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Microbes rely upon iron as a cofactor for many enzymes in their central metabolic
processes. The reactive oxygen species (ROS) superoxide and hydrogen peroxide
react rapidly with iron, and inside cells they can generate both enzyme and DNA
damage. ROS are formed in some bacterial habitats by abiotic processes. The
vulnerability of bacteria to ROS is also apparently exploited by ROS-generating host
defense systems and bacterial competitors. Phagocyte-derived O−

2 can toxify captured
bacteria by damaging unidentified biomolecules on the cell surface; it is unclear whether
phagocytic H2O2, which can penetrate into the cell interior, also plays a role in suppressing
bacterial invasion. Both pathogenic and free-living microbes activate defensive strategies
to defend themselves against incoming H2O2. Most bacteria sense the H2O2 via OxyR or
PerR transcription factors, whereas yeast uses the Grx3/Yap1 system. In general these
regulators induce enzymes that reduce cytoplasmic H2O2 concentrations, decrease the
intracellular iron pools, and repair the H2O2-mediated damage. However, individual
organisms have tailored these transcription factors and their regulons to suit their
particular environmental niches. Some bacteria even contain both OxyR and PerR,
raising the question as to why they need both systems. In lab experiments these
regulators can also respond to nitric oxide and disulfide stress, although it is unclear
whether the responses are physiologically relevant. The next step is to extend these
studies to natural environments, so that we can better understand the circumstances in
which these systems act. In particular, it is important to probe the role they may play in
enabling host infection by microbial pathogens.

Keywords: reactive oxygen species, OxyR regulator, peroxide sensing repressor (PerR), Yap1p, nitric oxide
THE THREAT POSED BY OXYGEN

Life evolved 3.8 billion years ago in an anoxic world. The biochemical pathways of these primordial
organisms were based upon iron-cofactored enzymes, as this transition metal is adept at both redox
and ligand-exchange processes. One billion years later, the appearance of photosystem II began the
release of diatomic oxygen into the atmosphere. The oxygen levels in the atmosphere remained
relatively low for another billion years, because photosynthetically generated O2 was quickly
consumed through its chemical reduction by environmental ferrous iron and sulfide. Only later,
once these reductants had been largely titrated, did oxygen accumulate to higher concentrations (1).
However, when it did, O2 created an environment that was—and remains—incompatible with
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extant organisms, which have inherited their iron-centric
metabolic plans from their anoxic forbears.

In part the problem is that molecular oxygen oxidizes ferrous
iron to insoluble ferric hydroxide precipitates, making it difficult
for cells to acquire enough iron to charge their enzymes. That
problem has been substantially ameliorated by the evolution of a
variety of iron-import tactics (2). However, in addition, oxygen is
kinetically active as a univalent oxidant (3). It disrupts the
metabolism of anaerobic organisms by oxidizing their low-
potential metal cofactors, thereby inactivating key enzymes,
and by adducting the radical-based enzymes that play
specialized roles in metabolism. Contemporary anaerobes have
not solved this problem: In order to optimize their anaerobic
growth, they continue to rely upon enzymes that are directly
disrupted by oxygen, and so these microbes are constrained to
anoxic niches (4).

In contrast, organisms that committed to life in oxic
environments were able to dispense with low-potential
catalytic strategies, and they employ enzymes that molecular
oxygen does not damage at an important rate. Yet aerobes have
residual problems with oxygen. Molecular oxygen is a passable
univalent oxidant, and inside cells it adventitiously steals
electrons from the cofactors of redox-active enzymes (5, 6).
The transfer of a single electron results in the formation of
superoxide (Figure 1A); the transfer of two electrons results in
the formation of hydrogen peroxide. Both these species are
more-potent univalent oxidants than molecular oxygen itself,
Frontiers in Immunology | www.frontiersin.org 2
and if left unchecked they can oxidize the exposed iron cofactors
of enzymes that are found throughout metabolism. Further, a
secondary reaction between hydrogen peroxide and cellular iron
pools creates hydroxyl radicals (Figure 1), which are extremely
potent species that can directly oxidize all cellular biomolecules
(7). This vulnerability to partially reduced oxygen species (ROS)
is universal among contemporary organisms. This review
specifically aims to describe the strategies that are used by
organisms to defray the toxicity of hydrogen peroxide—and to
highlight the circumstances in which these defenses may not
be adequate.
REACTIVE OXYGEN SPECIES ARE
CONTINUOUSLY FORMED INSIDE
OXIC CELLS

The significance of hydrogen peroxide (H2O2) was first suggested
by the discovery in 1900 of an enzyme devoted to degrading it:
catalase (8). The discoverer, Oscar Loew, noted that it is found in
virtually all tissues, and he made the inference that H2O2 was
likely a by-product of metabolism that, if not removed, must be
toxic to cells. Seventy years later Joe McCord and Irwin Fridovich
chanced upon an enzyme that degrades superoxide (O−

2 ) (9).
Subsequent work has extended the cohort of scavenging enzymes
to include peroxidases and superoxide reductases, and it has
confirmed that virtually no organism lacks the ability to degrade
H2O2 and O−

2 .
The model bacterium Escherichia coli contains two

superoxide dismutases in its cytoplasm and one in its
periplasm. Its cytoplasm also features both an NADH
peroxidase (AhpCF) and two catalases (10) (Figure 2).
Interestingly, some of these enzymes take advantage of the fact
that iron can react with O−

2 and H2O2: The original superoxide
dismutase was likely an iron-dependent SOD, and most catalases
use heme to degrade H2O2. Looking more broadly, similar
scavenging systems are distributed through all biological
kingdoms and in most cellular compartments, including the
mitochondria, peroxisomes, and cytoplasm of eukarya.

