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During allotransplantation, the endothelium acts as semi-professional antigen-presenting
cells with the ability to activate proliferation and to promote differentiation of CD4+-T
subsets. These abilities are dependent on the luminal expression of HLA class II antigens
by microvascular endothelial cells, which is regulated by inflammatory cytokines. The
upregulation of HLA-DR and HLA-DQ during rejection implies significant intragraft
inflammation. Furthermore, the microvascular inflammation is an independent
determinant for renal allograft failure. In this study, the potential of inflammation to
modify endothelial regulation of peripheral CD4+ Treg cells was examined.
Microvascular endothelial cells were exposed to pro-inflammatory cytokines for varying
durations before co-culture with PBMC from non-HLA matched donors. Proliferation and
expansion of CD4+Treg and soluble factor secretion was determined. Early interactions
were detected by phosphorylation of Akt. Video microscopy was used to examine spatial
and temporal endothelial-CD4+T interactions. Highly inflammatory conditions led to
increased endothelial expression of HLA-DR, the adhesion molecule ICAM-1, the
costimulatory molecule PD-L1 and de novo expression of HLA-DQ. Treg differentiation
was impaired by exposure of endothelial cells to a high level of inflammation. Neither IL-6,
IL-2 nor TGFb were implicated in reducing Treg numbers. High PD-L1 expression
interfered with early endothelial cell interactions with CD4+T lymphocytes and led to
modified TCR signaling. Blocking endothelial PD-L1 resulted in a partial restoration of
Treg. The allogenic endothelial cell-mediated expansion of Treg depends on a critical
threshold of inflammation. Manipulation of the PD-L1/PD-1 pathway or endothelial
activation post-transplantation may promote or interfere with this intrinsic mechanism of
allospecific Treg expansion.
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INTRODUCTION

After solid organ transplantation, endothelial cells become the
primary interface between donor tissues and anti-donor immune
responses. However, their immunoregulatory potential has been
largely neglected. As semi-professional antigen-presenting cells,
the endothelium is capable of modulating anti-donor T helper
responses under inflammatory conditions (1, 2). Furthermore,
the HLA and costimulatory profiles of the endothelium are
modified in the inflammatory milieu of allograft rejection,
which may lead to changes in lymphocyte regulation.

Expression of HLA class II antigens is strongly increased
following transplantation and is associated with rejection of
renal, cardiac and liver allografts (3–6). Healthy endothelium
constitutively expresses HLA-DR, whilst HLA-DQ is barely
detectable (3–7). Post-transplantation, HLA-DQ becomes
readily expressed and easily detectable. In vitro culture of
microvascular endothelial cells leads to loss of HLA class II
expression (7, 8). The constitutive expression of HLA-DR in
renal microvascular endothelial cells is dependent upon the
MHC Class II transactivator (CIITA) through the IFNg-
dependent promoter IV and basal physiological levels of IFNg
(7). Addition of IFNg in vitro rapidly increases endothelial HLA-
DR expression, whilst HLA-DQ requires prolonged stimulation.
TNFa alone does not alter either HLA-DR or HLA-DQ
expression (8), but the combination of IFNg and TNFa
notably enhances HLA-DQ induction (8, 9). These in vitro
studies imply the necessity for significant inflammation within
the allograft in order to promote HLA-DQ expression.

Between 1 to 10% of T lymphocytes are estimated to
recognize allogenic HLA-peptide complexes (10, 11). Strong
canonical TCR signaling (through Zap70 and Akt) results in
migratory arrest, proliferation and differentiation into effector
cells (12). TCR signals are enhanced or antagonized by
costimulatory factors and coinhibitory factors (such as PD-L1)
(13). The strength of TCR signaling can determine whether naïve
CD4+ T lymphocytes differentiate into effector cells or regulatory
cells (12, 14–16). The regulatory T cell differentiation can be
consolidated by cytokines (e.g. IL-2 and TGFb) and certain
costimulatory molecules (17).

Human endothelial cells can induce proliferation of
alloreactive memory CD4+ T lymphocytes through their
expression of HLA class II antigens (18–21). Moreover
allogenic microvascular endothelial cells selectively expand
pro-inflammatory Th1 and Th17 subsets, as well as anti-
inflammatory memory Treg (18, 22). Steady-state production
of IL-6 by endothelial cells drives Th17 expansion and increased
IL-6 secretion further enhances this differentiation (18, 23). The
amplification of memory Treg requires direct contact with
endothelial cells and endothelial expression of ICAM-118.
Endothelial regulation of T cell polarization is a dynamic
Abbreviations: EC, Endothelial cells; aEC, Activated endothelial cells; HLA,
Human Leukocyte Antigen; HRGEC, Human Renal Glomerular endothelial
cells; IFNg, Interferon gamma; IL-6, Interleukin 6; PBMC, Peripheral Blood
Mononuclear Cells; PD-L1, Programmed death-ligand 1; Akt, phosphoAkt;
TGFb, Transforming Growth Factor beta; TNFa, Tumor necrosis factor alpha;
Treg, Regulatory T cell.
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process and can be modulated by immunosuppressors (24) or
by HLA class II donor-specific antibodies (23, 25). Of note,
donor-specific antibodies against HLA-DR and HLA-DQ
cooperate to amplify IL-6 secretion and to impair memory
Treg numbers (23, 25).

