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Université de Montpellier, France

*Correspondence:
Siegfried Janz

sjanz@mcw.edu

Specialty section:
This article was submitted to

B Cell Biology,
a section of the journal

Frontiers in Immunology

Received: 11 February 2021
Accepted: 28 April 2021
Published: 02 June 2021

Citation:
Pisano M, Cheng Y, Sun F, Dhakal B,

D’Souza A, Chhabra S, Knight JM,
Rao S, Zhan F, Hari P and Janz S
(2021) Laboratory Mice – A Driving

Force in Immunopathology and
Immunotherapy Studies of
Human Multiple Myeloma.

Front. Immunol. 12:667054.
doi: 10.3389/fimmu.2021.667054

REVIEW
published: 02 June 2021

doi: 10.3389/fimmu.2021.667054
Laboratory Mice – A Driving
Force in Immunopathology
and Immunotherapy Studies
of Human Multiple Myeloma
Michael Pisano1,2, Yan Cheng1, Fumou Sun1, Binod Dhakal1, Anita D’Souza1,
Saurabh Chhabra1, Jennifer M. Knight3, Sridhar Rao4,5, Fenghuang Zhan6,
Parameswaran Hari1 and Siegfried Janz1*

1 Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee,
WI, United States, 2 Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States,
3 Departments of Psychiatry, Medicine, and Microbiology & Immunology, Medical College of Wisconsin, Milwaukee,
WI, United States, 4 Division of Hematology, Oncology and Marrow Transplant, Department of Pediatrics, Medical College of
Wisconsin, Milwaukee, WI, United States, 5 Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, United States,
6 Myeloma Center, Department of Internal Medicine and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for
Medical Sciences, Little Rock, AR, United States

Mouse models of human cancer provide an important research tool for elucidating the
natural history of neoplastic growth and developing new treatment and prevention
approaches. This is particularly true for multiple myeloma (MM), a common and largely
incurable neoplasm of post-germinal center, immunoglobulin-producing B lymphocytes,
called plasma cells, that reside in the hematopoietic bone marrow (BM) and cause osteolytic
lesions and kidney failure among other forms of end-organ damage. The most widely used
mouse models used to aid drug and immunotherapy development rely on in vivo
propagation of human myeloma cells in immunodeficient hosts (xenografting) or
myeloma-like mouse plasma cells in immunocompetent hosts (autografting). Both
strategies have made and continue to make valuable contributions to preclinical
myeloma, including immune research, yet are ill-suited for studies on tumor development
(oncogenesis). Genetically engineered mouse models (GEMMs), such as the widely known
Vk*MYC, may overcome this shortcoming because plasma cell tumors (PCTs) develop de
novo (spontaneously) in a highly predictable fashion and accurately recapitulate many
hallmarks of human myeloma. Moreover, PCTs arise in an intact organism able to mount a
complete innate and adaptive immune response and tumor development reproduces the
natural course of human myelomagenesis, beginning with monoclonal gammopathy of
undetermined significance (MGUS), progressing to smoldering myeloma (SMM), and
eventually transitioning to frank neoplasia. Here we review the utility of transplantation-
based and transgenic mouse models of human MM for research on immunopathology and
-therapy of plasma cell malignancies, discuss strengths and weaknesses of different
experimental approaches, and outline opportunities for closing knowledge gaps,
improving the outcome of patients with myeloma, and working towards a cure.
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INTRODUCTION

Multiplemyeloma (MM) is a neoplasm of terminally differentiated,
post-germinal center, immunoglobulin (Ig)-producing B-
lymphocytes, called plasma cells, that reside in the hematopoietic
bone marrow (BM). Quintessential disease manifestations include
a serum M-spike (monoclonal Ig, paraprotein) and signs of end-
organ damage known as CRAB symptoms: hypercalcemia, renal
insufficiency, anemia, and lytic bone lesions (1). The most recent
estimate of the US National Cancer Institute SEER (Surveillance,
Epidemiology, and End Results) Program predicts slightly more
than 32 thousand cases of newly diagnosed myeloma (NDMM)
and nearly 13 thousand disease-specific deaths in 2020. This
renders MM the second most common and one of the deadliest
blood cancers in the United States. Owing to newly developed
myeloma agents, particularly proteasome inhibitors (PIs),
immunomodulatory drugs (IMiDs) and monoclonal antibodies
(mAbs), the outcome for patients with MM has significantly
improved in recent years (2), making it possible, at long last, to
cure a tangible number of patients (3). However, in the great
majority of cases, following a period of successful therapy,
myeloma relapses as a drug-refractory, aggressive disease that
leaves few, if any, therapeutic options. The root causes of
progression to relapsed and/or therapy-refractory myeloma
(RRMM) include tumor cell-intrinsic changes such as point
mutations in drug response genes (4), copy number alterations
that may abrogate tumor suppressor pathways (5), epigenomic
aberrations modifying gene expression (6), and increased cancer
stemness, which may impact lineage fidelity and tumor dormancy
to name but two changes (7). An equally important yet tumor cell-
extrinsic driver of RRMM pathophysiology is the tumor
microenvironment (TME), which provides myeloma-promoting
interactions with resident BM cells, including specimens of the
innate and adaptive immune system (8). Enhanced understanding
of immune regulation of the BM microenvironment (BMME) has
not only shed light on pathways of myeloma progression but also
greatly advanced myeloma treatment over the past decade (9).

