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Idiopathic membranous nephropathy (IMN) is an autoimmune disease in which the
immune system produces an antibody response to its own antigens due to impaired
immune tolerance. Although antibodies are derived from plasma cells differentiated by B
cells, the T-B cells also contribute a lot to the immune system. In particular, the subsets of
helper T (Th) cells, including the dominant subsets such as Th2, Th17, and follicular helper
T (Tfh) cells and the inferior subsets such as regulatory T (Treg) cells, shape the immune
imbalance of IMN and promote the incidence and development of autoimmune
responses. After reviewing the physiological knowledge of various subpopulations of Th
cells and combining the existing studies on Th cells in IMN, the role model of Th cells in
IMN was explained in this review. Finally, the existing clinical treatment regimens for IMN
were reviewed, and the importance of the therapy for Th cells was highlighted.

Keywords: idiopathic membranous nephropathy (IMN), helper T cells (Th cells), autoimmune, antibodies, germinal
center (GC)
INTRODUCTION

In 2009, Beck et al. (1) discovered the podocyte autoantigen, i.e., M-type receptor of secretory
phospholipase A2 1 (PLA2R1), in the immune deposits of IMN, providing a key evidence of IMN as
an autoimmune disease. Later, in addition to PLA2R, more IMN antigens were identified, including
thrombospondin type-1 domain-containing 7A (THSD7A), neural epidermal growth factor-like 1
protein (Nell-1), and semaphorin 3B (sema3B), which were all self-components of podocytes (2). In
recent years, the incidence of IMN has been increasing year by year, making it the most common
primary glomerular disease (3). At present, it is widely accepted that the autoimmune reaction of
antibodies and the circulation and combination of target antigens on the cell, formed in situ
immune complex deposition in cells and basement membrane space, lead to cell destruction,
basement membrane thickening, and glomerular filtration barrier damage, as well as proteinuria
and low plasma protein concentration (4).

As a key component of the human adaptive immune system, Helper T (Th) cells play an
auxiliary or regulatory role in the immune response by expressing CD4 (5). Before being stimulated
by antigens and cytokines, CD4+T cells are in their initial state, namely, naive CD4+ T cells.
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Upon being stimulated, the naive T cells begin to differentiate
into different lineages. The differentiation direction is influenced
by T cell receptor (TCR) signaling and specific cytokines in the
microenvironment, and the cell fate is determined by major
activated transcription factors. At present, 5 subsets of Th cells
are relatively well-defined: Th1, Th2, Th17, regulatory T (Treg)
cells and follicular helper T (Tfh) cells (6).

Due to their importance to autoimmune response, possible
roles of various subsets of Th cells in the induction, immune
disorders, and antibody generation of IMN will be discussed, and
new clinical therapeutic strategies will be presented.
UNDERSTANDING HELPER T CELLS

The subsets of helper T cells are balanced and coordinated with
each other, as shown in Figure 1. Th1 and Th2 subsets were the
first ones discovered and explained by Mosmann et al. in 1986
(7). When the organism was infected with intracellular
pathogens, such as viruses and bacteria, the naive T cells could
be induced to differentiate into Th1 cells (8). Such differentiation
is mainly promoted by IFN-g and IL-12, which activate the major
transcription factor T-bet through signaling transducer and
activator of transcription (STAT)1 and STAT4 signaling,
respectively, thus producing more IFN-g in turn. IFN-g is the
major effector of Th1 cells functions to activate macrophage-
mediated cellular immunity (6). IFN-g also urges T-bet to
Frontiers in Immunology | www.frontiersin.org 2
produce a cascading amplification effect of Th1 cells through
autocrine and positive feedback mechanisms (9). In contrast,
Th2 cells mainly mediate humoral immune response and assist B
cells to produce antibodies. IL-4 activates STAT6 signaling to
promote the transformation of naive T cells to Th2 cells, which is
regulated by GATA3, the major transcription factor of Th2 cells
(10). IL-2 is also important for the formation of Th2 cells by
activating STAT5 (11). IL-4 in Th2 cells also plays a similar role
to the positive feedback mechanism of IFN-g in Th1 cells,
promoting Th2 cells differentiation (10). Th2 cells can also
produce IL-5 and IL-13, etc., and participate in allergic
reactions (6). There is an antagonistic relationship between
Th1 and Th2 cells. First, when naive T cells receive antigen-
presenting signals through TCR, a stronger TCR signal promotes
Th1 differentiation, while a weaker TCR signal promotes Th2
differentiation (12). In addition, their major transcription factors
T-bet and GATA3 are also inhibiting each other at both gene
expression level and protein level (13, 14).