Transcriptional profiling of biopsies revealed increases in
both T effector and Treg transcripts during rejection (26).
Intragraft infiltration of Th17 is associated with worse allograft
survival (27, 28), whilst intragraft Treg associates with tolerance
and improved graft survival (27, 29). In murine models, the
adoptive transfer of Treg prolongs survival of dermal (30, 31)
and cardiac allografts (32). Given the association between Treg
and allograft survival, endothelial regulation of Treg
alloresponses may play an important role in preventing
graft damage.

Rejection is characterized by manifestations of vascular
inflammation, such as peritubular capillaritis, glomerulitis,
interstitial inflammation, layering of the basement membrane
and the formation of endothelial lesions (26, 33, 34).
Microvascular inflammation has been repeatedly associated
with risk of graft failure (35–37). Moreover, analysis of RNA
transcripts from patient biopsies during rejection reveals the
selective activation of the endothelium (26, 38). Considering the
vascular inflammation and endothelial activation observed
during rejection, this study examined the immunoregulatory
ability of human endothelial cells exposed to distinct levels of
inflammation. The inflammatory conditions required to induce
HLA-DQ expression by endothelial cells were identified and the
capacity for expansion of functional Treg under such conditions
was evaluated.
MATERIALS AND METHODS

Cell Lines and Culture Reagents
Human renal glomerular endothelial cells (HRGEC) were
purchased from Innoprot (Spain) and cultured in Endothelial
Cell Medium (ScienCell). The microvascular endothelial cell line,
HMEC-1, was cultured in supplemented MCDB-131 medium as
described (18, 23, 24). Cells were detached by 0.05% trypsin (Life
Technologies); Versene (Life Technologies) was used when VE
cadherin expression was assessed. Two models of inflammation
were studied; endothelial cells either activated with 20ng/ml
interferon g (IFNg; Eurobio) for three days to produce
‘activated’ endothelial cells (aEC) or activated with 20ng/ml
IFNg for 7 days in addition to 10ng/ml tumor necrosis factor
a (TNFa; Peprotech) for days 3-7 to produce ‘highly activated’
endothelial cells (haEC). Expression of HLA-DQ by primary
renal endothelial cells (HRGEC) was induced after addition of
40ng/ml IFNg for 7 days in addition to 20ng/ml TNFa for the
final three days of activation as indicated. Use of IFNg or a
combination of IFNg and TNFa to induce HLA II expression on
endothelial cells has been reported8.

Blood was obtained from healthy donors in compliance with
the institutional regulations of the Etablissement Français du
Sang (Paris, France). Peripheral blood mononuclear cells
July 2021 | Volume 12 | Article 666531
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(PBMC) were isolated by Ficoll density gradient separation
(Eurobio) and cultured in supplemented RPMI-1640 medium
(Life technologies) (23). CD4+ T lymphocytes were enriched
from whole PBMC by negative selection isolation kits (MACS
Miltenyi Biotech).

Allogenic Endothelial Cell and
Non-Matched PBMC Cultures
Endothelial cells (aEC or haEC) were irradiated prior to adding
non-HLA-matched PBMC (1:1) and were co-cultured for 7 days
before analysis of CD4+ T lymphocytes as described (18, 23, 24).
The medium was not changed during the co-culture. Soluble
factors in the supernatants of co-cultures were collected after 3
days. To assess the role of soluble factors in Treg expansion, aEC
or haEC were seeded in 12-well plates and separated from PBMC
by a porous cell culture insert (0.4µm pore size; Becton
Dickinson). Carboxyfluorescein succinimidyl ester (CFSE;
Biolegend) labelling determined the proliferation of memory T
cells and Treg. CD4+ Treg subsets were identified by flow
cytometry: memory Treg (CD4+CD45RA−FoxP3high) and naive
Treg (CD4+CD45RA+FoxP3+).

Blocking PD-L1 and CD54 by
Monoclonal Antibodies
Endothelial cells were incubated with 10µg/ml of blocking
antibodies (anti-human PD-L1 (29E.2A3; Biolegend), anti-
human CD54 (BBlG-l1 (IIC8); R&D Systems) or appropriate
isotype controls (mouse IgG2b (MPC-11; Biolegend) or mouse
IgG1 (11711; R&D Systems)) at 4°C for 30 minutes, then at 37°C
for a further 30 minutes before washing, irradiating and culture
with PBMC. Where indicated anti-PD-L1 antibody was left
throughout the co-culture.