Mouse models of human myeloma have provided preclinical
research tools for elucidating the role of the immune system in the
natural history of plasma cell neoplasia and in assessing candidate
immunotherapies for myeloma (10, 11). Numerous experimental
model systems are available, however, none perfectly replicate
human myeloma (Figure 1). The most widely used models rely on
in vivo propagation of human myeloma cells in immunodeficient
hosts (human-in-mouse xenografting) (12–14) or myeloma-like
plasma cells from C57BL/6 (B6) (15) or BALB/c (C) mice (16) in
genetically compatible (syngeneic) immunocompetent hosts
(mouse-in-mouse autografting). Both strategies have made and
continue to make important contributions to myeloma research
Abbreviations: BM, bone marrow; BMME, bone marrow microenvironment; B6,
C57BL/6; C, BALB/c; Ig, immunoglobulin; IMiD, immunomodulatory drug; IP,
intraperitoneal; IV, intravenous; mAb, monoclonal antibody; MGUS, monoclonal
gammopathy of undetermined significance; MM, multiple myeloma; NDMM,
newly diagnosed multiple myeloma; PI, proteasome inhibitor; RRMM, relapsed/
refractory multiple myeloma; SC, subcutaneous; SMM, smoldering multiple
myeloma; TME, tumor microenvironment.
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(17, 18), but are hampered by the reality that in vivo transfer of
malignant cells (tumor transplantation) is not suitable for studying
tumor development (oncogenesis). In other words, xeno- and
autografting of neoplastic plasma cells bypasses the natural course
of human myelomagenesis that begins with monoclonal
gammopathy of undetermined significance (MGUS) (19),
progresses to smoldering myeloma (SMM) (20), and eventually
transitions to frank neoplasia (NDMM). Laboratory mice, in
which plasma cell tumors (PCT) arise de novo (spontaneously)
in a fully immunocompetent microenvironment, may remedy this
shortcoming yet are undermined by other limitations, including
complex breeding schemes, cost and time. Here we review the
contribution of mouse models to advances in immunopathology
and -therapy of human myeloma, discuss strengths and
weaknesses of different experimental approaches, and outline
opportunities for closing knowledge gaps.
IMMUNOPATHOLOGY AND -THERAPY OF
MULTIPLE MYELOMA

Immune Editing and Immune Dysfunction
in Myeloma
As mentioned above, frank myeloma is invariably preceded by
the precursor conditions MGUS (19) and SMM (21). MGUS is,
in most cases, asymptomatic (22) and is usually detected years
before frank MM manifests. MGUS progresses to active
myeloma at the slow and constant rate of approximately 1%
per year (21, 23). Consistent with the more advanced stage of
tumor development, the progression rate of SMM is higher: 10%
per annum in the first 5 years and 3% thereafter (24). Notably,
BM plasma cells of individuals with MGUS exhibit a gene
expression profile that is highly similar to that of myeloma
(25) and MGUS plasma cells contain many of the cytogenetic
changes (chromosomal translocations, gains and deletions)
typically seen in myeloma cells (26–28). These findings have
long raised suspicion that MGUS may in fact be a malignancy
that is suppressed by a strong, extrinsic force, such as a cognate
cytotoxic immune response (immune surveillance). Because
most cases of MGUS do not progress to MM, this surveillance
mechanism must be effective and enduring, essentially covering
the entire lifespan of most individuals harboring an aberrant
plasma cell clone of this sort. A large body of recent work
expertly reviewed elsewhere (29, 30) strongly suggests that the
breakdown of immunologic surveillance is at the heart of the
MGUS-to-MM transition. According to this theory, known as
cancer immunoediting (Figure 2A), the immune system is
initially highly successful in eliminating abnormal plasma cells
(Elimination stage), but then switches to an impasse that permits
a limited number of these cells to survive in a quiescent or
dormant state (Equilibrium) that may last for many years in
individuals with MGUS (34). For reasons that are not yet clear,
the equilibrium is eventually disrupted in a subset of patients,
allowing the aberrant cell clone to evade immune control
(Escape) and fuel the malignant growth that underlies active
June 2021 | Volume 12 | Article 667054
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myeloma. In sync with that scenario, immune suppression
caused by regulatory T cells, myeloid derived suppressor cells
(MDSC) and dysfunctional effector T lymphocytes, is a hallmark
of NDMM (Figure 2B). Growth and survival support of
myeloma cells by innate immune cells, including conventional
and plasmacytoid dendritic cells (35, 36) and eosinophils (37), is
the flip side of the same coin. Of practical relevance for patient
care is the knowledge that immune dysfunction in patients with
myeloma may lead to increased risk of infections (38) and lack of
a vigorous vaccination response (39) – something to be mindful
about in the midst of SARS-CoV-2 (40).
Immunotherapy of Myeloma
The past decade has witnessed tremendous progress in
immunotherapeutic approaches to myeloma. Authoritative and
up-to-date reviews are available (29, 41). Current FDA-approved
interventions include monoclonal antibodies targeting CD38
[daratumumab (42), isatuximab (43)] or SLAMF7 [elotuzumab
(44)] on the surface of tumor cells. An antibody-drug conjugate
(ADC) that binds to BCMA [belantamab mafodotin (45)] has also
been approved just recently. Additional BCMA-targeted therapies,
in particular chimeric antigen receptor (CAR) T cells and
bispecific T cell engagers (BITEs), are in advanced stages of
clinical development. Immune modulation using small-drug
inhibitors of cereblon, a component of an E2 ubiquitin
ligase complex, is also approved for treatment of myeloma
and is widely used for maintenance therapy internationally.
Immunomodulatory drugs of this sort, dubbed IMIDs, include
Frontiers in Immunology | www.frontiersin.org 3
thalidomide (46), lenalidomide (47, 48), and pomalidomide (49).
Next-generation cereblon-targeting agents that promise to
overcome acquired resistance to IMIDs are in clinical trial (50).
Figure 2C provides an overview of myeloma immunotherapies in
clinical use. Not shown are proteasome inhibitors (PIs), a class of
targetedmyeloma agents that, in the past, have not been associated
with immune-mediated myeloma-inhibiting effects. However,
recent work demonstrates that modulating the immune
microenvironment of myeloma, by virtue of inducing
immunogenic cell death (51), primes a cytotoxic immune
response to tumor cells, thereby contributing to disease control
in a proteasome-independent manner.
XENOGRAFT MODELS OF MYELOMA