The importance of these enzymes was revealed by genetic
studies of E. coli: Mutants that lack cytoplasmic SODs, or that
lack Ahp and catalases, were found to be unable to grow under
oxic conditions in a standard glucose medium (10, 11). The
observation confirmed Loew’s postulate, proving both that these
species are generated internally and that if not scavenged they
will cripple cellular metabolism. Direct observation of O−

2

production is not possible, but mutants that cannot degrade
H2O2 release it into growth media at a rate that connotes an
internal production rate of 10 µM/sec (12). Measurements show
that as little as 0.5 µM intracellular H2O2 is sufficient to poison
select biosynthetic pathways (13–15). The titers and kinetics of
the scavenging enzymes are sufficient to suppress internal
concentrations to about 50 nM—low enough to enable
metabolism to operate without bottlenecks (12).

The orbital structure of O2 restricts it to accepting a single
electron at a time, and its reduction potential (- 0.16 V) is too
A

B

FIGURE 1 | (A) The reduction potential of oxygen and reactive oxygen
species. The standard reduction potentials (pH 7) indicate that unlike O2,
superoxide, hydrogen peroxide, and hydroxyl radicals are potent univalent
oxidants. The standard concentration of oxygen is regarded as 1 M. (B) The
classes of damage caused by intracellular O−

2 and H2O2. The transfer of
electrons from redox enzymes to oxygen generates superoxide and hydrogen
peroxide. Both species can oxidize the solvent-exposed iron centers of
mononuclear iron enzymes and [4Fe-4S] dehydratases. Additionally, H2O2

directly reacts with the intracellular iron pool, which is loosely associated with
biomolecules, including DNA. The reaction generates hydroxyl radicals, which
can damage DNA.
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modest for it to directly oxidize most biomolecules (3). However,
O2 can accept electrons from electron donors such as metal
centers, flavins, and quinones. These are all prominent electron
carriers in the E. coli respiratory chain, yet the rate at which cells
produce endogenous H2O2 did not substantially diminish in
mutants that lacked the respiratory enzymes, suggesting that in
this bacterium O−

2 and H2O2 are primarily produced by the
accidental autooxidation of non-respiratory flavoproteins (5, 6)
(Figure 1). These proteins are found throughout metabolism,
and many, including glutathione reductase, lipoamide
dehydrogenase, and glutamate synthase, have been shown to
release ROS in vitro (16–18). The small size of O2 prevents its
exclusion from most active sites, and its collision with reduced
flavins triggers the consecutive transfer of one or two electrons,
generating O−

2 or H2O2, respectively (19). The rate is naturally
proportionate to collision frequency, meaning that ROS
formation is more rapid in highly oxic environments. This
math presumably underlies the observation that most
organisms cannot tolerate oxygen levels that substantially
exceed those of their natural habitat.
THE CLASSES OF DAMAGE CAUSED
BY SUPEROXIDE AND
HYDROGEN PEROXIDE

The phenotypes of SOD mutants and of catalase/peroxidase
mutants enabled investigators to track down the specific
Frontiers in Immunology | www.frontiersin.org 3
injuries that these ROS create. The mutants can grow at wild-
type rates under anoxic conditions, but they require
supplementation with aromatic and branched-chain amino
acids if they are to grow in oxic media (11, 13–15, 20). They
are also unable to use any carbon source, such as acetate, that
required a fully functional TCA cycle (21, 22). Further scrutiny
identified particular enzymes whose damage resulted in
these defects.

The aromatic biosynthesis defect derives from the ability of
H2O2 to oxidize the Fe(II) cofactor of the first enzyme of the
pathway, DAHP synthase (15). The resulting Fe(III) atom
dissociates. The role of the iron atom is both to bind substrate
and to stabilize an oxyanion intermediate in the catalytic cycle;
therefore, the resultant apoenzyme is completely inactive and the
pathway fails. Other mononuclear Fe(II) enzymes such as
ribulose-5-phosphate 3-epimerase, peptide deformylase,
threonine dehydrogenase, and cytosine deaminase are similarly
damaged (13, 14). Notably, the reaction between Fe(II) and H2O2

also generates a hydroxyl radical. If the catalytic Fe(II) atom is
coordinated by a cysteine side chain, the hydroxyl radical reacts
immediately with this sacrificial residue, creating a sulfenic acid
(Figure 3) (13). Cellular thioredoxins and glutaredoxins can
reduce this moiety back to a native cysteine residue, thereby
allowing Fe(II) to bind and the activity to be restored (13). In
contrast, when H2O2 oxidizes the Fe(II) of enzymes that lack
such a residue, the nascent hydroxyl radical oxidizes other active-
site ligands, creating lesions that are irreversible. These reactions
are one source of the protein carbonylation that can be detected
in H2O2-stressed cells (13).
FIGURE 2 | H2O2-scavenging enzymes in E. coli. Environmental H2O2 gradually diffuses into the cytoplasm, where it is degraded by NADH peroxidase (AhpCF) and
catalase (KatG). Both are induced by OxyR. Cytoplasmic H2O2 is therefore substantially lower in concentration than is extracellular H2O2. Under hypoxic conditions
OxyR also induces the periplasmic cytochrome c peroxidase (Ccp), which allows the respiratory chain to employ H2O2 as a terminal oxidant. Because H2O2 rapidly
crosses through OM porins, and Ccp activity is moderate, the periplasmic H2O2 concentration is likely equivalent to that outside the cell.
April 2021 | Volume 12 | Article 667343
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The branched-chain biosynthetic defects as well as the TCA-
cycle defects are caused by the oxidation of the [4Fe-4S] clusters
of dehydratase enzymes (20, 22–26). A solvent-exposed iron
atom of these clusters binds substrate directly, activating it for
deprotonation and subsequently completing the dehydration by
abstracting a hydroxide anion. But the same exposed iron atom
can be oxidized by hydrogen peroxide to an unstable [4Fe-4S]3+

state (Figure 4); this valence is unstable, and the cluster quickly
disintegrates into a [3Fe-4S]+ form that lacks the catalytic,
solvent-exposed iron atom (24). Interestingly, the hydroxyl
radical that is formed during this process pulls a second
electron from the iron-sulfur cluster; thus, a hydroxide anion,
rather than a hydroxyl radical, is released into the active site, and
polypeptide oxidation is avoided. Cells continuously repair these
damaged clusters, so that the steady-state activity of these
enzymes reflects the balance between the oxidation and repair
rates (21, 27, 28).