Approximately 10 years later after the discovery of Th1/Th2
cells, Sakaguchi et al. found a subpopulation (Treg cells) of
CD4+T cells expressing the IL-2 receptor a (CD25) in mice
that exacted immunosuppressive effects and maintained immune
tolerance (15). Treg cells were derived from initial T cells
induced by TGF-b alone and mainly regulated by the
transcription factor forkhead box P3 (FoxP3) (16). Due to the
grouping expression of CD25, Treg cells had a higher affinity
with IL-2 than other Th subsets as it helped to achieve optimal
May 2021 | Volume 12 | Article 665629
FIGURE 1 | Relationship between Th cells subpopulations. Naive T cells differentiate in different directions under different conditions: IL-12 and IFN-g activate STAT4
and STAT1 signaling, respectively, inducing the expression of the major transcription factor T-bet, and naive T cells differentiate in the direction of Th1 cells, which
secrete cytokines such as IFN-g and participate in cellular immunity. Th2 cells secrete cytokines such as IL-4, IL-5, and IL-13, which are involved in humoral
immunity. In the presence of IL-6 and TGF-b, naive T cells differentiate towards Th17 cells, whose main transcription factor is RORgt. Th17 cells secrete cytokines
such as IL-17A, IL-17F, IL-22 and GM-CSF, which are involved in autoimmune diseases or inflammatory responses. Treg cells secrete IL-10, IL-35 and TGF-b to
maintain immune tolerance. The naive T cells differentiate towards Tfh cells in response to cytokines such as IL12, IL-21, IL-6 and TGF-b. Treg cells differentiate into
Tfr cells in the germinal center. Tfh cells and Tfr cells together participate in the germinal center response.
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inhibition of Treg cells through activation of STAT5 signaling
(17). In general, Treg cells were found with high expression of
CD4, simultaneous expression of CD25, Foxp3 (cytoplasm), and
low expression of CD127 (IL-7 receptor a chain), constituting
phenotype for such cells (18). Decrease in the number and/or
function of Treg cells has been observed in patients with a variety
of autoimmune diseases and mouse models (19). Treg cells have
been identified with functional plasticity and different
transcriptional characteristics in response to different types of
immune responses and environments, thus playing a greater role
of immunosuppression. There is also a subset of follicular
regulatory T cells (Tfr) located in the germinal center (GC)
that, in addition to expressing Foxp3, also express the chemokine
CXCR5 and transcription factor Bcl-6, which are also markers of
Tfh cells (20). The function of Tfr cells is to inhibit GC reaction
and plasma cell differentiation, which is in balance with Tfh cells.

Until 2005, a new subset of Th cells known as Th17 cells
which can secrete IL-17 to regulate tissue inflammation was
discovered (21, 22). The development of Th17 cells rely on both
the induction of TGF-b and the action of the inflammatory
factor IL-6. They activate the major transcription factor RORg-T
through the STAT3 signaling pathway, which determines the
differentiation of naive T cells to Th17 cells. This induction of IL-
6 can also be enhanced in the presence of other cytokines,
including IL-1b, TNF-a, IL-23, and IL-21 (23–25). Th17 cells
produce IL-17A, IL-17F, IL-22 and granulocyte-macrophage
colony-stimulating factor (GM-CSF), recruit inflammatory cells
such as neutrophils, and promote inflammation at the infected
site (26). An increase in Th17 cells has been observed in a variety
of forms of autoimmune diseases, including inflammatory bowel
disease (IBD), psoriasis, rheumatoid arthritis (RA), etc. (26),
which is contrary to the observed reduction or suppression of
Treg cells. There is a balance between Th17 and Treg cells: first,
they compete for TGF-b at the site of differentiation; second,
both STAT5 and Foxp3 in Treg can inhibit Th17 differentiation,
while STAT3 signaling in Th17 can down-regulate Foxp3. All
these lead to the differentiation of naive T cells in two different
directions under different conditions. It was much believed that
the imbalance of Th17/Treg cells was the key to the pathogenesis
and therapeutic target of autoimmune diseases (27, 28). Yet, the
cause for such imbalance still remains unknown.

Several groups of studies have identified a type of CXCR5+Th
cells that have a specific and preferred helper function to B cells
in follicles (29–31), known as follicular helper T(Tfh) cells. The
main transcription factor of Tfh cells is Bcl-6, which is essential
to Tfh formation, assistance to B cells and GC formation (32–
34). The expression of Bcl-6 inhibits differentiation of CD4+T
cells in directions other than Tfh cells (33), and also hinders the
expression of Th1, Th2, Th17 and Treg-related functional
receptors (35, 36). In humans, IL-12, IL-21, IL-6, IL-23, and
TGF-b synergistically promote Tfh cells, but TGF-b inhibits Tfh
cells development in mice (37–40). IL-2 inhibits STAT3 and Bcl-
6 by phosphorylating STAT5, and upregulates Blimp-1, thereby
inhibiting Tfh cells (41, 42). Tfh cells also secrete IL-21 and
express surface molecules programmed cell death protein 1
(PD-1) and recombinant Inducible T cell co-stimulator (ICOS)
Frontiers in Immunology | www.frontiersin.org 3
(43–45), which are critical for regulating the development,
migration and function of Tfh cells. Differentiation and
development of Tfh cells is mainly accomplished in secondary
lymphoid organizations (SLOs). Through the interaction with B
cells, Tfh cells gradually migrate from the T cell zone, through
the T-B border, to the B cell follicles and germinal center, and
finally form GC Tfh cells (46–49), as shown in Figure 2. GC Tfh
cells are necessary to maintain GC response and cause three
outcomes of B cells: A, differentiation into long-term memory B
cells, waiting to be exposed to antigen again; B, differentiated into
long-lived plasma cells to continue to produce antibodies; C, re-
entry into the dark zone for more proliferation and somatic
hypermutation (50–52). Owing to its heterogeneity and
plasticity, GC Tfh cells are also able to adapt to different types
of immune responses. In addition to secreting IL-21, Tfh cells
can also produce IL-4 in response to Th2-mediated antibody
response (53).