Propagating Human Myeloma Cell Lines
(HMCLs) in NSG and NRG Hosts
Many advances in the field of myeloma biology, genetics, and
therapy would not have been possible without preclinical
investigations that relied on immunocompromised mice for
hosting human myeloma cells. Human-in-mouse xenografting
has a long and distinguished history in cancer, including
myeloma research, beginning in the early 1960s with the
discovery of the T lymphocyte-deficient nude mouse. This
marked the inception of a developmental pipeline of mice that
feature increasing levels of immunodeficiency. SCID (severe
combined immunodeficiency) and Rag mice lack both T and B
FIGURE 1 | Mouse models of human myeloma. Xeno- and autografting relies on in vivo propagation of fully transformed tumor cells. Models of tumor development
include peritoneal plasmacytomas that can be readily induced in genetically susceptible BALB/c mice and myeloma-like tumors that arise spontaneously in a variety
of transgenic mice.
June 2021 | Volume 12 | Article 667054
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lymphocytes. The underlying genetic defects are loss-of-function
mutations in Prkdc (protein kinase, DNA activated, catalytic
polypeptide) and Rag1 or Rag 2 (recombination activating gene 1
or 2), respectively. Transfer of the SCID and Rag mutations on
the genetic background of NOD (non-obese diabetic) led to
NOD-SCID and NOD-Rag mice, which exhibit a NK (natural
killer) defect on top of T and B deficiency. In addition to
diminished NK cell function, NOD leads to lack of circulating
complement due to deletion of the C5-encoding Hc gene and
proclivity to Type 1 diabetes mellitus due to autoimmune
insulinitis (52). Further modification of NOD-SCID and NOD-
Rag mice by crossing in IL2Rg (interleukin-2 receptor subunit
gamma) deficiency resulted in strains NSG and NRG, which are
Frontiers in Immunology | www.frontiersin.org 4
devoid of T, B and NK cells. Lack of IL2Rg (a.k.a. CD132 or
common gamma chain, gc) abrogates NK cells and compromises
at least 6 interleukin signaling pathways: IL-2, 4, 7, 9, 15 and 21
(Figure 3B). NSG and NRG mice, which are commercially
available and widely used in myeloma research, readily permit
engraftment of human myeloma cells upon subcutaneous (SC),
intravenous (IV), intraperitoneal (IP), or intratibial injection (53,
54). Strengths and limitations of myeloma xenografting have
been reviewed in great depth elsewhere (55). Care must be taken
to select the most appropriate HMCL for a given research
question, as significant differences between cell lines exist (56,
57). 3D in vitro culture of myeloma cells using a variety of
artificial scaffolds is an emerging technology that competes with
xenografting and holds promise for drug testing for personalized
myeloma therapy (58).
Engrafting Patient-Derived Myeloma Cells
in Implanted Bone Chips
Major limitationsofmyelomaxenograftingdescribed above include
the reality that tumor growth occurs mostly outside the BM and
primary patient-derived tumors do not grow at all. The latter is a
fundamental flaw caused by the stringent dependency of myeloma
cells on support from the human BMME. HMCLs do not exhibit
this dependency because they are derived from malignant plasma
cells that circulated in the peripheral blood or occurred in body
cavity effusions of patients with plasma cell leukemia, the end stage
of myeloma progression. The derivation from leukemic cells is also
in line with the extramedullary growth pattern (plasmacytoma) of
HMCL-in-mouse xenografts mentioned above. To provide a TME
that is more conducive for primary myeloma cells, investigators
modified SCIDmice by implanting small pieces of human or rabbit
bone subcutaneously. Synthetic 3D scaffolds serving as surrogate
bone provide an alternative approach. These experimental model
systems have come to be known as SCID-hu (12, 59–61), SCID-rab
(62), and SCID-syn (14) (Figure 3A). They are equally capable and
have greatly enhanced preclinical myeloma research (10, 11) by
addressing knowledge gaps in treatment and pathophysiology:
SCID-hu (63–65), SCID-rab (66–68), and SCID-syn (69, 70).
However, more widespread use of these models is hampered by
ethical and practical limitations, such as reliable provision of fetal
humanboneanddifficulties in administering humanmyeloma cells
to small implants. The fact that fetal BMdoes not equate with adult
BM in terms of cellular composition and immune milieu, and that
rabbit or synthetic bone does not fully recapitulate the myeloma-
supporting properties of human bone adds an additional biological
limitation. This backdrop helps explain why the use of SCID-hu,
SCID-rab, andSCID-synhasbeendeclining inrecentyears andwhy
researchers have been looking for alternative strategies to propagate
myeloma in laboratory mice. The most promising development to
date is the humanization of NRG mice, as described below.

Maintaining MGUS/SMM Plasma Cells in
Humanized NRG Mice
Gene targeting in embryonic stem cells is a convenient research
tool for substituting mouse genes with human counterparts and,
A

B

C

FIGURE 2 | Immunopathology and -therapy of myeloma. Evidence indicates
that myeloma development is promoted, in part, by the gradual breakdown of
immunosurveillance (A). Consequently, patients with myeloma have a
suppressed and dysfunctional immune microenvironment (B). 2 subsets of
Tregs that discriminate MGUS from MM (31); 2 subsets of terminal effector T
cells (TTE) are involved in MGUS to MM transition (32); Attrition of BM-resident T
cells due to loss of “stem-like” TCF1/7hi T cells may underlie loss of immune
surveillance in myeloma (33). Enhanced understanding of this microenvironment
has been key for the development of immunotherapies of myeloma (C).
June 2021 | Volume 12 | Article 667054
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thereby, humanizing laboratory mice. This approach has
generated highly immunodeficient mice in which two major
obstacles to engraftment of human cells have been largely
overcome: innate immune rejection via phagocytosis and lack
of activity of certain cytokines and growth factors across the
human-mouse species barrier (71). Strain MIS(KI)TRG is an
excellent example of recent developments. It features, on the
Frontiers in Immunology | www.frontiersin.org 5
genetic background of NRG, the expression of 5 human “knock
in” genes encoding M-CSF (macrophage colony-stimulating
factor a.k.a. colony stimulating factor 1 or CSF1), IL-3
(interleukin-3), GM-CSF (granulocyte-macrophage colony-
stimulating factor a.k.a. colony stimulating factor 2 or CSF2),
SIRPa (signal regulatory protein a), and thrombopoietin (72).
MIS(KI )TRG mice exhibit improved engraftment of
A