Treg Suppression Assays
After an initial culture of endothelial cells and PBMC, memory
Treg (CD4+CD45RA−CD127-CD25high) and naïve Treg
(CD4+CD45RA+CD127-CD25+) were sorted (BD FACS Aria II
System). CD4+ T cells were isolated from autologous PBMC and
stained with 5µM CFSE (Biolegend) as per manufacturer’s
instructions. Sorted Treg subsets, autologous CFSE-CD4+ T
cells and Dynabeads® Human T-Activator CD3/CD28
Dynabeads (Life technologies) were cultured for 3 days before
cell proliferation was evaluated by flow cytometry.

Antibodies and Flow Cytometry
Flow cytometry was carried out on a FACS Canto II (BD
Biosciences). Endothelial cells were phenotyped with the
following antibodies: HLA-DR APC (L243), HLA-DQ PE
(HLA-DQ1), HLA-ABC APC/Cy7 (W6/32), VE Cadherin
PerCP/Cy5.5 (BV9), PD-L1 PE/Cy7 (29E.2A3), CD59 PE
[P282 (H19)], CD55 FITC (JS11) and CD46 PE/Cy7 (TRA-2-
10; Biolegend) and ICAM-1 FITC (84H10; Beckman Coulter).
Lymphocyte polarization was analyzed using: CD4 PE (RPA-T4;
BD Pharmingen), IFN-g FITC (B27; BD Biosciences), CD3
PerCP (SK7; Becton Dickinson); CD4 PB (RPA-T4), CD8 PB
(RPA-T8), CD45RA PE/Cy7 (H100), CD25 PE (M-A251),
Frontiers in Immunology | www.frontiersin.org 3
CD127 PerCP/Cy5.5 (A019D5), CD185 APC/Cy7 (J252D4;
Biolegend) and IL-17 efluor660 (eBioscience). FoxP3 was
detected using the anti-Human Foxp3 Staining Set (236A/E7;
eBioscience). Intracellular staining of HLA-DR and HLA-DQ
was carried out on fixed and permeabilised cells (2% PFA
(Sigma) and 0.5% saponin (Sigma)). Intracellular staining of
phosphorylated Akt was carried out in fixed and permeabilised
cells (1.5% PFA followed by pure methanol (Millipore) at -20°C)
using the following antibodies pAkt (Ser473) APC (SDRNR) and
anti-mouse IgG Alexa Fluor® 647 (Poly4053; Biolegend).

Cytokine Quantification by Enzyme-Linked
Immunosorbent Assay
Enzyme-Linked ImmunoSorbent Assays were performed
according to the manufacturer’s protocol for human IL-6
(Biolegend), IL-2 (Biolegend) and TGFb1 (R&D Systems).
Duplicate supernatants were acidified and neutralized to
activate latent TGFb1.

Time-Lapse Microscopy and Image Analysis
Endothelial cells were seeded at 60,000 cells per quadrant in Hi-Q4

culture dishes (Nikon Ibidi). 150,000 CFSE-labelled CD4+ T cells
were added and allowed to sediment for 30 minutes before image-
capture began. Time-lapse microscopy was carried out at a rate of
1 image per minute over 75 minutes at x20 magnification using a
Nikon Biostation IM-Q at 37°C and 5% CO2.

CellProfiler (39), an image analysis software, was used to
identify and track cells. A first pipeline was constructed to
manually define endothelial cell occupied space and produce a
series of masks based on every 10th phase contrast image. A
second pipeline identified T cells, measured cell characteristics
and related the position of each T cell with endothelial cell-
occupied space. T cells were tracked over time to measure
velocity and total distance travelled. Measurements were
calculated as an average of all tracked cells. Endothelial cells
occupied 36.7 ± 0.8% of each image and there were 54.83 ± 1.9
lymphocytes within the field of vision at the start of each session.
On average, lymphocyte tracking lasted 40.9 ± 0.63 minutes. The
distance-based tracking algorithm was chosen based on object
label continuity over training image sets. The average velocity
and true displacement were used for each object.