In addition to the metabolic defects described above, H2O2

can also react with the cytoplasmic pool of loose iron that is used
to metallate nascent iron-dependent enzymes (Figure 1B). Iron
is sticky, and this pool is thought to adhere to a wide variety of
biomolecules, including the surface of nucleic acids (29). DNA
thereby acts as a locus of hydroxyl radical production, and so
DNA damage is a universal consequence of H2O2 stress (30–33).
Some oxidative base lesions are mutagenic; others comprise
replication blocks. All organisms therefore wield enzymes
devoted to the excision or recombinational repair of oxidative
lesions. Even though the level of endogenous H2O2 is well-
controlled in scavenger-proficient E. coli, the rate of DNA
Frontiers in Immunology | www.frontiersin.org 4
oxidation remains high enough that mutants lacking these
repair pathways cannot grow in oxic environments (34, 35).

Thus, organisms that dwell in oxic habitats can do so only
because they have acquired an array of both scavenging and
repair functions. The level of these enzymes is high and their
synthesis is costly; accordingly, their titers have been calibrated
to barely withstand the amount of stress commensurate with the
oxygen level of the native environment (36, 37). This
arrangement is successful under routine growth conditions.
However, we shall see that it becomes inadequate if special
circumstances elevate the production of ROS.
THE PROBLEM OF EXOGENOUS
OXIDATIVE STRESS

Exogenous Sources of Superoxide
Both environmental photochemistry and chemical redox
reactions generate O−

2 (38), but the steady-state level of O−
2

formed in this way is unlikely to be high enough to pose a risk
for cells. Notably, the known targets of O−

2 are iron enzymes that
are cytoplasmic, and O−

2 is a charged species that cannot cross
membranes to get at them (39, 40). However, both microbes and
higher organisms have evolved mechanisms by which they can
use O−

2 to poison unwanted competitors.
Mammals, plants, and amoebae have all weaponized an

NADPH oxidase to kill bacteria (41, 42). Mammalian
phagocytes engulf microbial invaders and spray them with
FIGURE 3 | The damage caused to mononuclear iron proteins by hydrogen peroxide. H2O2 directly oxidizes the solvent-exposed Fe(II) cofactor, which then
dissociates. The ferryl (FeO2+) species that is formed in this reaction can directly oxidize the polypeptide ligands to the iron atom, irreversibly inactivating the enzyme.
However, if a cysteine residue coordinates the iron, it will quench the ferryl radical (as shown). The enzyme activity can then be restored by reduction of the cysteine
sulfenate residue, probably by thioredoxins. OxyR induces the MntH manganese importer, allowing the proteins to be metallated with Mn(II), which provides activity
and does not react with H2O2.
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superoxide that is formed by an inducible NADPH oxidase
(Figure 5). The importance of this enzyme is reflected by the
observation that humans and mice that lack it are vulnerable to
infections (43, 44). However, it is still unclear how the phagocytic
ROS production inhibits microbial growth. The acidic
environment inside the phagosome can partially protonate O−

2 ,
resulting in a neutral species that in principle can penetrate
captive bacteria; however, Salmonella enterica mutants lacking
Frontiers in Immunology | www.frontiersin.org 5
the periplasmic superoxide dismutase are hypersensitive,
suggesting that O−

2 does not gain access into the cytosol and
instead acts on a target on the cell surface or in the periplasm (45,
46). Because protonated HO2 is a better oxidant than O−

2 , it is
possible that the acidity of the phagosome expands the range of
biomolecules that superoxide can damage. The target has not yet
been identified. A key difficulty is that in vitro systems have been
unable to match the micromolar doses of superoxide (46, 47) that
are sustained in the phagosome.

Bacteria also have found a way to impose O−
2 stress upon

competitors—and in this case the O−
2 is aimed at the cytoplasm.

A wide range of bacteria (and plants) secrete redox-cycling
antibiotics (48–51). These are primarily soluble quinones and
phenazines; they penetrate target cells, oxidize their redox
enzymes, and transfer the electrons to oxygen. Enteric bacteria
protect themselves from these compounds by activating the
SoxRS regulon (52, 53). Its components elevate the titer of
cytoplasmic SOD, pump out the drugs, and modify the cell
envelope to diminish their entry (54).

Over the past dozen years microbiologists have examined the
possibility that other bacterial stresses might also owe their
potency, in part, to oxidative stress. The clinical antibiotics
ampicillin, kanamycin, norfloxacin and trimethoprim have
been particular foci of these studies, but similar hypotheses
have been ventured for metal overload, nanoparticles, solvent
stress, toxin/antitoxin systems, and many others (55). Key
observations have been that the stressed cells accumulate
oxidized forms of cell-penetrating dyes, which are thought to
be oxidized by hydroxyl radicals; that cell death is slowed by the
administration of thiol compounds, which might scavenge ROS,
and by iron chelators that would block hydroxyl-radical
formation; and that toxicity is diminished in mutants whose
TCA cycle is blocked, ostensibly diminishing the rate of
FIGURE 4 | The damage caused to [4Fe-4S]2+ cluster enzymes by hydrogen
peroxide. The catalytic Fe atom of the dehydratase enzyme reacts with H2O2

and dissociates, leaving behind an inactive [3Fe-4S]+ cluster. That cluster can
be reactivated by reduction and remetallation. In some dehydratases the
cluster completely disintegrates to form an apoenzyme. OxyR induces the Suf
system to rebuild a functional holoenzyme.
FIGURE 5 | Formation of ROS by phagosomes. NADPH oxidase (Nox) generates superoxide which cannot penetrate the cytoplasmic membranes of the engulfed
bacteria. It is believed that either superoxide or its protonated form injures extracytoplasmic targets. Additionally, membrane-permeable H2O2 is generated through
dismutation. Calculations suggested that the levels of O−

2 , HO2• and H2O2 in isolated macrophages range from 10–50 mM, 0.1–4 mM and 1–4 mM, respectively,
depending upon phagosomal pH. Modeling predicts a similar H2O2 concentration inside neutrophils. The H2O2 levels would rise, however, if it accumulates it the
surrounding tissue.
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respiration and any associated ROS formation (56). However,
this interpretation has been challenged (55, 57–59). Most of these
protectants also have the capacity to slow metabolism, and it is
well known that the efficacy of antibiotic action depends upon a
robust growth rate. Moreover, tests of antibiotic action did not
detect oxidative damage to ROS-sensitive enzymes or to DNA;
the rate of H2O2 formation (measured in scavenging mutants)
was not accelerated; and the E. coli response to H2O2 stress
(below) was not triggered. Finally, no clear model has emerged
to explain how such diverse stresses could create toxic
levels of ROS. More work must be done to resolve these
contradictory observations.