B

C

FIGURE 3 | Xenografting human myeloma in immunodeficient mice. NSG and NRG mice are widely employed for preclinical studies using human myeloma cell lines
(HMCLs) but are limited in terms of hosting primary, patient-derived myeloma cells (B). Implantation of bone chips or artificial scaffolds in SCID mice can overcome
this limitation (A) but is faced with practical limitations and the inability to support MGUS and SMM plasma cells. Additional incremental steps in humanizing NSG
and NRG mice may solve this problem. A promising step in this direction is the recent development of IL-6 transgenic MISKITRG mice, which can support homing
and survival of plasma cells not only from patients with frank and smoldering MM but also individuals with MGUS (C).
June 2021 | Volume 12 | Article 667054
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hematopoietic stem and progenitor cells and lend themselves to
hosting PDX (patient-derived xenograft) tumors from many
human cancer types. However, these mice were still unsuitable
for stable engraftment of primary myeloma cells. Cognizant of
the critical role of IL-6 for growth and survival of neoplastic
plasma cells (73), Madhav Dhodapkar and his associates added a
human IL-6 allele to strain MIS(KI)TRG, thus generating IL-6
transgenic MIS(KI)TRG, or MIS(KI)TRG6 mice (Figure 3C) (74).
The introduction of human IL-6 resulted in a remarkable
breakthrough for preclinical myeloma research, because for the
first time it allowed engraftment and propagation of primary
MM cells in a reliable and reproducible fashion. What is more,
MIS(KI)TRG6 supported engraftment of SMM and MGUS
plasma cells upon transfer of CD3-depleted BM mononuclear
cells to recipient bone. The finding that, unlike NDMM cells,
RRMM cells actively homed to and expanded in other sites of the
skeleton resembled the more advanced tumor progression stage
of relapsed compared to new myeloma. Finally, while RRMM
remained confined to bone, tumor samples from patients with
plasma cell leukemia demonstrated the kind of systemic,
extramedullary dissemination pattern that one might expect
from a leukemic cell clone.
Utility of Myeloma Xenografting in
Immunotherapy Research
Of the three principal model systems of myeloma xenografting
described above, the HMCL-in-mouse approach, has probably
had the greatest impact on immunotherapy research in
myeloma. While MIS(KI)TRG6 mice have not yet been used to
that end, the implantation-based SCID models have largely been
supplanted by HMCL-in-mouse xenografts, as mentioned above.
Indeed, HMCL xenografting appears to lend itself readily to the
complex requirements of experimental immunotherapy. Often
this involves adoptive immune cell transfer to study mice and
testing of new therapeutic antibodies or antibody-drug
conjugates (ADCs) in mice co-treated with established
myeloma drugs or candidate small-drug inhibitors. HMCL
xenografts are often used as a first choice when the efficacy of
cytotoxic T cells, NK cells, or engineered killer cells to remove
myeloma in an intact organism in vivo is to be evaluated. To
highlight but a few examples of their utility, HMCL xenografts
have majorly contributed to the development of CAR-T
treatments for BCMA (75) and newly emerging CAR-T targets
such as CD229 (SLAMF3, LY9) (76). HMCL xenografts have
been successfully employed to assess a monoclonal antibody to
transferrin receptor 1, a newly emerging molecular target
expressed on the surface of myeloma cells (77, 78). Similarly,
HMCL xenografts have been used to evaluate AMG 701, a half-
life extended BITE that binds to BCMA on myeloma cells and
CD3 on T cells (79), and to demonstrate that the therapeutic
efficacy of daratumumab in myeloma may be enhanced when
CD38 in NK cells has been deleted (80). This body of work
illustrates the rapid evolution of the myeloma immunotherapy
landscape and that HMCL xenografting is poised to add further
value to the field as we go forward.
Frontiers in Immunology | www.frontiersin.org 6
AUTOGRAFT MODELS OF MYELOMA

5TMM
The 5T mouse model of human multiple myeloma, or 5TMM for
short, is a versatile research tool for fundamental and applied
studies on plasma cell malignancies. The model is based on the
genetic proclivity of inbred C57BL/KaLwRij mice (closely related
to the commonly used C57BL/6) (81) to spontaneously develop a
benign monoclonal gammopathy (serum paraprotein) or
MGUS-like condition (82) that can progress to frank myeloma
(15, 83). Using serial in vivo propagation of bone marrow cells
from independent C57BL/KaLwRij donors containing different
paraproteins, a number of transplantable myeloma-like plasma
cell tumors were generated (Figure 4A). Two of these, dubbed
5T2 and 5T33, were fully established and generously shared with
qualified investigators in Europe, the United States, and
elsewhere. 5TMM tumors cause osteolytic lesions (83) and
recapitulate other features of human myeloma bone disease
(84, 85). 5TMM tumors grow in a fully immunocompetent
BMME and are easily tracked in vivo using radiological
methods including X-ray and PET imaging (86). Unlike 5T2,
which can only be maintained by passaging from mouse to
mouse, two continuous cell lines were derived from 5T33:
5TGM1 (87, 88) and 5T33vt (89). The genetic differences
between these cell lines and 5T2 have been recently
determined using NGS (90). This revealed an additional
strength of 5TMM in regard to modeling human myeloma; i.e.,
the significant overlap of patterns of somatic mutations across
the human-mouse species barrier, particularly with respect to
copy number changes of genes involved in gain of 1q and
deletion of 13q in human myeloma (90). The availability of
cell lines, 5TGM1 and 5T33vt, has greatly enhanced the
flexibility and impact of the 5TMM model. For example, the
cells can be easily modified by virtue of enforced up or down
regulation of genes of interest or the introduction of reporter
genes for whole-body fluorescence or bioluminescence imaging
of tumor growth in a quantitative, objective manner (91). The
cell lines have also facilitated the examination of myeloma-
immune interactions in vitro and in vivo. For example, an
early study using 5TGM1 demonstrated that myeloma cells
inhibit the differentiation of BM-derived dendritic cells (DCs)
and interfere with their function to induce cytotoxic and humeral
immune responses (92). This is relevant for ongoing efforts in
human myeloma to use DCs for vaccination approaches aimed at
eliciting a robust T cell-dependent cytotoxic immu response (93).