Statistical Analysis
Statistical analyses were performed using GraphPad Prism
(GraphPad Software). The statistical significance of the data
was determined using Wilcoxon tests, Paired t-tests or Mann-
Whitney U tests as indicated (*p < 0.05, **p < 0.01, ***p < 0.001
and ****p < 0.0001).
RESULTS

Inflammatory Conditions for HLA Class II
Expression and Endothelial Activation
Endothelial cells do not express HLA class II molecules in vitro
without continuous inflammatory stimulation (18). Previous
July 2021 | Volume 12 | Article 666531
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studies (18, 23, 24) explored endothelial immunoregulation
using activated dermal microvascular endothelial cells (aEC),
which were exposed to IFNg for 3 days to obtain significant cell
surface HLA-DR expression (on 86.1 ± 3.5% of cells), yet these
cells did not express HLA-DQ (Figure 1A). Longer exposure to
IFNg was required to induce HLA-DQ; 10 days of IFNg
stimulation induced HLA-DQ expression on only 21.8 ± 2.6%
of cells. The combination of IFNg and TNFa enhanced HLA-DQ
expression earlier to produce highly activated endothelial cells
(haEC), where 39.5 ± 8.3% of cells were HLA-DQ+ after 7 days
(Figure 1A). HLA-DQ surface expression was delayed compared
with intracellular expression (59.1 ± 6.4% HLA-DQ+ on day 7),
potentially evoking inefficiency in HLA-DQ transport
(Figure 1B) compared with HLA-DR (Supplementary
Figure 1). It is noteworthy that HLA-DQ expression was
limited to activate HLA-DRhigh cells (Figures 1C, D).
Frontiers in Immunology | www.frontiersin.org 4
The activated HLA-DR+ endothelial cells (aEC) and the
highly activated HLA-DR++ HLA-DQ+ endothelial cells (haEC)
were compared for their expression of molecules implicated in
allorecognition and modulation of T lymphocyte responses
(Tables 1 and 2). The haEC increased ICAM-1, required for
adhesion and migration of lymphocytes (40) (haEC MFI 3111 ±
758.4 versus aEC MFI 646 ± 134.6; p<0.01) and decreased VE
cadherin, which is important for endothelial cell junctions and
permeability (40) (aEC MFI 741 ± 148 versus haEC MFI 570 ±
140.9; p<0.05). Highly activated endothelial cells increased their
expression of the co-inhibitory molecule PD-L1 (aEC MFI
1768 ± 697 versus haEC MFI 2478 ± 896.6; p<0.05).

Given the significance of complement activation in chronic
rejection, the endothelial expression of complement regulatory
molecules was analyzed following inflammatory stimulation.
Expression of CD55 and CD46 were similar in aEC and haEC,
A B

D

E

C

FIGURE 1 | Induction of HLA-DQ protein expression by endothelial cells under inflammatory conditions. HLA-DR (circles) and HLA-DQ (triangles) expression was
monitored over the course of 10 days in human microvascular endothelial cells (HMEC) stimulated either with IFNg for 3 days (IFNg; grey lines) or with IFNg for 4 days
followed by 3 days of IFNg and TNFa (IFNg & TNFa; black lines) (n = 3; mean +/- SEM) (A). HLA-DQ detected at the cell surface (solid line) was compared to total
HLA-DQ detected in permeabilised cells (dashed line) (n = 3; mean +/- SEM) (B). The coexpression of HLA-DR and HLA-DQ was characterised in cells stimulated
with IFNg and TNFa as previously described at day 7 (C) (n = 3; mean +/- SEM). (D) shows a representative experiment examining co-expression of HLA-DR and
HLA-DQ over a 10 day period in HMEC, whilst (E) shows a representative experiment examining HLA-DR and HLA-DQ expression by primary human renal
glomerular endothelial cells after IFNg and TNFa stimulation for 0, 14 and 24 days.
July 2021 | Volume 12 | Article 666531
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whereas CD59 expression was reduced by almost half in haEC
(Supplementary Table 1).

The lymphocyte-regulating phenotype induced by exposure
to inflammatory conditions was also examined in primary
renal glomerular endothelial cells. These cells were more
resistant to the induction of HLA class II antigens and
required longer periods of exposure to inflammatory
cytokines. HLA-DR was detected after 7 days of continuous
IFNg stimulation, whilst HLA-DQ only became evident
between 14 and 24 days of combined IFNg and TNFa
exposure (Figure 1E). Similarly, to HMEC cells, primary
renal glomerular cells upregulated HLA-DR, HLA-DQ,
ICAM-1 and PD-L1 w i th p ro l onged con t i nuou s
inflammatory conditioning (Supplementary Table 2).

Sustained Inflammation Alters the
Endothelial Modulation of CD4+

T Cell Alloresponses
Allogenic human microvascular endothelial cells can selectively
expand proinflammatory and anti-inflammatory T helper
subsets: Th1, Th17 and memory Treg (18, 23, 24). To assess
Frontiers in Immunology | www.frontiersin.org 5
how the level of inflammation modulates endothelial cell
alloregulation of CD4+ T immune responses, haEC and aEC
were cultured with non-HLA-matched PBMC for 7 days before
analysis of T cell proliferation and differentiation.