Since it is difficult to obtain SLOs from patients, attention has
been paid to circulating cells with a Tfh phenotype. Some
CD4+T cells in the blood with a Tfh-like phenotype
(CXCR5+) subpopulation, but without Bcl-6 expression, are
referred to as circulating Tfh (cTfh) cells (52). Although the
relationship between cTfh cells and true Tfh cells in SLOs is
unclear, the frequency of cTfh and its subsets are associated with
influenza vaccines, chronic infections, and autoimmune diseases
(54–58). Therefore, circulating CXCR5+CD4+T cells are
currently considered to be the circulating responders of Tfh
cells. According to the different expressions of CXCR3 and
CCR6, cTfh can be divided into three subsets expressing
different cytokines: A, CXCR3+CCR6-cTfh1, which can secrete
IFN-g; B, CXCR3-CCR6-cTfh2, which can secrete IL-4, IL-5 and
IL-13; C, CXCR3-CCR6+cTfh17, which can secrete IL-17A, IL-
17F and IL-22 (59). In addition, the activation status of cTfh cells
can be distinguished according to the expression of ICOS and
PD-1 cTfh2 and cTfh17 can secrete IL-21, which can effectively
induce proliferation and differentiation of juvenile B cells and
antibody class conversion (59–62).
HELPER T CELLS IN IMN

Th Cells and Induction of IMN
There are many inducing factors of autoimmune diseases, such
as the change in autoantigen, the abnormality of immune system,
genetic factors, gender and age, etc., as well as their combined
forces (63). IMN is usually caused by a single antigen, of which
PLA2R accounts for 75%, and 10%-20% of IMN patients have
not yet been identified with their antigens (64). Exposure to
autoantigen is the major incidence reason, and no direct
evidence has been found to reveal this process in IMN.
Considering PLA2R as an example, anti-PLA2R antibodies in
serum of IMN patients can bind to PLA2R antigen in vitro in a
non-reduced state (65), which suggests that the antibody-bound
epitopes require PLA2R spatial epitopes and are maintained by
disulfide bonds (66). In China, the incidence of IMN is positively
correlated with air pollution reflected by PM2.5 (67). We and
May 2021 | Volume 12 | Article 665629
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Paul Brenchley et al. have proposed the hypothesis that lung
tissue is stimulated by PM2.5 to cause an inflammatory
environment, leading to exposure of PLA2R1 pathogenic
epitopes in a strong oxidative microenvironment and then
inducing the pathogenesis of IMN (68, 69). Recently, several
studies have indeed found enhanced expression of Th17 cells and
up-regulation of IL-17 and other cytokines in IMN, suggesting
that there is indeed an inflammatory environment in IMN (70–
72). Why has PLA2R become the main autoantigen of IMN?
This may be related to genetic predisposition. At present, HLA-
DQA1 and PLA2R allele risk loci have been found in IMN, which
can promote the delivery of antigen epitopes to T cells through
major histocompatibility complex (MHC) class II (73, 74), and
CD4+T cells receive antigen signals through TCR.

In addition to the exposure of epitopes, the pathogenesis of
IMN also involves the breakdown of autoimmune tolerance,
including central and peripheral immune tolerance. The
production of autoreactive T cells and B cells matters a lot,
and the question is how they can escape the numerous tolerance
checkpoints. In the process of thymus development of T cells, the
V region gene of TCR is rearranged (75). This process may
produce TCR against autoantigen, which can be eliminated by
negative selection. However, this process may be abnormal in
autoimmune diseases, causing abnormalities in the TCR library
of T cells arriving at the periphery. Not long ago, Yu Zhang et al.
(76) used T-cell receptor repertoire high-throughput sequencing
(TCR-HTS) to analyze the TCR b chain repertoire of the
circulating T lymphocytes of IMN patients. The result showed
Frontiers in Immunology | www.frontiersin.org 4
that IMN had lower diversity of VJ cassette combination in
peripheral blood and a decrease in TCR lineage diversity. A
decrease in TCR diversity of peripheral T cells has also been
observed in patients with compulsive spondylitis and systemic
lupus erythematosus (77, 78). This may explain why autoreactive
T cells have escaped central immune tolerance, or why TCR has a
shared sequence in patients, increasing the risk of autoimmune
diseases (79). Peripheral immune tolerance may also play a key
role in autoimmune diseases (80). Treg cells are the key to
maintaining peripheral immune tolerance. A large amount of
evidence shows that IMN has a reduced proportion of Treg cells
in serum and decreased expression of Foxp3 (72), as well as
impaired activation and inhibition of Treg cells (81). However,
the expression of Treg cells in patients improved by rituximab
treatment was significantly up-regulated, and the proportion of
Treg cells had a prognostic effect on the treatment of rituximab
(82, 83).