5TMM as Research Tool for Immune
Regulation of Myeloma
The broad utility of 5TMM for studies on the immunopathology
and -therapy of myeloma was recognized soon after the first
tumors were established. Initial investigations described the role
of the paraprotein idiotype (Id) in immune regulation (94) and
immune therapy (95) of plasma cell neoplasia. Follow-up studies
relying on 5TGM1 demonstrated that the idiotype is a myeloma-
specific antigen that can induce an Id-specific cytotoxic T cell
(CTL), T helper 1 (Th1) and T helper 2 (Th2) response (96).
June 2021 | Volume 12 | Article 667054
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CTLs and Th1s were found to suppress myeloma growth, whereas
Id-specific Th2 cells promoted it (96) – a preclinical clue in
support of the contention that modulation of the Th1:Th2 axis
might have therapeutic benefits in myeloma. The finding that 5T-
bearing mice exhibit an increase in the ratio of regulatory T cells
(Tregs) to T effector cells (97) proved relevant for human
myeloma when it became clear that patients with new disease
contain elevated numbers of Tregs in the peripheral blood (98).
With respect to myeloma immunotherapy, the 5T33 model made
conceptual contributions to developing DC-based MM vaccines
for idiotype protein (99). This included the design of more
effective adjuvants based on CpG and IFN-a (100) and the
realization that myeloma cell lysates provide a more powerful
DC vaccine than idiotype protein and adjuvant, alone (101).
These advances were confirmed in a clinical study a few years ago
showing that a patient-derived DC-MM cell fusion (hybridoma)
vaccine improved the therapeutic response in a quarter of
myeloma patients post-ASCT from partial to (nearly) complete
(102). 5TMM has also been used to examine immunomodulatory
myeloma treatments at the preclinical level; e.g., investigators
demonstrated that CD4 T cells were vital for lenalidomide’s
activity, while NK, B or CD8 T cells were not (103). Activation
of innate-like invariant natural killer T (iNKT) cells, a cell type
that has not yet been extensively examined in human myeloma,
led to significantly increased survival of 5T33-bearing mice (104).
The 5T33 model has also contributed early on to the CAR-T
therapy field by showing that treatment using NKG2D-targeted
CAR-T cells prolonged survival of tumor-bearing mice and
induced a tumor-specific memory response (105). Furthermore,
Frontiers in Immunology | www.frontiersin.org 7
5T33 not only demonstrated efficacy of immune checkpoint
inhibitor (CPI) therapy using antibody to programmed death
receptor-1 (PD-1) or its ligand (PDL-1), but also showed that
CD8+ T cells in tumor-bearing mice post-ASCT significantly
upregulated PD-1 (106, 107). In summary, the practical limitation
to in vivo studies using 5TMM requiring the genetic background
of C57BL/KaLwRij (108) is a small inconvenience compared to
the potential contribution of this model to aiding immunotherapy
development for patients with myeloma.

MOPC315.BM
MOPC315 is an IgA-producing peritoneal plasmacytoma (PCT)
that arose half a century ago (109) in a BALB/c (C) mouse treated
with intraperitoneal injections of mineral oil (110). MOPC315 has
beenused fordecades in studies on immune regulationofmalignant
plasma cell growth (111, 112) although it is not representative of
humanMM,whichgrows in thehematopoieticBManddepends on
the BMME for survival. In a major step forward, this shortcoming
was remedied by the development of a subline of MOPC315,
dubbed MOPC315.BM, generated by serial IV autografting of
BM-derived plasma cells for nine generations. In the course of in
vivo propagation, tumor cell variants with exquisite affinity to the
BM increased oncogenic potency (~1 month median survival of
tumor-bearing mice), and capacity for BM homing and bone
destruction were preferentially selected (Figure 4B). Transfection
with a luciferase reporter further increased the utility the cell line
(16). MOPC315.BM is now increasingly used in preclinical
myeloma research. For example, it provided the foundation for
recent studies on the involvement of IL-34 and notch signaling in
A

B

C

FIGURE 4 | Autografting mouse myeloma in immunocompetent mice. Two models have been established. 5TMM is on a genetic background that is highly similar to
B6 and includes two continuous cell lines, 5TGM1 and 5T33vt, that are widely used (A). MOPC315 is a peritoneal plasmacytoma on the genetic background of C
that has given rise to a BM-seeking subline, MOPC315.BM, that holds great value for myeloma immunology research. (B) Decades of research by Bogen and
colleagues have shown indirect CD4+ T cells mediated killing via interactions with cytotoxic macrophages, further demonstrating the utility of MOPC315.BM as an
immunological research tool (C).
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the pathophysiology of the focal and systemic bone loss inmice that
mimics human myeloma bone disease (MBD) (113, 114).
Additionally, MOPC315.BM has been employed to demonstrate
that eosinophils andmegakaryocytes supportmalignantplasma cell
growth in the BM (115) and that oncolytic myxoma virus, in
conjunction with ASCT, may be an effective treatment for PCT-
bearing mice (116). Importantly, together with its parental line,
MOPC315.BM has made major contributions to our appreciation
of CD4 T cell responses in immunosurveillance and -therapy of
myeloma (117), briefly summarized below.

Lesson on CD4-Dependent Control of
Malignant Plasma Cell Growth
Strong evidence supports the significance of Id-specific CD4 T cells
in clearance of MOPC315 plasma cells in vivo (118), confirming
matching results in the 5TMM model described above. In a
remarkable continuity of investigations that span more than 25
years, Bjarne Bogen and his colleagues have unequivocally shown
that tumor cell-produced monoclonal Ig gives rise to a tumor-
specific antigen (TSA) in theMOPC315model system. The antigen
is processed by professional antigen-presenting cells (APCs) that
include tumor-infiltrating macrophages in the subcutaneous
MOPC315 model and BM macrophages in the medullary
MOPC315.BM model (119). With help of MHC class II-encoded
I-Ed surface protein,APCspresent the antigen toCD4Th1 cells as a
l2 light-chain V region-derived idiotypic (Id) peptide; i.e., a
neoepitope. This results in Th1-dependent production of IFN-g,
which activates bystander macrophages and promotes their
polarization to the tumoricidal M1 phenotype. In turn, M1
macrophages upregulate inducible nitric oxide synthetase (iNOS)
to produce and release nitric oxide (NO) into the extracellularmilieu.
NO then kills neighboring tumor cells using a mechanism that
involves reactive nitrogen species (e.g., peroxynitrite) and activates
the intrinsic pathway of programmed cell death (apoptosis). Thus, in
theMOPC315model system, CD4+ T cells kill tumor cells indirectly
with the assistance of cytotoxic macrophages (Figure 4C).
MOPC315.BM has provided additional insights into myeloma
immunology. Examples include the interaction of myeloid-derived
suppressor cells and T cells in vivo (120), the development of
allogeneic T cell treatments for myeloma that may circumvent
GvHD (121, 122), and the evaluation of novel DNA vaccines for
immunotherapeutic purposes (123). Similar to the inconvenience of
the genetic background of 5TMM, MOPC315.BM is on the genetic
background of BALB/c (C), which is not as widely used in cancer
immunology as B6. However, this is a small price to pay considering
the value MOPC315.BM can add to the immune revolution in
myeloma treatment (124).
SPONTANEOUS PLASMA CELL TUMORS
IN LABORATORY MICE