Memory T cell proliferation was modestly reduced (aEC
17.5% versus haEC 15.3%; p<0.05), despite higher expression
of HLA class II on haEC compared with aEC (Supplementary
Figure 2A). Expansion of pro-inflammatory Th1 and Th17
subsets was equivalent in cultures with aEC or haEC
(Supplementary Figures 2B, C). The time course of detection
of memory T cells, their proliferation and their apoptosis were
examined and were comparable after co-culture with either aEC
or haEC (Supplementary Figures 2D, F).

The proportion of memory Treg (CD4+ CD45RA- FoxP3++)
was increased after PBMC culture with aEC (Figure 2F), as
previously described18 with an increase from a baseline level of
0.02 to 0.7% in aEC cultures (p<0.0001). Naïve Treg cells (CD4+

CD45RA+ FoxP3+) also increased from a baseline level of 1,0% to
3.7% (p<0.0001) in aEC cultures (Figures 2A, B). Both naïve and
memory Treg were CD127- CD25+ (Figures 2A–C). Yet, in
contrast to pro-inflammatory Th17 and Th1, the Treg fraction
was strongly reduced following co-culture with haEC. The
proportion of naïve and memory Treg decreased by 19%
(p<0.01) and by 21% respectively (p<0.05; Figures 2D, F).

The suppressive potential of memory Treg expanded by aEC
has been demonstrated (18, 23). In order to compare Treg
populations following culture with either aEC or haEC, their
ability to suppress proliferation of autologous CD4+ T cells was
determined. Treg expanded or induced in cultures with aEC or
haEC had equivalent suppressive capacity (Figures 2H–K). On
average, naïve or memory Treg reduced effector proliferation by
42% at a ratio of 1:1 (Figures 2H–K).

Naïve Treg did not proliferate (Figure 2G) and memory Treg
proliferation was similar whether expanded by aEC or haEC
(Figure 2E). The state of endothelial inflammation in cultures
did not affect Annexin V detection or proliferation of mTreg over
a time course of 0, 5 and 7 days (Supplementary Figures 2D-F),
nTreg (data not shown) or the whole T memory cell population
(Supplementary Figure 2F). Reduced survival was therefore not
responsible for impaired expansion and/or induction of the
proportion of Treg mediated by haEC and so we next explored
other factors potentially implicated.
TABLE 1 | Phenotype of endothelial cells activated under different conditions by
pro-inflammatory cytokines.

% cells (mean) MFI (mean)HMEC
Phenotype

aEC haEC p-value aEC haEC p-value

HLA antigens: HLA-DR 72 91 ** 1870 5459 *
HLA-DQ 2 29 **** 98 559 *
HLA-
ABC

99 99 ns 4404 4118 ns

Adhesion: ICAM-1 81 97 ns 646 3111 **
VE
Cadherin

89 86 ns 741 570 *

Costimulation: PD-L1 77 82 * 1768 2478 *
Complement
regulation:

CD59 99 99 ns 25159 12892 **
CD55 99 98 ns 1175 1193 ns
CD46 99 98 ns 5082 4808 ns
Microvascular endothelial cells were stimulated for 3 days with IFNg (aEc, activated endothelial
cells) or with 4 days of IFNg followed by 3 days of IFNg and TNFa (haEC, highly activated
endothelial cells). Both the percentage of expressing cells and themean fluorescence intensity of
expression were determined (n ≥ 3; paired t test). ns, non-significant.
TABLE 2 | Phenotype of primary renal glomerular endothelial cells activated under pro-inflammatory cytokines.

MFI (mean)

Renal glomerular endothelial cells phenotype 0 14 24 days 0-14 days 14-24 days
p-value p-value

HLA antigens: HLA-DR 36.20 2783 4860 * ns
HLA-DQ 2.6 67 242 ns **
HLA-ABC 18802 28633 32584 ns ns

Adhesion: ICAM-1 455 15810 47449 ** ***
Costimulation: PD-L1 1923 6088 10777 ** **
July
 2021 | Volume 12 | Ar
Endothelial cells were continuously stimulated with with IFNg and TNFa for 14 or 24 days. The mean fluorescence intensity of expression were determined (n ≥ 3; one-way ANOVA then
Tukey’s post hoc comparisons).
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Impaired Treg Expansion Is Not
Associated With Known Soluble Factors
We have previously carried out multiplexed assays to identify
which cytokines are produced in aEC-PBMC co-cultures and
found that high amounts of IL-6 are secreted. IL-6 has been
reported to antagonise peripheral Treg induction (17), whilst in
vitro Treg induction is promoted by IL-2 and TGFb (41). We
examined IL-6, IL-2 and TGFb levels in PBMC co-cultures and
did not observe any difference between aEC or haEC cultures
Frontiers in Immunology | www.frontiersin.org 6
(Figures 3A–C). These data suggest equally permissive cytokine
environments for Treg increases in response to aEC or haEC.