Immune response of IMN is dominated by humoral
immunity (84), during which differentiation and development
of autoreactive B cells are crucial, and Tfh cells play the role of
peripheral immune tolerance checkpoint (85, 86). The B cell pool
of healthy adults contains a large number of autoreactive B cells,
but they have a low affinity and therefore do not cause disease
(87, 88). Autoimmune diseases, including IMN, require high
affinity with disease-causing antibodies (89, 90), suggesting that
these plasma cells that produce these antibodies have undergone
affinity maturation and somatic hypermutation (SHM) in GC. In
fact, most GC-B cells experience apoptosis, and only a small
FIGURE 2 | Differentiation and development of Tfh cells. First, in the T cell zone, the naive T cells receive the antigen presentation signal from the DC cells, and Tfh
cells begins to differentiate. T cells expressed CXCR5, PD-1, ICOS, and epstein-barr virus-induced gene 2(EBI2), while CCR7 and P-selectionglycoproteinligand-1
(PSGL-1) were down-regulated to obtain the pre-Tfh cell phenotype. At the T-B border, cognate B cells interact with T cells to maintain the Tfh cell phenotype. After
that, the T-B cell complexes move from the border to the interfollicular zone, where more proliferation takes place. Next, Tfh cells are about to enter the follicle, and
the signal from the bystander B cells further upregulates CXCR5 and suppresses CCR7, PSGL-1, and CD62L. Finally, Tfh cells in the follicular fimbria up-regulated
CXCR5, PD-1, and sphingosine-1-phosphate receptor 2(S1RP2) surface molecules, down-regulated EBI2, and became GC-Tfh cells. The expression of IL-21 and
IL-4 by GC Tfh is essential for the survival, proliferation and differentiation of germinal center B cells.
May 2021 | Volume 12 | Article 665629
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portion survives and differentiates into memory B cells or plasma
cells to leave GC (91–93). GC-B cells can survive and develop
only with the assistance of T cells. A competitive model was first
proposed, which was positively correlated with B cell receptor
(BCR) affinity and antigen presenting ability (52). Professor
Carola G. Vinuesa later described this competitive mechanism
as positive selection and negative selection of Tfh cells (85, 94).
Positive selection meant that Tfh cells provide survival signals to
GC-B cells through CD40L, IL-4, IL-21 and other cytokines (94).
Negative selection referred to the process Tfh cells transmit death
signal to GC-B cells via CD95L. Mice with CD95L deficiency
would develop autoimmune diseases (94). B cells without CD40L
signal went to apoptosis (95), and the homologous interaction of
T-B cells could make B cells enter the dark area again for further
division and SHM (85). Studies have shown that the reduction of
SHM is associated with the impairment of B cell tolerance, and
the increase of cTfh cells and IL-21 in such patients (86).
Restrictions on the number and quality (secreting cytokines) of
Tfh cells create an environment in which GC B cells must
compete for help, making it difficult for some low-affinity B
cells, such as autoreactive B cells, to proliferate and differentiate.
However, when the amount of Tfh cells increase abnormally, this
checkpoint will be damaged, and the loosening of the floodgate
will allow some autoreactive B cells to proliferate and
differentiate, producing antibodies, and leading to autoimmune
disease, which has been confirmed in Sanroque mice (45, 96, 97).
In addition, Tfh cells were associated with the occurrence of
autoimmune responses in chronic inflammation (98) as well as
the process of antigen simulation (99), which has not been
further investigated yet.

In fact, no matter the central or peripheral immune tolerance
is abnormal or not, the resulting diseases are often multi-antigen
pathogenic, such as systemic lupus erythematosus (100). In IMN,
although more than one antigen or antibody has been reported
(101, 102), the majority of patients are single-antigen pathogenic.
Therefore, the abnormalities of Th cells may not be the main
cause of the induction of IMN, and the greater significance of
such abnormalities lies in the maintenance of the disease state.

Th Cells Involved in the Immune
Dysregulation of IMN
The differentiation diversity of Th cells is affected by at least two
aspects: on the one hand, the differentiation of naive T cells is
affected by cytokine signals in the microenvironment; on the
other hand, such differentiation is regulated by TCR downstream
signals in the cell. Recently, Mikel Ruterbusch et al. proposed a
new differentiation model of CD4+T cells in vivo (103). The
studies on Th cell subsets and related cytokines in IMN were
reviewed and recorded in Table 1. IMN is identified with obvious
Th cells subgroups imbalance, which is mainly reflected in the
following aspects:

First, the CD4+/CD8+T cell ratio increased, and then the
Th2/Th1 cell ratio increased, indicating that humoral immunity
was dominant in IMN (84). In CD4+T cells, the expression
of IL-4 was up-regulated, which was positively correlated
with antibody production and disease severity (111).
Frontiers in Immunology | www.frontiersin.org 5
The representative cytokine IFN-g secreted by Th1 was
decreased in IMN (111). Cellular immune-mediated diseases
are usually infiltrated by local monocytes and cytotoxic T cells.
Although IMN presents as an organ-specific autoimmune
disease, there is a local lack of cell infiltration that mediates
cellular immunity in the glomerulus, and the generation of
proteinuria may be caused by antibody activation of
complement that damages the podocytes or antibody affecting
podocyte function (115–117). The predictive value of anti-
PLA2R antibody titers for clinical prognosis has also been
vigorously described (69).

Many studies (112, 115, 118), represented by the rituximab
clinical trial conducted by Ronco et al., have shown that IMN
reduces Treg cells and destroys immune tolerance, and whether
Treg cells can be increased after treatment can predict the
therapeutic effect of rituximab. A recent study showed
impaired inhibition of Treg cells in IMN (81), which might be
attributed to the continuous exposure of antigen and the
weakened ability of human immune regulation. TGF-b, IL-35
and IL-10 are the main cytokines secreted by Treg cells that play
immunomodulatory roles. Although reductions or no significant
changes in TGF-b and IL-35 were observed in IMN, there was an
increase in IL-10, and this contradiction could be explained by
upregulated regulatory B (Breg) cells in IMN (81). They can also
secrete IL-10, but it does not suffice to block the development of
the immune response. It was further speculated that the elevated
Breg subsets were Br1 cells (119). As mentioned above, there is
an antagonistic relationship between Treg and Th17 cells in
terms of differentiation, function and other aspects, and
imbalance of Th17/Treg has been observed in many
autoimmune diseases. Th17 cells in IMN have been a heated
topic recently, and studies from different research groups
suggested the up-regulation of Th17 and the increase of IL-6
and IL-17A. This indicates that IMN is conducive to Th17 cells
differentiation, and also strengthens our confidence that IMN is
originated from extrarenal inflammation (115). Increased Th17
cells are also associated with a higher recurrence rate and a
higher risk of venous thrombosis (71), which is a concern for
clinical treatment.

