggest a
remodeling process in WAT that leads to glucose metabolism
normalization. Furthermore, bariatric surgery reduces the
inflammatory status of both o-WAT and s-WAT, including a
sharp decrease in the number of neutrophils (68). Importantly,
after bariatric surgery, the number of mast cells increases 10-fold
in o-WAT and 4-fold in s-WAT (68). Therefore, since mast cells
increase in number (68) and promote adipogenesis (16–18), they
may play a major role in the remodeling of the adipose tissue.

The study of Goldstein et al. (69) showed that in patients with
obesity, a higher number of mast cells in o-WAT is associated
with a lower cardiometabolic risk. Moreover, a higher amount of
mast cells in o-WAT is linked with a higher weight loss after
bariatric surgery. Finally, higher number of mast cells in o-WAT
was associated with higher insulin sensitivity in hepatocytes (69).

Mast cells have a close relationship with WAT and have an
essential function in its physiology (15–18, 58). Mast cell
progenitors arrive at WAT during the embryonic stage (33).
After that, the whole differentiation of mast cells takes place in
WAT under the influence of the local microenvironment (70, 71).
Nevertheless, currently, the differences between bone marrow
progenitors and WAT progenitors are poorly understood.

Mast cells contribute to WAT homeostasis interacting with
several adipokines including leptin (72) and lipoproteins like LDL
FIGURE 9 | Random Forests Analysis. This technique measures the importance of the variables to discriminate the three levels of the categorical variable “Type 2
diabetes”. The data comes from the big cohort (n = 100). MC_V (mast cells in omental white adipose tissue), MC_S (mast cells in subcutaneous white adipose
tissue), WH index (waist-hip index).
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(73) and stromal cells (74). Moreover, in cold conditions, the
number of mast cells increases inWAT. These mast cells promote
the browning of WAT in response to norepinephrine (55, 75, 76).

In conclusion, the number of mast cells decreases in patients
with T2D. Noteworthy, the HbA1c mean difference between
groups is small. Therefore, little changes in glycemia have a
huge impact on the number of mast cells in WAT, especially in
o-WAT. Since mast cells play a prominent homeostatic role in
adipose tissue, their decrease can contribute to the deterioration of
patients with T2D. One of the limitations of this study is that the
patients with T2D have a mild condition (HbA1c <7%). It would
be interesting to include a group with severe T2D. However,
patients with severe T2D have an increased risk of complications
during surgery and usually follow other therapeutic strategies.
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