Exogenous Sources of Hydrogen Peroxide
H2O2 is chemically formed in habitats though abiotic reactions
between sulfur and oxygen at oxic/anoxic surfaces and the
photochemical reduction of oxygen by chromophores (60–63).
Levels can reach 1 µM in the ocean (64, 65). It can also be
produced as part of the plant wound response, during the
inflammatory response of mammalian hosts—and, notably, as a
primary metabolic by-product of many lactic acid bacteria (66–
70). The latter organisms often lack respiratory chains and use the
two-electron reduction of molecular oxygen to recycle reduced
NADH, thereby indirectly improving the ATP yield of what is
otherwise a fermentative process. It seems likely that the excreted
H2O2 may suppress the growth of competitors. The ability of
lactic-acid bacteria to tolerate their own H2O2 is impressive: They
can achieve high densities in lab cultures in which millimolar
H2O2 has accumulated. This tolerance appears to be due to the
absence of oxidant-sensitive dehydratases and mononuclear Fe(II)
enzymes. This adaptation is not without a price: These bacteria are
unable to synthesize many amino acids, and they lack a TCA cycle
and the improved energy yield that comes with it.

Unlike superoxide, H2O2 is an uncharged, albeit polar,
molecule that can cross cell membranes. Because this process
is relatively slow, when bacteria venture into environments
containing extracellular H2O2, the high activities of
intracellular catalases and peroxidases succeed at lowering
internal H2O2 concentrations below that of the external
environment (12). The transmembrane gradient for E. coli has
been estimated to be 5- to 10-fold between the external world
and the cytoplasm. Indeed, although 0.5 µM internal H2O2 is
sufficient to impair the growth of this bacterium in lab cultures,
external concentrations of up to 5 µM seem to be tolerated
without an overt growth defect (60). Thus the limited
permeability of membranes to H2O2 is essential to the efficacy
of scavenging enzymes and to the ability of bacteria to grow in
many habitats.

Of great interest to biologists is the role that phagocyte-
derived H2O2 may play in suppressing microbial infection
(Figure 5). The O−

2 that is produced by host NADPH oxidase
will dismutate, either spontaneously or via enzymic catalysis, to
generate H2O2. The ability of H2O2 to cross membranes likely
enables it to enter phagocytosed bacteria—but it also allows it to
diffuse across the phagosomal membrane, into the producing
cell, and potentially out into extracellular environments.
Modeling suggests that this effusion sharply limits the amount
Frontiers in Immunology | www.frontiersin.org 6
of H2O2 inside the macrophage phagosome, despite the rapid
rate at which it is formed. Estimates are that the steady-state level
falls well below 10 µM (46). Such doses may be enough to induce
stress responses in the captive bacteria, but they are unlikely to be
lethal. The major caveat to this analysis is that it presumes that
the environment acts as a one-way sink for the H2O2. However, if
H2O2 accumulates within inflamed tissue, the H2O2 flow is
bidirectional, and the level that accumulates may in principle
be far higher. Clearly, this question cries out for direct
measurements of H2O2 in vivo.

The rate of H2O2 production in neutrophils is substantially
higher than that in macrophages—but the fact that H2O2 is a
substrate of myeloperoxidase has once again been projected to
cap the level at which it can accumulate (47). In sum, although at
first blush it seems a no-brainer that H2O2 would contribute
mightily to the killing actions of these cells, that point is not
yet resolved.
THE ROLE OF OxyR DURING HYDROGEN
PEROXIDE STRESS

When external levels of H2O2 exceed a few micromolar, its flux
into microbes threatens to elevate its internal concentration to
toxic levels, despite the action of scavenging enzymes. To cope,
virtually all microbes possess inducible stress responses that are
focused upon H2O2. The paradigmatic system is the OxyR
response of E. coli (71). OxyR is a H2O2-activated transcription
factor. It is not activated merely by movement of E. coli into oxic
environments, and oxyR mutants are capable of normal aerobic
growth. However, OxyR is activated when exogenous H2O2

accumulates to ~ 0.2 mM in the cytoplasm, which is achieved
by about 3 µM external H2O2 (60, 72). Null mutants cannot grow
at these levels of environmental H2O2.

The OxyR protein contains a sensory cysteine residue (C199)
that is directly oxidized by H2O2, generating a sulfenic acid
(-SOH) (73). As a result, the residue moves from the
hydrophobic pocket in which it is buried and swings toward
the C208 residue, which then condenses to form a disulfide bond
(Figure 6). This bond locks OxyR into its activated conformer,
and its DNA binding ability differs from that of the reduced
protein. In E. coli the reduced form has little transcriptional
impact upon most genes, but the oxidized form recruits RNA
polymerase and thereby activates the expression of genes that
possess an OxyR binding site. In many other bacteria, reduced
OxyR acts as a repressor, and upon its oxidation it releases the
DNA, stimulating gene expression (74, 75). In still other bacteria
gene expression is both repressed by the reduced form and
activated by the oxidized form. The conformational change is
manifested by an alteration of its DNA footprint (76).