Autoantibodies are essential to the development and
maintenance of IMN, and the production of antibodies
requires GC reactions. Tfh cells are professional GC helper B
cells, and also serve as the novae of Th cells. In fact, the discovery
of Tfh cells has challenged the previous classification of Th cells
because their differentiation had been made earlier (103). In
addition, it was previously held that the humoral immunity of
IMN was driven by IL-4 secreted by Th2 cells, but the present
study shows that IL-4 promoting antibody production may come
from Tfh cells. Reduction of memory B cells and increase of
initial B cells are present in IMN (83), which is consistent with
the reports of some other autoimmune diseases (120, 121). An
increase in initial B cells, such as Tfh cells, may be associated with
the breakdown of tolerance checkpoints (83). The decrease of
memory B cells may be caused by the induction of B cells into
local tissues by chemokines, or the differentiation into plasma
cells to produce antibodies under the action of Tfh cells,
May 2021 | Volume 12 | Article 665629
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or both (85). Two studies from the same group have shown an
abnormal increase in Tfh cells in IMN patients, which was
correlated with disease severity (113, 114). Earlier studies have
also shown that the proportion of CD4+CXCR5+T cells was also
up-regulated in the classic model of Heymann nephritis rats
(122), a classic animal model of IMN. Nevertheless, there are still
many shortcomings, such as discrepancies in the results of
studies from the same group. In addition, many questions
remain to be explored, such as what causes the abnormal
increase in Tfh cells? What is the function of the increased Tfh
Frontiers in Immunology | www.frontiersin.org 6
cells? Are Tfh cells involved in the recurrence of IMN? Research
on various lymphocytes in IMN is still insufficient (4), and the
role of Tfh cells in the overall immune system of IMN remains to
be explored. In addition to the balance between Tfh cells and
Treg cells, Tfr cells also form a balance in germinal center. An
elevated proportion of circulating Tfh/Tfr cells is found in some
autoimmune diseases (123–125), but unfortunately Tfr cells have
not been studied in IMN.

We have to point out that although there are many studies on
Th cells in IMN, their results are not in good agreement, which is
TABLE 1 | Studies of helper T cells in IMN.

Author Year Patients Th cells changes Related cytokine changes Reference

Chatenoud L/
Cagnoli L/
Bannister KM/
Rothschild E et al.

1981/
1982/
1983/
1984

12/27/
14/8

Increase: Ratio of the Th/cytotoxic (OKT4+/OKT8+) or suppressor T
cells
Decrease: Ratio of the OKT8+T cells

No testing (104–107)

Zucchelli P et al. 1988 39 Increase: Ratio of helper/suppressor T cells(LEU3+/LEU2+) No testing (108)
Ozaki T et al. 1992 30 Increase: Level of suppressor inducer T (Leu3a+8+)

Decrease: Level of suppressor T cells (Leu2a+15+)
No testing (109)

Hirayama K et al. 2002 8 Increase: Ratio of Th2 (IL-10+CD4+T cells)
Decrease: Ratio of Th1 (IL-2+CD4+T cells)

As shown in the left (110)

Masutani K et al. 2004 24 Increase: Ratio of IL-4+Th cells
Decrease: Ratio of Th1/Th2 (IFN-g+/IL-4+), positively correlated with
urinary protein.

As shown in the left (111)

Kuroki A et al. 2005 14 Increase: Ratio of CD4+T cells, CD4+/CD8+T cells
Decrease: Ratio of CD8+T cells

Increase:IL-10mRNA, IL-13mRNA in
PBMC

(84)

Wang B et al. 2011 66 Increase: Ratio of CD4+/CD8+ T cells
Decrease: Number of Treg cells(CD4+CD25+Foxp3+)

No testing (112)

Shi X et al. 2016 39 Increase: Ratio of Tfh cells (CD4+CXCR5+, CD4+CXCR5+PD-1+,CD4
+CXCR5+ICOS+, CD4+CXCR5+IL-21+)and ratio of ICOS+/PD-1+Tfh
cells

Increased: IL-21 in serum (113)

Michelle
Rosenzwajg et al.

2017 25 Increase: Frequency of effector memory CD4+T cell
Decrease: Frequency of Treg (CD25hiCD127lo/-Foxp3+)in CD4+T cells

Increased: TNF-a, IL-5, IL-2RA
Decrease: IL-17, IL-1a, IL-7, and
granulocyte-macrophage
colony-stimulating factor (GM-CSF)
No change:IL-35

(83)

Zhang Z et al. 2017 45 Increase: Ratio of Tfh cells (CD4+CXCR5+,CD4+CXCR5+ICOS+,CD4
+CXCR5+CD154+,CD4+CXCR5+IL-21+,CD4+CXCR5+CD28+),
negatively correlated with eGFR and positively correlated with urinary
protein.

Increase: IL-21, IL-4, IL-10, IL-2, IL-
17A, IFN-gin serum
Serum IL-21 concentration was
negatively correlated with eGFR and
positively correlated with urinary
protein.