The requirement for direct contact in Treg increases was further
examined by preventing the endothelial cell-PBMC interaction.
Direct contact was indispensable to increase the memory Treg
fraction (Figure 3D), whereas soluble factors alone were sufficient to
increase naive Treg from 0.8% to 2.9% in aEC cultures (p<0.05;
Figure 3E) or to 1.8% in haEC cultures. Soluble factors produced in
aEC and haEC cultures were equally potent for naïve Treg induction
A

B

C

D E

F G

H I J K

FIGURE 2 | Human microvascular endothelial cells increase the fraction of naïve and memory regulatory subsets in CD4+ T lymphocytes. PBMC were cultured in
the absence of endothelial cells (Ø), in the presence of activated endothelial cells (aEC) or highly activated endothelial cells (haEC). Naïve Treg were defined as CD4+

CD45RA+ FoxP3+ (A); these cells were mostly CD127- CD25+ (B). Memory Treg were defined as CD4+ CD45RA- FoxP3++ (A); these cells were mostly CD127-

CD25++ (C). The expansion of naïve and memory Treg subsets was assessed (D, F), in addition to their respective proliferation during culture (E, G) (n = 48; red
lines represent the median; Wilcoxon test). Memory and naïve Treg subsets were evaluated for their capacity to suppress the proliferation of responder CD4+ T
lymphocytes. Memory and Naïve Treg (mTreg and nTreg) were isolated from 7-day cocultures with either activated or highly activated endothelial cells (aEC or haEC).
Treg subsets were isolated by sorting from PBMC, then cultured with autologous responder CD4+ T lymphocytes and CD3/CD28 Dynabeads at a ratio of 1 or 5
responder CD4+ T cells per bead. The proportion of responders having undergone three divisions is represented as a percentage of the maximum proliferation in the
absence of Treg cells. Memory Treg (mTreg) and naïve Treg (nTreg) from aEC cocultures are represented with grey lines (H–K), whilst mTreg and nTreg from haEC
cocultures are shown in black lines (H–K; n =3; paired t-test).
July 2021 | Volume 12 | Article 666531
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(Figure 3E). These data highlight the importance of cell-cell
interactions for optimal expansion of memory Treg.

Endothelial PD-L1 Is Associated With
Decreased Treg Expansion and Enhanced
TCR Signaling
Changes in the direct interactions between haEC and PBMCmay be
associated with lessening Treg frequency. ICAM-1 and PD-L1 have
been reported to play a role in T cell activation and Treg induction
(18, 41). Both molecules are upregulated in haEC (Table 1), so
blocking monoclonal antibodies (mAb) were used to elucidate their
role. After exposure to a high level of inflammation, pre-incubation
of haEC with 10µg/ml anti-ICAM-1 mAb did not alter the
proportion of memory or naïve Treg (data not shown). Pre-
incubation with 10µg/ml anti-PD-L1 mAb reduced the proportion
of PD-L1+ cells detected by almost 50% (from 98% to 53%),
producing a partial blockade of endothelial PD-L1 and resulted in
almost doubling mTregs in haEC cultures (from 33% to 61% of the
maximal aEC-mTreg expansion; p<0.05; Figure 4B). Naïve Treg
inductionwas also increased (from 59% to 83% of themaximal aEC-
nTreg expansion; p<0.05; Figure 4C). These increases in Treg were
Frontiers in Immunology | www.frontiersin.org 7
notedwhether the anti-PD-L1 blocking antibodywas only incubated
with endothelial cells or was left throughout the co-culture. These
data underline the differential effects of the PD-L1-PD-1 interaction
according to the intensity of expression (42, 43).

PD-L1 engagement of PD-1 can regulate and antagonize TCR
signaling (41, 44). Relative proliferation of memory T cells was
equivalent in response to aEC or haEC and in the presence of the
PD-L1 Ab (Figure 4A). To analyze the impact of inflammation and
endothelial PD-L1 blockade on TCR signals, Akt phosphorylation at
Ser473 (pAkt) was compared in primary CD4+- T cells from non-
HLA matched donors in culture with EC. No differences were
observed in pAkt after culture with aEC or haEC (Figure 4B).
Despite high inter-individual variability in the phosphorylation
response, PD-L1 blockade increased lymphocyte levels of pAkt
(p<0.05; haEC 93 ± 6% versus PD-L1 blocked haEC 105 ± 4.9%),
indicating enhanced TCR signaling (Figure 4D).