Free cysteine reacts very slowly with H2O2 (2 M-1 s-1), and
typical cysteine residues of proteins do, too (77). Yet in OxyR the
sensing cysteine residue reacts with a rate constant of 105

allowing it to detect micromolar H2O2 in seconds (72, 78). In
that respect the hyperreactive cysteine of OxyR resembles the
catalytic cysteine residue of thiol-based peroxidases, including
April 2021 | Volume 12 | Article 667343

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Sen and Imlay Microbial Defenses Against Hydrogen Peroxide
AhpC of E. coli. In the latter enzyme an adjacent cationic residue
facilitates the deprotonation of cysteine, which provides an
order-of-magnitude improvement in its reactivity with H2O2

(79). A plausible explanation for the remaining enhancement is
that the nucleophilic cysteine is arranged in a large hydrophobic
cleft. Surrounding hydrogen bonds could polarize the dioxygen
bond, making it vulnerable to attack, and one of the residues
can protonate the hydroxide leaving group, pulling the reaction
forward. As a result, thiol-based peroxidases have a rate constant
of 107M-1 s-1, which is appropriate for their physiological role
(80, 81). A similar physical arrangement may explain the high
rate constant of OxyR as well.

It follows that the activation of OxyR is an excellent marker of
H2O2 stress. This effect can be tracked by monitoring the
expression of OxyR-controlled genes—or by visualizing the
intrinsic fluorescence of HyPer, an engineered chimera of
OxyR and yellow-fluorescent protein (82). HyPer is as
responsive to H2O2 as is OxyR itself, and its oxidation status
can be visualized either by microscopy or flow cytometry.
Importantly, two-wavelength analysis can correct for variable
HyPer content in different samples, thereby avoiding loading
artifacts that can arise when redox-active dyes are employed as
ROS sensors.
THE DEFENSES THAT OxyR TURNS ON

When E. coli is stressed by an influx of H2O2, activated OxyR
stimulates the transcription of over two dozen genes (83). These
mainly fall into three categories: proteins that reduce the H2O2

concentration, proteins that shrink the iron pool, and proteins
Frontiers in Immunology | www.frontiersin.org 7
that deal with the damage that H2O2 produces (Table 1). The
peroxidase AhpCF and the catalase KatG are each induced more
than 10-fold in order to scavenge H2O2 (Figure 2). Why two
enzymes? AhpCF is an efficient scavenger when the H2O2

concentration is less than 10 mM and the cell is well-fed (10).
However, AhpCF requires NADH as a reductant, and so its
activity becomes limited when catabolic substrates are scarce. In
contrast, catalases do not require reductants, and they can
degrade H2O2 faster than Ahp. However, catalases are
problematic when the H2O2 concentrations are low, since their
two-step catalytic cycle can stall with the heme in its intermediate
ferryl radical form. This species is a potent oxidant, and unless it
is quenched by a reductant, it can abstract electrons from the
surrounding polypeptide and inactivate the enzyme (81). The
KatG catalase of E. coli—and of many other bacteria—has a
channel that apparently enables small-molecule reductants to
approach the active site and quench the high-valence heme (84);
for this reason the enzyme is denoted a catalase/peroxidase,
though the peroxidase activity by itself is too slow to comprise an
efficient scavenging mechanism (85).

When H2O2 levels are high, the existential threat to bacteria is
that DNA oxidation will prove lethal. This damage is driven by
the intracellular iron pool (86), and so the OxyR system employs
several mechanisms to diminish it (Figure 7). Dps, a
dodecameric mini-ferrit in, is induced to sequester
unincorporated iron in its hollow core (87–89). This action
requires that loose Fe(II) be oxidized to Fe(III), and for this
reaction Dps apparently uses H2O2 as a co-substrate. One benefit
is that Dps will stop storing iron when H2O2 concentrations
drop. The iron-uptake repressor Fur is also induced (90). In
unstressed cells Fur:Fe(II) complexes signal that the cell has
sufficient iron, and this form occludes the promoters of genes
that encode iron import systems (2). When H2O2 is present,
FIGURE 6 | OxyR activation in E. coli. The oxidation of the sensory C199
cysteine by H2O2 leads to the formation of a disulfide bond between C199
and C208. The resulting conformational change causes OxyR to bind as a
tetramer to the promoter regions, which recruits RNA polymerase, and results
in the transcription of genes in the OxyR regulon. In many other bacteria the
reduced form also binds DNA, albeit in an elongated conformation that
represses transcription; oxidation again converts it to a transcriptional
activator.
TABLE 1 | Genes induced by OxyR during hydrogen peroxide stress in E. coli.

Gene Function Role during H2O2 stress

ahpCF NADH peroxidase Scavenge H2O2

katG Catalase

ccp Cytochrome c peroxidase Uses H2O2 as a terminal electron
acceptor

dps Mini-ferritin Reduce the intracellular iron pool
fur Repressor of iron import
yaaA Unknown

clpSA Chaperone Activate Fe/S enzymes
sufA-E Iron sulfur-assembly

hemF Coproporphyrinogen III oxidase Heme synthesis
hemH Ferrochelatase

mntH Manganese importer Activate mononuclear Fe
enzymes

gor Glutathione reductase Maintain the thiol status
trxC Thioredoxin
grxA Glutaredoxin 1

oxyS Non-coding RNA Role unknown
isrC Non-coding RNA
flu Antigen 43
fhuF Ferric iron reductase
April 20
21 | Volume 12 | Article 667343

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Sen and Imlay Microbial Defenses Against Hydrogen Peroxide
the oxidation of Fe(II) by H2O2 can deactivate Fur, potentially
leading to the disastrous import of more iron. The induction by
OxyR of higher levels of Fur seems to partially correct this
problem (91). Finally, YaaA is a protein whose biochemical
action is not understood but which demonstrably shrinks the
iron pool (92). Mutants that lack any of these proteins—Dps,
Fur, or YaaA—exhibit high levels of intracellular iron and suffer
rapid DNA damage during protracted H2O2 stress.