Inducible, Inflammation-Dependent
Peritoneal Plasmacytoma
MOPC315 is but one representative of a large panel of peritoneal
plasmacytomas that has been developed single handedly in the
Frontiers in Immunology | www.frontiersin.org 8
1960s and 1970s by Dr. Michael Potter at the US National
Cancer Institute, Bethesda, Maryland. He discovered that IP
treatment of C mice using certain mineral oils (110) or a
chemically defined component thereof, called pristane
(2,6,10,14-tetramethylpentadecane) (125), induced development
of MOPC (mineral oil induced plasmacytoma) and TEPC
(tetramethylpentadecane induced plasmacytoma) tumors,
respectively. Plasmacytomas induced in this fashion were
crucial for basic research breakthroughs in antibody structure
(126) and monoclonal antibody (hybridoma) technology, which
began with MOPC21 (127). Unlike most inbred strains of mice,
C is highly susceptible to plasmacytoma (128) due to a complex
genetic trait that includes hypomorphic (weak efficiency) alleles of
genes that encode the cell cycle inhibitor p16INK4a (129) and the
FKBP12 rapamycin-associated protein Frap (130). Virtually all
peritoneal PCTs harbor a Myc-activating chromosomal
translocation (131) that takes the form of a balanced T(12;15)
(Igh-Myc) in the majority (~85%) of cases. Plasmacytoma
induction requires maintenance of mice in a non-SPF (specific
pathogen-free) environment rich in antigenic stimuli including
gut flora-derived antigens (132). Consistent with that, C mice
raised under SPF or germ-free conditions exhibit a dramatically
reduced tumor incidence (133) or fail to develop plasmacytoma
altogether (134). Peritoneal plasmacytoma is the premier mouse
model of inflammation-induced extramedullary myeloma has
been used for decades to learn about immune regulation of
malignant plasma cell growth (111, 112). However, BALB/c
plasmacytomas are not widely used in myeloma research today
because more accurate, transgenic mouse models of the disease
have become available. These will be described in the
following section.

Transgenic Mouse Models of Human
Myeloma and Related Plasma
Cell Neoplasms
Genetic modification of the mouse germline has been employed
by several independent research groups to generate transgenic
strains of mice that are prone to spontaneous plasma cell tumors
(PCT) that replicate important features of human MM. Mice of
this sort exhibit a predictable progression pattern from MGUS-
and SMM-like precursor conditions to frank plasma cell
neoplasia. This pattern is key for preclinical assessments of
myeloma preventions, a hot topic in clinical myeloma research
(135). PCT-prone mice feature a fully intact innate and adaptive
immune system that is likely to adapt to tumor development
much the same way as the human immune system adapts to
myeloma (Figure 2A). Hence, trialing newly developed
immunotherapeutics in mice that are genetically susceptible to
PCT is poised to yield more complete and higher-quality
information than one might get from mice that are
immunocompetent but not undergoing tumorigenesis (136).
The same argument can be made for the preclinical testing of
complex treatment regimens that combine HSC transplantation
and established myeloma drugs (PIs, IMiDs) with novel
immunotherapies and small-compound inhibitors. Evaluating
these types of treatment in PCT-susceptible mice may more
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closely mimic the response of myeloma patients exposed to
triplet and quadruplet drug regimens (137). Figure 5 presents
a developmental timeline of genetically engineered mouse
models (GEMMs) of human myeloma and related
malignancies. Table 1 provides details on tumor incidence and
phenotype, genetic drivers of tumor development, and genetic
background of mice. An exhaustive discussion of individual
models is beyond the scope of this review. To that end, the
reader is referred to the primary literature and outstanding
recent reviews from Tassone (55), Vlummens (138) and their
associates. A general rule that may be gleaned from the table is
that single-transgenic models exhibit delayed tumor onset and a
relatively low tumor incidence. To accelerate plasma cell
neoplasia, investigators have taken advantage of oncogene
collaboration in double-transgenic mice, such as IL6Myc (139)
and Bcl-XLiMyc (140), that exhibit short tumor onset and full
penetrance of the malignant phenotype (100% tumor incidence).
Inducible transgenes such as L-gp130 (141) and models based on
adoptive transfer of genetically modified B cells (142–144) serve
the same purpose; i.e., faster and more consistent tumor
development. Importantly, Vk*MYC, developed by Marta
Chesi and Leif Bergsagel at Mayo and generously shared with
investigators in many countries, is the only model at this juncture
for which robust immunology work is available. This is one of
several reasons why Vk*MYC is widely considered in the
myeloma community as the gold standard of mouse models.
Advances in immunosurveillance and immunotherapy of
myeloma made possible by Vk*MYC will be briefly
discussed below.

Advances in Myeloma Immunology Made
Possible by Vk*MYC
The realization that Vk*MYC-dependent myeloma causes
changes in immune regulation in mice comparable to changes
seen in patients with myeloma (145) laid the foundation for
mechanistic studies describing role of specific pathways of
immunity to Vk*MYC-driven tumor development. The first
Frontiers in Immunology | www.frontiersin.org 9
investigation along this line revealed the importance of CD226
for immune surveillance of myeloma. Lack of CD226 reduced the
anti-myeloma response of NK and CD8 T cells, resulting in
quicker tumor progression and decreased overall survival of
Vk*MYC mice (146). Another insight afforded by Vk*MYC
concerned the intriguing link between microbial gut flora and
IL-17-driven tumor progression. The underlying mechanism is
complex but involves an increase in Th17 cells and activation of
eosinophils. Not coincidentally, therapeutic control of these
changes using antibodies to IL-17 and IL-5 delayed tumor
progression (147). Vk*MYC also provided definitive genetic
evidence on the involvement of the pro-inflammatory cytokine
IL-18 in myeloma progression (148). This was attributable
to IL-18-dependent generation of myeloid-derived suppressor
cells (MDSCs), an important driver of the dysfunctional
immune environment in human myeloma (Figure 2B).
Another study demonstrated that tumor progression and
dissemination in Vk*MYC is not under exclusive control of
the TME. Insead, it is regulated, in part, by properties of tumor
cells such as expression of CD138 (149) (Figure 6A). Vk*MYC
has also impacted the field of myeloma immunotherapy in more
ways than one. One study showed that treatment of mice
using IAP (inhibitor of apoptosis) antagonists activated an
acute inflammatory response that led to enhanced tumor
phagocytosis by macrophages. Interestingly, co-treatment using
antibody to PD1 led to an additional increase in survival of mice
(153). By implicating the upregulation of TIGIT (T-cell
immunoglobulin and ITIM domain) on CD8 T cells, Vk*MYC
has also contributed to our understanding of T cell exhaustion in
myeloma. Checkpoint blockade of TIGIT prolonged survival of
mice and reduced levels of immunosuppressive IL-10 produced
by dendritic cells (154–156). Finally, studies using Vk*MYC
demonstrated that: blocking type 1 interferon signaling may
inhibit Treg expansion in myeloma (157), antibody to CD137
holds promise as a consolidation treatment in myeloma (158),
and HSC transplantion may facilitate both a robust anti-MM
CD8 T cell response and a myeloma-specific T cell memory (159)
FIGURE 5 | Transgenic mouse models of human plasma cell myeloma and extramedullary plasmacytoma. Shown is a timeline of model development that begins
with Eµ-v-abl developed by Susan Cory’s group at WEHI and published in 1990. The H2-Ld-IL6 model of human plasmacytoma published in 2002 gave rise to the
double-transgenic MycIL6 and BCL2IL6 models that take advantage of oncogene collaboration to accelerate neoplastic plasma cell development. Similarly, Vk*MYC,
the premier model of myeloma immunology research, was recently accelerated by breeding in a mutated Ras gene, leading to the highly promising VQ model
published in 2020.
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(Figure 6B). The impressive body of work summarized above
strongly suggests that Vk*MYC provides a valuable blueprint for
immunological studies using other mouse myeloma models
included in Table 1.
RESEARCH GAPS AND FUTURE
DIRECTIONS