TCR signal transduction can inducemigratory arrest, whichmay
be observed using time-lapse microscopy (45–47). Having detected
changes in T cell signal transduction, we determined whether T cell
motility was altered. CD4+ T lymphocytes were tracked over a layer
of endothelial cells. We examined T cell velocity (pixels per minute)
A B

D E

C

FIGURE 3 | Soluble factors are important for the increased proportion of naïve Treg and not the cause of impaired endothelial-mediated Treg expansion. PBMC
were cultured in the absence of endothelial cells (Ø), in the presence of activated endothelial cells (aEC) or highly activated endothelial cells (haEC). After 3 days, the
culture supernatants were collected and analysed for the presence of the selected cytokines (medians; Wilcoxon test): IL-6 [(A); n = 21], IL-2 [(B); n = 11] and total
TGFb [(C); n = 8]. The physical interaction between endothelial cells and PBMC was prevented by a porous cell culture insert (+ or -) and the expansion of memory
[(D); n = 7] or naïve Treg [(E); n = 7] was assessed after 7 days (red lines represent the median; Wilcoxon test).
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as well as distance travelled from starting point or ‘true
displacement’. These data measure lymphocyte migratory
behaviour and indicate the quality of endothelial-lymphocyte
interactions. No significant difference was observed in lymphocyte
velocity or distance travelled in cultures with aEC or haEC
(Figures 4E, F). However, PD-L1 blockade decreased both T
lymphocyte velocity (p<0.05; 116 ± 11.67% versus 102 ± 10.24%)
and displacement (p<0.05; 128 ± 22.13% versus 94 ± 24.6%;
Figures 4E, F). Lymphocyte motility can therefore be modulated
by endothelial PD-L1 expression. It is possible that limiting available
PD-L1 may have reduced lymphocyte motility by enhancing the
TCR-driven migratory arrest.
DISCUSSION

Microvascular endothelial cells have the capacity to amplify
functional Treg subsets; this study and previous work indicates
Frontiers in Immunology | www.frontiersin.org 8
that the level of inflammation is a key determinant of whether the
endothelium promotes or impairs anti-inflammatory
responses (18).

The inflammatory conditions selected for endothelial activation
replicated the upregulation of HLA-DR, HLA-DQ, ICAM-1 and
PD-L1 observed during human allograft rejection (3–7, 48).
Moreover, only a high level of inflammation requiring both IFNg
and TNFa replicated the de novo expression of HLA-DQ by
microvascular endothelial cells post-transplantation. HLA-DR and
HLA-DQ share the master class II transactivator (CIITA), yet their
microvascular expression varies in quantity and context, in vivo and
in this in vitro model (3–6). Intragraft inflammation may regulate
allogenic HLA-DQ expression in vivo (49). Sustained inflammation
also reduced expression of the CD59 complement regulatory
protein, which inhibits the formation of membrane attack
complexes (MAC) and prevents cell lysis. Downregulation of
CD59 may be implicated in the sensitivity of the endothelium to
complement-mediated cell activation.
A B C

D E F

FIGURE 4 | Increased Treg proportions by highly activated endothelial cells could be modulated by blocking PD-L1. PBMC were cultured with activated endothelial
cells (aEC) or highly activated endothelial cells (haEC). haEC were pre-treated with 10µg/ml monoclonal blocking antibodies against PD-L1(*; n = 9) and washed or
the blocking antibodies were added directly to the culture (*; n = 9). For comparison, aEC and haEC were untreated or treated with 10µg/ml non-specific IgG2b [Ctrl;
n = 18. Untreated and IgG2b-treated endothelial cells did not differ in their capacity to induce alloproliferation or Treg increases. After 7 days of coculture, we
determined the proliferation of memory T cells (CD4+ CD45RA-; (A)] and amplification of memory Treg [CD4+ CD45RA+ FoxP3+; (B)] and naïve Treg [CD4+ CD45RA-

FoxP3++; (C)] relative to the maximal expansion observed after culture with aEC (red lines represent the median, Wilcoxon test). Phosphorylation of Akt (pAkt) in
CD4+ T cells was modified after exposure to activated endothelial cells. CD4+ T lymphocytes were cultured with non-stimulated endothelial cells (EC), activated
endothelial cells (aEC), highly activated endothelial cells (haEC) or with haEC pre-treated with 10µg/ml monoclonal blocking antibodies against PD-L1 (haEC a-PD-L1)
for 2 hours. Intracellular changes in pAkt at serine 473 [(D); n = 5] were assessed. The mean fluorescence intensity (MFI) of each condition is calculated as a
percentage of the MFI of resting CD4+ T cells in each experiment (D) (red lines represent the mean, paired t test). Lymphocyte motility was differentially modified by
the state of activation in endothelial cells. CD4+ T lymphocytes were cultured with activated endothelial cells (aEC), highly activated endothelial cells (haEC) or with
haEC pre-treated with 10µg/ml monoclonal blocking antibodies against PD-L1 (haEC a-PD-L1). The velocity of CD4+ T cells (E) and their displacement (F) were
determined over 75 minutes of coculture. The mean measurements are relative to aEC values (n = 3; paired t test).
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Despite increased HLA-DR and -DQ expression, the highly
activated endothelial cells did not increase the proportion of Treg
compared with aEC but instead selectively decreased it. Because
Treg resulting from culture with either aEC or haEC were
functionally equivalent, the decreased proportion of Treg after
endothelial exposure to a high level of inflammation therefore
represents a real loss in immunosuppressive ability. There was
also a disruption of the balance between Treg and pro-
inflammatory CD4+-T because the proportion of Th17 or Th1
subsets was unchanged (Supplementary Figure 2). While
memory Treg increases were associated with proliferation, this
was not the case for naïve Treg therefore leading to the
suggestion that they may be induced by soluble factors.
Although we did not identify a direct role for IL-6, IL-2 or
TGFb, other soluble factors or indeed combinations of soluble
factors may be implicated in Treg induction and/or maintenance.
The suppressive activity of the Treg, both naïve and memory, was
confirmed in order to exclude the possibility that FOXP3
expression was simply identifying transiently activated T cells.