While the drop in iron pools helps protect DNA, it creates a
problem for the synthesis or repair of iron-cofactored enzymes.
Iron cofactors comprise three main types—iron-sulfur clusters,
mononuclear Fe(II) groups, and heme—and the OxyR system
turns on adaptations to sustain the function of enzymes that use
each. E. coli typically uses Isc-based machinery to build iron-
sulfur clusters (93, 94), but during H2O2 stress the secondary Suf
system is induced (95, 96) (Figure 4). For unknown reasons, this
system works well when iron levels are low (97), making it better
than the house-keeping Isc system, which is poisoned by H2O2

(21). The induction of a manganese importer (MntH) (98)
enables mononuclear enzymes to become metallated by Mn(II)
rather than Fe(II) (Figure 3). Manganese is not as efficient a
catalyst as iron, but it remains available even as Dps sequesters
iron, and it is unreactive with H2O2 and thereby enables the
mononuclear enzymes to remain functional (13). Finally,
continued heme synthesis is facilitated by the induction of
HemH, which encodes ferrochelatase (99). This enzyme inserts
ferrous iron into porphyrins to complete heme synthesis, but it
could potentially become a bottleneck when Fe(II) levels are
diminished. Induction of the enzyme helps to circumvent
that problem.

Thus, maintaining a balance in the intracellular iron pool
during H2O2 stress is challenging. The cells need to keep the
levels low enough to avoid DNA damage, but not so low that the
synthesis of Fe-dependent enzymes is inhibited. As one final
Frontiers in Immunology | www.frontiersin.org 8
gambit, E. coli uses the Clp protease system to maintain this
delicate balance (27). The Clp proteins help to release some iron
from Dps, allowing for the repair of [4Fe-4S] clusters (Figure 7).
Interestingly, genetic data raise the possibility that the Clp
proteins do so not by degrading Dps but perhaps by unfolding it.

Not all the members of the OxyR regulon have been
explained. Glutaredoxin 1 is induced. This dithiol compound is
capable of reducing protein disulfide bonds, and it helps to
deactivate OxyR once the H2O2 stress has dissipated (75).
However, the reasons for the induction of glutathione
reductase and thioredoxin 2, which also reduce disulfide
bonds, are less clear. It would be surprising if low-micromolar
H2O2 directly oxidized typical protein thiols—the rate constants
for these reactions are too low (37, 77). An alternative is that
these systems repair [4Fe-4S] enzymes and mononuclear Fe
enzymes: Cluster reactivation requires a dithiol in vitro (21),
and the reactivation of mononuclear enzymes can require the
reduction of an active-site disulfide (13). An alternative—
described below—is that these sulfur reducing systems are
useful if OxyR moonlights as a sensor of other thiol-
derivatizing stresses.

In E. coli both the reduced and oxidized forms of OxyR
repress oxyR itself by binding over its promoter; this action
ensures that the titers of OxyR are controlled and do not change
during H2O2 stress (76). Transcriptomic data suggest that
oxidized OxyR may repress several additional genes, including
those that encode the periplasmic disulfide bond chaperone
DsbG, the ferric iron reductase FhuF, the inner membrane
protein of unknown function YbjC, and the NADPH
nitroreductase NfsA (83, 99). The significance of this
regulation remains unknown.

Most members of the regulon have functions that either
prevent injuries or allow the cell to tolerate them. The regulon
is very successful at this: Whereas one micromolar of H2O2 in the
FIGURE 7 | OxyR control of the intracellular iron pool. In order to minimize DNA damage, OxyR decreases the intracellular iron pool by inducing Dps, YaaA, and
Fur. The Clp system maintains a small residual iron pool to enable synthesis of iron-dependent enzymes. The H2O2-responsive PerR regulon in Bacillus subtilis also
controls Fur and MrgA, which is a Dps homolog.
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environment fully blocks the growth of an OxyR-deficient strain,
a wild-type strain is able to adapt and grow in 10 micromolar or
more (60). Indeed, a final member of the OxyR regulon, cytochrome
c peroxidase, is a periplasm-facing membrane-bound enzyme that
allows E. coli to actually exploit environmental H2O2 as a respiratory
oxidant when oxygen and nitrate are unavailable (100) (Figure 2). It
is likely that the enzyme plays a role at oxic/anoxic interfaces near
the intestinal epithelium, where H2O2 may be formed and may
diffuse into anoxic zones.
OxyR IS MODIFIED DEPENDING
ON THE ORGANISM

The OxyR system has been most fully studied in E. coli, where it
is presumably adapted for the enteric environment. Similarly,
other bacteria seem to have adapted the OxyR regulon to suit
their particular niches; they exhibit differences in terms of the
regulation mechanism, the number of OxyR homologs, and the
identity of the genes in the regulon. Porphyromonas gingivalis,
for example, encounters two types of environments: the oral
cavity where the oxygen tension is high and the hemin
concentrations are low, and the periodontal pockets, which
contain mixed microbial communities that lower the oxygen
levels and are bathed with proteins such as hemoglobin that serve
as a source of hemin. Perhaps unsurprisingly, the OxyR protein
in P. gingivalis senses both signals, as evidenced by the further
activation of OxyR-regulated genes in a hemin-limited
environment under anaerobic conditions (101). Interestingly,
measurements of the OxyR regulon genes indicate that they are
constitutively expressed. This observation is consistent with the
idea that the OxyR protein has mutated into a locked-on form,
presumably as an adaptation to their environment, which
contains H2O2-generating lactic acid bacteria.

With a few exceptions (83), OxyR in E. coli predominantly
acts as an activator. However, in a variety of other organisms, it acts
as a repressor and/or an activator, sometimes of the same gene:
Reduced OxyR is a repressor and oxidized OxyR is an activator for
the catalases katG in Burkholderia pseudomallei, katB in Shewanella
oneidensis, kat in Neisseria meningitidis and Neisseria gonorrhoeae,
cat in Corynebacterium diphtheriae, and katA in Pseudomonas
aeruginosa (102–108). In these organisms, oxyR mutants exhibit a
higher basal level of catalase expression compared to wild-type cells,
as measured by gene expression and protein measurements. The
presence of H2O2 further increases these levels in a wild-type cell but
not in an oxyR mutant, indicating both repressor and activator
function. It is unclear why there is value in having OxyR act as a
repressor in some organisms and as an activator in others (Table 2).
Its action as both a repressor and an activator may create a step-
function-like turn-on switch, as a modest amount of H2O2 stress
may be inadequate to fully convert the OxyR population to an
activator form, and the residual reduced enzyme may block the
action of a subpopulation of oxidized protein. In organisms that are
exposed to low, continuous levels of H2O2 stress, AhpCFmay suffice
to protect the cell from H2O2, but when H2O2 levels become high, a
full commitment to catalase synthesis may be called for. Conversely,
Frontiers in Immunology | www.frontiersin.org 9
in other organisms it may be more beneficial to preemptively
synthesize basal levels of catalase to guard against a sudden
deluge of oxidative stress. Under those conditions, the basal
expression can help with the initial stress, and the activation of
OxyR can further increase the scavenging enzyme titers.