(114)

Cantarelli C et al. 2020 30 Decrease: Frequency of Treg (CCR4+CD45RA-CD25+CD127low)
No statistical difference: Tfh cells, etc

Increase: TNF-a in serum
No significant difference: IFN-g, IL-
4, and IL-17 in CD4+ and CD8+ T
cells

(81)

Li, H. et al. 2020 29 Increase: Frequency of Th17 (IL-17A+CD4+T),Th2 (IL-4+CD4+T)
Decrease: Frequency of Th1 (IFN-g+)and Treg

Increase: IL-17A(positive correlation
with antibody titer and proteinuria),
IL-6, IL-10, IL-13 in serum
No significant difference: IL-4,
IFN-g, IL-2 in serum

(70)

Cremoni, Marion
et al.

2020 56 No testing Increase: IL-17A, IL-4, IL-6 in serum
Decrease: IFN-g, IL-10 in serum
No significant difference: TNF-a,
IL-5, IL-13 and GM-CSF

(71)

Roza Motavalli
et al.

2021 30 Increase: Ratio of Th17/Treg cells
Decrease: Ratio of Treg (CD4+CD25+CD127−)
No significant difference: Th17 (CD4+IL-17+)

Increase: IL-21, IL-4, IL-10 mRNA in
PBMC
Decrease: expression of FOXP3 in
PBMC
No significant difference:
expression of IL-17, IL-23, STAT3,
RORgT in PBMC

(72)
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a big obstacle for us to reveal the immunological mechanism of
IMN. The underlying reasons may include: A. The included
patients are heterogeneous and can be classified by etiological
type; B. There are differences in detection methods, especially for
cytokines. Measuring cytokine levels after in vitro stimulation
may differ a lot compared to direct serological tests, because
cytokines can be lost in proteinuria; C. The changes of Th cells
and cytokines in IMN are small, suggesting that we should
include patients with more active immune responses for
observation, such as those with higher autoantibody titers. D.
All the above studies are based on non-antigen-specific
immunity, so the changes of autoreactive T cells may be
attributed to a minority of the total T cells that are neglected.
Although PLA2R-specific IgG-producing plasma cells have been
identified in IMN (126), the changes of self-reactive T cells, such
as PLA2R-specific T cells, are unknown in IMN. IMN is an
autoimmune disease with antibody response as its core. In this
process, abnormal Th cells provide an immune-promoting
environment for autoreactive B cells by secreting cytokine.
Therefore, the changes in the population and subpopulation of
circulating Th cells can still reflect the immunological and
pathological state of IMN, but such changes cannot be
completely equivalent to those of antigen-specific Th cells.
Further studies shall be conducted to clarify this problem, such
as the use of flow cytometric analysis or major histocompatibility
complex (MHC) tetramer (IST) staining to detect antigen-
specific T cells in IMN. Such a study would be beneficial
because Treg and Tfh cells do depend on antigen specificity to
a certain extent when acting through cellular contact (127), and
the study can also provide a basis for specific immunotolerance
therapy in IMN. In rheumatoid arthritis, the degree of CD4+ T
cell autoreactivity can determine the mode of immune response
and influence the treatment prognosis, which is also enlightening
for the study of IMN (128, 129).

The local immunological appearance in the kidney is also of
concern. The pathological process of IMN is the binding of
circulating antibodies to podocyte antigens and the formation of
immune complexes deposited on the basement membrane. This
process has been widely recognized. In fact, prior to the discovery
of autoantigens on podocytes, it was assumed that the antigens of
idiopathic membranous nephropathy were located in the tubules
under the influence of Heymann nephritis rats, and CD20+B cell
infiltration was observed in the tubulointerstitial area of
approximately 50% of patients with membranous nephropathy,
of which about 50% were focal infiltration (130). This structure is
similar to the ectopic lymphoid structure (ELS) but has not been
further described. Data from experimental animal models and
patients suggest that Tfh cells or cells with Tfh phenotypic
characteristics contribute to the maintenance of the structure
and function of ELS (131–133). ELS was associated with
interstitial inflammation and poor prognosis in IgA
nephropathy (134). In autoimmune diseases, Eels or locally
infiltrating clusters of B cells often caused harmful effects
(135). For example, local autoantibodies were produced in
patients with rheumatoid arthritis (136). A recent study by
Kyriaki Kolovou et al. has shown that there is localized B cell
Frontiers in Immunology | www.frontiersin.org 7
infiltration in the kidney in renal diseases characterized by
podocyte injury, including membranous nephropathy (137).
Huimin Li et al. found infiltrating IL-17+ cells in the renal
tubule of IMN patients (138). These findings suggest that T-B cell
interaction can play a role in the renal tissue of IMN, especially in
the renal tubules, and affect the prognosis of the disease, thus
providing a new focus for renal pathological diagnosis.

Th Cells Participating in the Production of
IMN Antibodies
In IMN, antibodies against autoantigens are predominantly
IgG4, both in renal pathology and in serum, although a small
number of other subtypes are also present (139, 140). Why IgG4
is the main pathogenic antibody in membranous nephropathy
has always been a problem to be solved. IgG4 is the lowest IgG
subtype in the blood of healthy adults, accounting for only 5%
(141). Although it has about 90% homology with amino acid
sequences of other IgG subtypes, due to changes in individual
amino acids, IgG4 is identified with different characteristics, such
as Fab arm exchange, weak complement binding force, etc. (142–
144). Depending on the environment, IgG4 can play a protective
or pathogenic role. In the autoimmune diseases mediated by
IgG4, such as IMN and pemphigus, the pathogenic effect of IgG4
is often reflected in blocking the binding of antigen to other
proteins and thus affecting its function (90, 144). In IMN, IgG4
combined with THSD7A affects cell adhesion, and thus
proteinuria (145), while IgG4 combined with PLA2R may
affect IV type collagen fiber adhesion (144, 146), but there are
still controversies.