Following in the Footsteps of Vk*MYC
One line of future investigation should be aimed at determining
whether the immune changes seen in tumor bearing Vk*MYC
mice also occur in other strains of mice prone to spontaneous
PCT (Table 1). Independent confirmation would lend support to
the contention that the observed changes represent bona fide
biological sequelae of neoplastic plasma cell development rather
than a special feature of this particular model. Uncovering
significant differences in immune cell compartments or
pathways of immunity between different mouse models may
also be of value because it may help investigators match a
particular type of human myeloma in terms of progression
Frontiers in Immunology | www.frontiersin.org 10
stage (e.g., NDMM vs RRMM), outcome risk (e.g., standard vs
high risk), or molecular subgroup (184) with the most
appropriate mouse counterpart. Since human myeloma
exhibits a great deal of diversity in cytogenetic, gene
expression, epigenetic, immunologic, and other features (185),
MM should be represented by a collection of models that
mirror that diversity. However, this goal has not yet been
achieved as the models listed in Table 1 represent but a
narrow snapshot of the human myeloma landscape. With the
exception of the most recently developed model that relies on a
Cre recombinase effected loss of the microRNA-encoding tumor
suppressor locus, miR-15a/16-1, malignant development is
driven in these models by a limited set of oncogenes on the
uniform, homogeneous genetic background of inbred mice
(186). The overrepresentation of Myc, IL-6, and Bcl-2 family
genes, particularly among the more thoroughly investigated
models, underscores the narrowness and redundancy of the
present situation.

Be this as it may, Vk*MYC and related models stand ready
both to shed light on long-standing questions in myelomagenesis,
such as the role of antigen and germinal center reentry of tumor
precursors (187) and to revisit difficult issues in myeloma
immunotherapy, such as the benefits of immune checkpoint
inhibition (CPI) (188), which remain unclear at this juncture
(189). Since Vk*MYC mice undergoing IAP inhibition
responded to CPI with increased survival (153), in-depth
analysis of that response may provide clues for how to
incorporate CPI in human myeloma treatment protocols.
Vk*MYC and other transgenics may also assist in validating
novel immunotherapies that are emerging from exploratory
studies using transplantation-based mouse models. Two recent
advances that relied on 5TMM and HMCL, respectively,
concerned the combination of vaccination and epigenetic
therapies (190) and a neat strategy for enhancing the efficacy
of daratumumab by genetic engineering of NK cells (191).
Considering the increased interest of the clinical myeloma
community in tumor prevention (192), Vk*MYC and related
models may also afford opportunities for the preclinical
evaluation of candidate interventions to block the progression
of high-risk MGUS and SMM to frank myeloma.

Toward a Robust PDX Model of MM
Despite the breakthrough accomplishments of the MIS(KI)TRG6
mouse described above, this xenograft model of human myeloma
is still limited compared to well-established PDX (patient derived
xenograft) models of solid cancer (193) and emerging PDX
models of lymphoma (194). Biological limitations of MIS(KI)

TRG6 and the parental strain, MIS(KI)TRG, include proclivity to
anemia and quick exhaustion of human grafts after cell or tissue
transfer (195). There are also some thorny non-biological
limitations, including intellectual property rights that have
prevented the wider distribution of the MIS(KI)TRG6 thus far.
Hence, additional work is warranted to improve upon this model
and develop humanized laboratory mice that lend themselves to
the preclinical evaluation of myeloma immunotherapy and
precision medicine approaches. To that end, a fundamental
conceptual consideration is the recognition that increasing
A

B

FIGURE 6 | First described in 2008, the Vk*MYC model takes advantage of
AID-activated MYC to induce myeloma on the B6 background. All 122 mice in
the original study had monoclonal plasma cell expansion in the BM resembling
human MM. Eighty percent of mice had measurable M-spike by 50 weeks of
age. Additionally, aged Vk*MYC mice displayed many hallmarks of human MM,
including bone loss and protein deposition in the kidneys (150). This allows for
thorough studies of the MGUS to MM transition in this model (A). Vk*MYC
mice accurately predict clinical efficacy of myeloma drugs (151) and provide a
good model for experimental oncolytic immunotherapy (152) (B).
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levels of immunodeficiency result in better engraftment of tumor
cells (Figure 3) but diminished opportunities to assess the
impact of the immune system on myeloma biology and
treatment responses. One way to address this conundrum is a
non-genetic form of humanizing mice by means of adoptive
transfer of human hematopoietic stem and progenitor, T, NK,
and other blood cells. All of these cells are easily obtained from
patients with myeloma, particularly those undergoing SCT, and
can be engrafted in mice together with BM-derived malignant
plasma cells. Disadvantages of this approach include the small
experimental window in the adoptively transferred mouse (on
the order of a few days) and the high risk of GvHD that may
distort study results (196).