Organisms such as Vibrio cholerae, Vibrio vulnificus, and
Deinococcus radiodurans each deploy two OxyR proteins. In V.
vulnificus, a facultative anaerobe that occasionally encounters
aeration, the two proteins are calibrated to sense different levels
of H2O2 (123–125). The more sensitive OxyR (VvOxyR2) is
activated by endogenous H2O2 that is formed when the cell is
aerated, whereas the less sensitive OxyR (VvOxyR1) is only
activated by an influx of exogenous H2O2 from the
environment. Accordingly, VvOxyR2 induces a peroxidase
(VvPrx2) that has a higher activity at lower H2O2 levels
compared to a second peroxidase (VvPrx1) that is induced by
VvOxyR1. VvPrx1 becomes necessary because high levels of
TABLE 2 | Mechanism of OxyR control in different bacteria.

Bacteria Oxygen
tolerance

OxyR control

Acinetobacter baumannii Aerobe Activator and repressor (109)

Caulobacter crescentus Aerobe Activator (110)

Burkholderia psuedomallei Aerobe Activator and repressor (104)

Corynebacterium
diphtheriae
Corynebacterium
glutamicum

Aerobe Repressor (107, 111, 112)

Deinococcus radiodurans Aerobe Activator and repressor (113, 114)

Pseudomonas aeruginosa Aerobe Activator and repressor (102,
108, 115)

Neisseria gonorrhoeae
Neisseria meningitidis

Aerobe Repressor (106)
Activator and repressor (103)

Streptomyces coelicolor Aerobe Activator (116)

E. coli Facultative
anaerobe

Activator and repressor (83)

Haemophilus influenzae Facultative
anaerobe

Activator (117, 118)

Klebsiella pneumoniae Facultative
anaerobe

Activator (119)

Rhodobacter sphaeroides Facultative
anaerobe

Activator (120)

Magnetospirillum
gryphiswaldense

Facultative
anaerobe

Activator (121)

Salmonella typhimurium Facultative
anaerobe

Activator (71)

Serratia marcescens Facultative
anaerobe

Activator (122)

Shewanella oneidensis Facultative
anaerobe

Activator and repressor (105)

Vibrio cholerae
Vibrio vulnificus

Facultative
anaerobe

Activator (123–125)

Bacteroides fragilis
Bacteroides
thetaiotaomicron

Anaerobe

Activator (126–128)

Porphyromonas gingivalis Anaerobe Activator (101)

Tannerella forsythia Anaerobe Activator (129)
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H2O2 can irreversibly over-oxidize the catalytic cysteine residue
of VvPrx2. It is unclear why there are two OxyR proteins in D.
radiodurans. The two proteins seem to regulate different genes:
OxyR1 activates katE and represses mntH and dps, and OxyR2
represses katG and the hemin transport genes (113, 114).

In some bacteria the OxyR regulon includes genes that are
unrelated to iron control or H2O2 degradation. Superoxide
dismutase is regulated by OxyR in P. gingivalis and
Pseudomonas aeruginosa, seemingly implying that superoxide
stress occurs concomitant with H2O2 stress (101, 130, 131).
Perhaps the obligate anaerobe P. gingivalis, like Bacteroides
thetaiotaomicron (132, 133), generates toxic doses of both
superoxide and H2O2 whenever it enters oxic environments;
thus, it may use H2O2 as a proxy to detect aerated habitats. In
contrast, P. aeruginosa is an aerobe—but its special feature is that
in competitive environments it synthesizes pyocyanin, a redox-
active compound which can produce both ROS, perhaps to
poison competitors (134). This behavior may necessitate the
simultaneous synthesis of both superoxide and H2O2 defenses
lest P. aeruginosa also poison itself. Meanwhile, DNA-binding
assays and transcriptional analyses have shown that in
Magnetospirillum gryphiswaldense OxyR induces the synthesis
of genes involved in magnetosome production (121).
Magnetotactic bacteria make internal magnetic particles as a
way to orient themselves and dive into deeper water where there
is less oxygen to impair these oxygen-sensitive bacteria; one
infers that H2O2 is an environmental signal that triggers this
defensive taxis. Together, these data indicate that OxyR has been
adapted by different organisms in ways that fit their unique
environmental niche.

A key question is whether OxyR plays a leading role in
defending bacteria from the H2O2 that phagocytes produce as
part of the cell-based immune response. Calculations predict
phagosomal H2O2 levels (47, 66) that are adequate to activate
OxyR, at least in E. coli (60), and local H2O2 levels could
conceivably rise far higher in contained environments, such as
abscesses. Infection data support this idea. OxyR is important in
the colonizing ability of pathogens such as E. coli O1:K1:H7,
Bacteroides fragilis, and Hemophilus influenzae: Mutants lacking
oxyR were unable to colonize animal models or to induce
abscesses in competition assays where they were mixed with
wild-type cells (118, 126, 135). Biofilms can also shelter bacteria
from external stressors—perhaps including H2O2 that is
produced by an inflammatory response. The OxyR responses
of Serratia marcescens, Neiserria gonorrhoeae, Klebsiella
pneumoniae, and Tannerella forsythia mediate biofilm
formation, a process that helps the bacteria to persist in hosts
(119, 122, 129, 136). The OxyR system is required for swarming
motility and the production of exotoxins by P. aeruginosa: oxyR
mutants were non-motile on plates and were unable to inhibit
dendritic cell proliferation (134, 137). However, while these
observations demonstrate a role for OxyR in coping with host
environments, they do not directly implicate the host response as
the source of the H2O2 stress. Indeed, models of urinary tract
infection demonstrated that oxyR mutants of E. coli were
unsuccessful at colonization—but this phenotype persisted in a
Frontiers in Immunology | www.frontiersin.org 10
host that lacked its phagocytic NADPH oxidase (135).
Presumably growth of the mutant was inhibited by H2O2 that
was created by other environmental sources, such as competing
lactic acid bacteria.
THE THIOL-SENSING MECHANISM
OF Yap1p