According to V (D) J gene rearrangement, some scholars
speculated that IgG4 antibody should be the one with the highest
affinity among all IgG subclasses and appear the latest (147). In
GC, Tfh cells provide promoting or inhibiting signals to B cells
through the competitive mechanism according to their affinity,
which is crucial to the production of high-affinity antibodies
(148). Among IgG4-mediated autoimmune diseases, including
IMN, some other diseases have also demonstrated abnormalities
in cTfh cells (83, 84, 110, 113, 114, 149–153), as shown in
Table 2. These diseases may share some similarities in
pathophysiology. Factors that promote the production of IgG4
mainly include two aspects: long-term exposure of allergens or
antigens, and the influence of microenvironment created by
cytokines, such as IL-4, IL-13, IL-10, IL-21, etc. (90, 154–156).
IMN is an autoimmune disease with long-term exposure to
autoantigens, and most of the cytokines involved in IgG4
production are abnormal in IMN (see Table 1). IL-4 or IL-13
combined with IL-10 can promote antibody conversion to the
IgG4 category, while IL-4 combined with IL-21 can stimulate
plasma cells to produce IgG4 antibodies (154–156). IL-4 is
considered to be the hallmark cytokine of Th2 cells, while IL-
21 is believed to be the hallmark cytokine of Tfh cells, even
though neither of them serves as the sole source (157, 158).
Studies have shown that Tfh cells can also express IL-4 and
regulate germinal center response, independent of Th2 cells
(159). In fact, Tfh cells may express both IL-21 and IL-4
simultaneously, or in sequence (160). These two cytokines all
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play a key role in the survival and proliferation of B cells,
maturation of antibody affinity and class conversion, and the
combined effect of IL-21 and IL-4 can promote the production of
IgG4 antibody with the support of CD40 co-stimulatory signal
(161), which may be related to the regulation of germinal center
response. In addition, IL-21 can promote the production of
autoantibodies (158).

The Role Model of Th Cells in IMN
Based on the above discussions, genetic, immune, and
environmental factors may co-participate in the incidence and
development of IMN. In the presence of genetic susceptibility
and in extrarenal inflammatory environment, autoantigens
represented by PLA2R are presented to T cells. The initial
cytokine environment pushes the immune response in a Th2-
dominated direction. An abnormal increase in Tfh cells enables
the proliferation and differentiation of autoreactive B cells, and
assists B cells in completing somatic hypermutation in the
germinal center, thus promoting the differentiation of B cells
into plasma cells to produce IgG4 antibodies. Inflammation up-
regulates Th17 cells and affects autoimmune response and
inflammation by secreting cytokines such as IL-17. In addition,
Th17 cells, Tfh cells and B cells may be partially liable for the
damage of the renal tubulointerstitial region in IMN. The
number and function of impaired Treg cells could not be
maintained under autoimmune tolerance. The autoimmune
response of IMN eventually produces antibodies, which bind
to the target antigen on the podocytes, resulting in the classical
pathological appearance of IMN, as described in Figure 3.
TREATMENTS FOR IMN

IMN, as an autoimmune disease, is mainly treated with
immunosuppression, which is initiated after a full assessment of
the condition, and the patient’s disease status is monitored during
the course of treatment. Corticosteroids alone do not work much
for the treatment of IMN but are effective when combined with
Frontiers in Immunology | www.frontiersin.org 8
alkylating agents represented by cyclophosphamide (162–164).
Cyclophosphamide was originally designed as an antitumor
agent and is metabolized by cells to produce phosphoramide
mustard (165), which forms cross-links with DNA to achieve
cytotoxic effects (166). Cells with high proliferative potential,
such as hepatocytes and hematopoietic stem cells, are relatively
resistant to cyclophosphamide due to the expression of high
levels of aldehyde dehydrogenase (ALDH) (167). Conversely,
cyclophosphamide is cytotoxic to mature hematopoietic
progenitor cells and almost all lymphocyte subsets (167–169),
inducing systemic leukocyte and lymphocyte ablation resulting in
rapid suppression of the immune response. However, alkylating
agents are associated with a high incidence of adverse events,
mainly leukopenia, infection, thrombosis, gonadotoxicity, and
increased risk of cancer (170, 171). Calcineurin inhibitors (CNIs)
are also widely used in the treatment of IMN, such as tacrolimus
and cyclosporine. CNIs can target and block the NFAT signaling
pathway, primarily producing an inhibitory effect on T cells,
impairing the helper effect of T cells on B cells and thus reducing
antibody production. Moreover, some studies have shown that
CNIs also have a regulatory effect on the podocyte cytoskeleton
(172). The limitations on the clinical use of CNIs lied in their high
rate of relapse after drug discontinuation (173) and the association
of multiple relapses with progressive renal function (174). Recent
studies have shown that the relapse rate after discontinuation of
CNIs for IMN can be reduced by the addition of rituximab (175).
Rituximab targets the B-cell surface antigen CD20 and cuts the
number of B cells other than plasma cells, which can directly
reduce antibody titers and induce disease remission (176). In
addition to the above drugs, the use of other drugs such as
mycophenolate mofetil and belimumab in the treatment of IMN
is still being testified.