In cocultures with aEC, endothelial ICAM-1 was required for the
expansion and proliferation of memory Treg (18). ICAM-1 was also
upregulated under conditions of high inflammation yet blocking
ICAM-1 on the haEC did not alter memory Treg expansion. Highly
activated EC may have a redundancy in ICAM-1 expression that
does not negatively impact Treg expansion.

Highly activated EC simultaneously upregulated HLA class II
antigens and the immunoinhibitory ligand, PD-L1. The PD-L1
molecule regulates T cell activation and is constitutively
expressed by endothelial cells (44). PD-L1 mRNA is
upregulated in renal allografts undergoing rejection (48) and
endothelial PD-L1 protein expression is increased in murine
models of cardiac allograft rejection (50, 51).

In our model, the blockade of endothelial PD-L1 coincided with
increased expansion and/or induction of Treg. These results contrast
with literature describing a role for PD-L1 in promoting Treg
differentiation and function (41, 52). In mice, allogenic endothelial
cells can expand Treg by a PD-L1-dependent mechanism (52).
Under in vitro conditions for murine Treg induction from naïve
CD4+ T cells, PD-L1 enhanced differentiation in a dose-sensitive
manner. However at the highest concentrations, PD-L1 actually
inhibited Treg induction and lymphocyte activation (41). This
ambiguous role of PD-L1 is supported by in vivo models where
strong PD-1/PDL-1 interactions impede the suppressive function of
CD4+FoxP3+ Treg (42, 43). Select cancer patients who experience
hyperprogressive disease after treatmentwith anti-PD-1monoclonal
antibodies were associated with intratumoral expansion of Treg; this
human Treg proliferation could be replicated by PD-1 blockade in
vitro (53). The precedent for PD-L1 driven suppression of Tregs has
been established in other models of chronic inflammation, such as
human hepatitis virus C infection and murine graft versus host
disease (54, 55).We do not exclude that a low level of PD-L1may be
beneficial to Treg expansion, yet PD-L1 expression by aEC was not
implicated in in vitro human memory Treg expansion (18).

In this model of haEC, PD-L1 expressed by endothelial cells
was active in regulating both the migratory speed and the
distance travelled of allogeneic CD4+-T. These data may
Frontiers in Immunology | www.frontiersin.org 9
suggest that more lasting contacts with the EC are established
when PD-L1 is not engaged. Treg development is sensitive to
critical thresholds of TCR signals (15), therefore it is interesting
that PD-L1 blockade coincided with increased differentiation of
Treg. PD-L1 binding to the PD-1 receptor on lymphocytes is
known to result in phosphatase recruitment and disruption of
signaling by the TCR (44). PD-1 signaling reduces the
phosphorylation of Akt (41, 44) and antagonizes T cell
activation, proliferation and migratory arrest (13, 44, 45). After
blocking endothelial PD-L1, we observed increased Akt
phosphorylation and decreased lymphocyte motility despite
high inter-individual variability in responses. Variability was
expected given the use of primary non-HLA matched CD4+ T
cells, which models the in vivo situation of alloreactivity. Given
the changes in Akt phosphorylation following PD-L1 blockade,
the impact of PD-L1 on Treg may be mediated by TCR signal
regulation. PD-L1 may also have roles aside from TCR
modulation since PD-L1 ligation has been recently implicated
in endothelium activation and permeability (56).

Following organ transplantation the activation of the allograft
endothelium is ultimately the result of numerous factors
including: immunosuppressive therapies (24), feedback from
naïve and effector immune cells (57, 58), complement
activation (22), donor-specific antibody binding (23) and
inflammation of the microvasculature is an independent
determinant of renal allograft failure. This study revealed that
the mechanisms of Treg amplification are more fragile under
highly inflammatory conditions and that endothelial PD-L1 may
have a nuanced role in Treg proliferation and/or induction
during allotransplantation. Given the participation of
inflammation in in other pathologies such as autoimmunity
and cancer, the impaired generation of Treg by endothelial
cells may have broad implications.
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