A parallel way forward is to continue with the genetic
humanization of laboratory mice. The aim is to generate
humanized mouse PDX myeloma models that will be as
promising for immunotherapy research as the new generation of
Frontiers in Immunology | www.frontiersin.org 11
mouse PDX carcinoma models is (197, 198). Molecular targets of
humanization include components of theHSCniche (e.g., c-kit and
Flt3) and biological pathways of myeloid and NK reconstitution
(e.g., c-kit ligand and GM-CSF). Additional targets include the
major histocompatibility complex (e.g., deletion of mouse beta-2
microglobulin) and, importantly, immune checkpoints such as
CTLA-4, the CD47 “don’t eat me” signal to macrophages, BTLA
(CD272), TIM3,GITR,OX40 andothers (199, 200). The long list of
checkpoint genes underscores the elusiveness of humanizing the
immune response of mice completely. The development of
specialized, partially humanized mouse models dedicated to
specific aspects of immunotherapy is therefore a viable
compromise and a step in the right direction. A good example
along this line is the generation of mice that contain a humanized
formof cereblon (201), themolecular target of IMIDs. It renders the
mice responsive to drugs of this sort, which are not active in normal
mice. Three additional examples of humanized mouse models
TABLE 1 | Transgenic mice prone to spontaneous plasma cell tumors recapitulating hallmarks of human plasma cell neoplasms including multiple myeloma.

Row Mouse model 1 TG 2 Back-ground 3 Year 4 Ref. 5 Survival of mice 6 Percent tumors 7 Tumor phenotype 8

1 Eµ-v-abl 1 B6 1990 (160, 161) >1 year 60 PC
2 H2-Ld-IL-6 1 C 1992 (162, 163) 250 days 60 PC > Ly
3 NPM-ALK 1 B6, C 2003 (164) 18 weeks 100 PC
4 Eµ−BCL2 1 B6, C 2003 (165) 120 days 100 PC > Ly
5 BclXLEµMyc 2 Mixed 16 2004 (166) 50 days 100 PC > MM
6 Em-Xbp1s 1 B6 2007 (167) 2 years 20 MM > PC
7 NFkB 1 Mixed 17 2007 (168, 169) 50 weeks 80 PC > Ly
8 Vk*Myc 1 B6 18 2008 (170) 660 days 100 MM
9 Il12rb 1 B6 2005 (171) 2 years 30 PC
4 IL6Myc 9 2 C 2010 (136, 172) 12 weeks 100 PC > MM
10 c-MAF 1 B6 2011 (173) >2 years 30 Ly > PC
11 BclXLiMyc 10 2 Mixed 19 2011 (174) 135 days 100 PC > MM
12 N-RasEµMyc 11 1 Mixed 16 2012 (175) 75 days 100 Ly > PC
13 MafB 1 B6 2012 (176) 1 year 45 MM > PC
14 Rrm2b 1 B6 2013 (177) 30 days 30 PC
15 K-RasMyc 12 2 C 2013 (139, 140) 50 days 100 PC
16 L-gp130 12 1 B6 2014 (178) 200 days 100 MM
17 IL6BCL2 9,12,13 2 C 2016 (141) 5 months 100 MM > PC
18 BCL-B 1 B6 2016 (179) 500 days 100 MM
19 MefRad 2 B6 2016 (180) 480 days 70 MM > PC
20 L-gp130 14 1 B6 2019 (138) 5 months 50 MM
21 N-RasVk*Myc 15 2 B6 2020 (181) 350 days 60 MM
22 miR15a/16-1 16 2 B6 2021 (182) >1 year 45 Ly > PC
June 2021 | Volum
1 Mouse models in chronological order of development, as shown in Figure 5.
2 Mouse models rely on one transgene or two transgenes to drive tumor development.
3 Genetic background of mice is either C57BL/6 (B6), BALB/c (C) or mixed.
4 Publication year.
5 Original reference. A follow-up publication is included in some cases to provide more complete information on survival, tumor incidence, and tumor phenotypes.
6 Median, mean, or estimated survival of mice, depending on results available. Surrogate of tumor onset.
7 Percent tumor incidence (rounded).
8 Phenotypes include plasma cell myeloma (MM), plasmacytoma (PC), and B lymphoma (Ly). The latter often exhibits plasmablastic features. The preponderance of a particular phenotype
is indicated by a “larger than” symbol for models yielding different phenotypes.
9 Using the same IL6 transgene as in row 2.
10 Using the same Bcl-XL encoding BCL2L1 transgene as in row 5.
11 Using the same Myc transgene as in row 5.
12 Model that relies on adoptive transfer of genetically modified B-lymphocytes to a preconditioned host in which neoplastic plasma cell development takes place.
13 Using the same BCL2 transgene as in row 4.
14 Using an inducible version of the transgene from row 16.
15 Using the same Myc transgene as in row 8.
16 Loss of microRNA in germinal center B cells effected by transgenic, AID-dependent Cre recombinase.
17 (B6 x FVB/N) F1 hybrids
18 B6 and SJL alleles.
19 Transfer of Vk*Myc onto background of C abolished cancer phenotype (183).
20 B6, 129SvJ and FVB/N alleles.
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relevant for myeloma research are NOG-hIL-6 (202), B6-hCD3E
(170) and B6-hTIGIT (203), which facilitate preclinical studies on
MDSCs, BITEs and CPI, respectively.
CONCLUSION

Although immunotherapy holds great promise for
revolutionizing myeloma treatment (124), much remains to be
learned. Currently, only a fraction of patients achieves a
complete, long-lasting treatment response and a functional or
definitive cure remains elusive for the great majority of patients.
Accurate mouse models of myeloma are needed to close current
knowledge gaps and accelerate the design and testing of new
immunotherapies. The workhorses of preclinical myeloma
research, HMCL-in-mouse xenografting and mouse-in-mouse
autografting, will continue to be employed to that end, but we
anticipate that humanized PDX models of myeloma (204) and
transgenic mouse models of myeloma will become more
important as we go forward. These models may elucidate the
complex mechanisms underlying myeloma immunopathology
and -therapy and minimize the risk of failure in challenging and
Frontiers in Immunology | www.frontiersin.org 12
expensive clinical trials. Sharing experimental model systems
without strings attached, enhancing collaboration among
regional core facilities and national reference centers, and
establishing standards for high scientific rigor for the
preclinical myeloma research will contribute to a future for
patients with myeloma that is hopeful and bright.
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