In addition to remission rates, immunosuppressive therapies
for IMN shall also take into account the issues of relapse rates
and safety. In terms of the immunological mechanisms of IMN,
treatment targeting T or B cells alone may not be comprehensive,
and immunosuppressive therapies with multiple targets are yet
to be proposed. It has been shown that renal transplant recipient
TABLE 2 | Tfh cells in IgG4-mediated autoimmune diseases.

Disease Antigen Target
organ

Symptoms Circulating Tfh Tfh whether
associated

with antibodies
production

Tfh whether
influence the

development of
disease

Circulating
B cells

References

Membranous
nephropathy

PLA2R/
THSD7A
/others

Kidney
(podocytes)

Proteinuria Both the number and
the frequency in Th
cells increase

Unclear Yes, positive Increase:
naive B cells(IgD
+CD27-)
Decrease: memory B
cells(IgD-CD27+,IgD
+CD27-)

(83, 84,
113, 114)

Pemphigus Dsg1/
Dsg2

Skin Flaccid blisters and
erosions of the skin and
mucous membranes

Frequency in Th cells
increases

Yes, positive Unclear Unclear (149, 150)

Myasthenia
gravis

MuSK Muscle/
neuro-
muscular
junction

Muscle weakness Frequency in Th
cells increases, Tfh17/
Tfh1 increases

Yes, positive Yes, positive Decrease: B10,
CD24+CD38+B cells

(151–153)
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patients treated with a combination of rituximab, tacrolimus,
and mycophenolate mofetil are found with Tfh or cTfh cells in
the circulation and lymph nodes even when B-cell counts are
reduced and GC responses are suppressed (177). Once the B-cell
subpopulation recovers after treatment cessation, the residual
Tfh may rapidly facilitate B-cell production of auto-reactive
antibodies, so the combined or sequential use of rituximab and
treatment against Tfh cells may have the potential to reduce
relapse rates. Indeed, tacrolimus has a specific inhibitory effect
on Tfh cells, which may be due to the greater dependence of Tfh
cells on the NFAT signaling pathway (178). In addition,
rituximab does not affect increased Th17 cells in IMN, which
Frontiers in Immunology | www.frontiersin.org 9
is associated with relapse and thromboembolism (71). Although
many patients can achieve clinical remission with rituximab,
maintenance treatment for post-remission immunosuppression,
such as targeting Th17 and other Th cells, is also worthy of
concern, especially in those patients at high risk of recurrence. It
is worth pointing out that the potential therapeutic role of IL-2 in
the treatment of autoimmune diseases is gaining increasing
attention (179), and recently, a double-blind placebo-
controlled trial has demonstrated the efficacy and safety of
low-dose IL-2 in the treatment of SLE (180). Different T
subpopulations of cells have different affinities with IL-2, with
the CD4+FOXP3+ Treg cells subpopulation having a high
FIGURE 3 | The role model of Th cells in IMN. (A) Under the influence of genetic, inflammatory, and environmental factors (PM2.5), antigen-presenting cells (APCs)
present their own antigens to juvenile T cells, and then in the initial microenvironment, the immune response develops towards Th2-dominated direction. Infant T cells
differentiate into Th17, which in turn participates in and maintains inflammation and promotes immune response. The differentiation of naive T cells to Treg cells
decreased, and the immunosuppressive ability decreased. Naive T cells differentiate into Tfh cells and participate in GC reaction. (B) In germinal centers, homologous
Tfh cells transmit survival signals to B cells via CD40L and cytokines (positive selection). Homologous or non-homologous Tfh cells transmit death signals to B cells
via CD95L (negative selection). The abnormal increase in Tfh cells, which transmit survival signals, gives autoreactive B cells a chance to proliferate and differentiate.
Under the action of IL-4 and IL-21 secreted by GC Tfh cells, GC B cells underwent somatic hypermutation (SHM) and antibody affinity maturation. After GC reaction,
some B cells become memory B cells and some plasma cells, and begin to secrete IgG4 antibodies. IgG4 circulates to the glomerulus and binds to podocyte
antigens (such as PLA2R) to form immune complexes that lead to the pathological appearance of IMN. In addition, under the influence of some factors, T-B cell
infiltration may occur in renal tubules, and even form ectopic lymphatic structure, affecting the prognosis of the disease. (C) The relationship between the five major
Th cell subpopulations in IMN was dominated by Th2, Th17, and Tfh cells, while Treg and Th1 cells were impaired.
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affinity with IL-2 (181), and Treg cells can be induced to
proliferate even at low IL-2, while such dose of IL-2 makes it
impossible for other Th cells to proliferate. In addition, IL-2 can
inhibit TFH cells responses without relying on Treg cells, which
in turn inhibits GC responses and antibodies production (41,
182). By promoting the proliferation of Treg cells and inhibiting
the responses of Tfh cells, which are indispensable for the
treatment of IMN, IL-2 may have a greater potential in the
clinical treatment of IMN.
CONCLUSION

IMN is a special autoimmune disease mainly caused by
autoantibodies. Although antibodies are secreted by plasma
cells, T-B cells also contribute a lot in the immune system, and
the imbalance of Th1/Th2, Th17/Treg, Tfh/Tfr cells, and other
Th cells subsets in IMN jointly shapes the immunological
pathological state of IMN. More studies are needed to fully
understand the pathological mechanism of IMN. The application
of rituximab shifts the scholars’ attention to the study of B cells in
IMN, but Th cells are located in the upstream of B cells, and
convincing explanation of the changes in B cell subsets hinges on
Frontiers in Immunology | www.frontiersin.org 10
a good understanding of Th cell subsets, which should also be
focused on in clinical treatment.
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