The model eukaryote Saccharomyces cerevisiae also activates a
defensive response when it senses hazardous H2O2 in its
environment—but although it depends upon a thiol-based
sensor to do so, the sensor is unrelated to OxyR. Yap1p is the
key transcription factor (138). Its amino-terminus has a bZip
DNA-binding domain, but in the absence of H2O2, Yap1p
shuttles between the nucleus and the cytoplasm (Figure 8).
However, when H2O2 levels rise, Yap1p is indirectly activated.
The cytoplasmic Gpx3 is a glutathione peroxidase whose
catalytic Cys36 residue is alternatively oxidized to a sulfenic
acid by H2O2 and reduced to the thiol by glutathione, with the
average redox state dictated by the level of H2O2. This sulfenic
acid form can react with the C598 residue of Yap1p, which is part
of the cysteine-rich domain in the N-terminus, to form an
interprotein disulfide intermediate. Subsequent thiol-disulfide
exchange reactions lead to the formation of an intramolecular
disulfide bond between Yap1 C303 and C598, causing global
conformational change. As a result, the Yap1 nuclear export
signal is hidden, which blocks its interaction with the nuclear
exporter Crm1 (139–141). The resultant nuclear localization of
Yap1p results in the activation of several genes. Thus, unlike
OxyR, the cysteine residues of Yap1p do not directly react with
H2O2. This difference may ensure that Yap1p stays activated
even after migrating into the nucleus, where the H2O2 may not
be as high as in the cytoplasm.

In broad outline, the membership of the Yap1p regulon
overlaps with that of the OxyR regulon (Table 3). These
proteins scavenge H2O2, change iron levels, and influence the
thiol status of the cell (146, 147). Yap1p induces several
peroxidases, including Ahp1, Gpx2, and Tsa1, that scavenge
cytosolic H2O2; it is currently unclear why there are three such
systems. The glutathione reductase GLR1 is induced to reduce
the glutathione disulfide that is formed when Gpx2 reduces
H2O2. Additionally, Yap1p also drives synthesis of Ctt1, a
cytosolic catalase. The mitochondrial iron exporter Mmt1 is
also induced. It has been hypothesized that iron is exported in
order to avoid H2O2 damage to the mitochondrial DNA (145).
Alternatively, the flow of iron into the cytosol may help the
repair of Fe-S clusters of H2O2-sensitive enzymes, such as
LeuCD, that are localized there. Similar to OxyR, Yap1p is
ultimately turned off by a thioredoxin system that consists of
thioredoxins Trx1 and Trx2 and thioredoxin reductase
Trr1 (148).

The fission yeast Schizosaccharomyces pombe features an
interesting orthologue of the Yap1 system: Nuclear localization
of the Pap1 transcription factor is accomplished when it receives
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a disulfide bond from thiol peroxidase [reviewed in (149)]. One
intriguing feature of its regulon is that it includes not only familiar
H2O2defensesbut also drug-resistance genes.This feature raises the
possibility thatH2O2 stress is frequently imposed upon S. pombe by
natural antibiotics, much as the linkage of drug pumps and SOD to
the SoxRS system of E. coli reveals that redox-cycling drugs are a
natural source of superoxide stress.

THE Fe-BASED SENSING MECHANISM
OF PerR

Some bacteria rely on a thiol-independent mechanism of H2O2

sensing. Unlike OxyR and Yap1p, the transcriptional repressor
Frontiers in Immunology | www.frontiersin.org 11
PerR takes advantage of the reaction between Fe(II) and H2O2 to
detect the stress. Most extensively studied in Bacillus subtilis
(150–152), PerR is a Fur homolog containing a structural zinc
site and a regulatory metal binding site. It was probably easy to
evolve Fur to sense H2O2 stress: Fur:Fe(II) already reacts with
H2O2, and Fur and PerR are sufficiently similar in primary
sequence that genomic inspection cannot reliably distinguish
the two.

PerR acts as a dimeric repressor when it is bound to either Mn
(II) or Fe(II). Under most growth conditions, PerR has a greater
binding affinity for Fe2+. However, in iron-limited medium that
has been supplemented with manganese, PerR binds to Mn(II).
The identity of the metal is functionally important, as Mn-bound
PerR does not react with H2O2. This is probably by evolutionary
design, as manganese-rich/iron-poor cells are intrinsically less
vulnerable to H2O2. Because manganese supplants iron in
mononuclear enzymes and a paucity of iron precludes much
DNA damage, cells need not waste resources defending
themselves against H2O2. In contrast, Fe-bound PerR reacts
with H2O2 (Figure 9) with a rate constant of 105 M-1 s-1,
which approximates that of OxyR (153); the similarity in rate
constants suggests that the same level of H2O2 may be toxic in B.
subtilis as in E. coli. The reaction oxidizes two of the His ligands
bound to iron, forming 2-oxo-histidine; because the oxidized
ligands cannot bind metal and the oxidation cannot be reversed,
the repressor is permanently inactivated (154). Intriguingly, in
vivo studies have shown that the majority of PerR in
Staphylococcus aureus (PerRSA) is present in the oxidized form
during aerobic growth, whereas this is not true of the B. subtilis
FIGURE 8 | Yap1p activation. H2O2 oxidizes the C36 residue of glutathione peroxidase (Gpx3). The resulting sulfenate interacts with C598 in the C-terminal domain
of Yap1p to form a intermolecular disulfide bond. Subsequent thiol-disulfide exchange reactions produce C303-C598 and C310-C629 disulfide bonds in Yap1p.
Yap1p accumulates in the nucleus, leading to the activation of the Yap1p regulated genes. When H2O2 diminishes, Yap1p is reduced by the thioredoxin system; this
change makes its nuclear export signal accessible to Crm, causing Yap1p to be transported back out of the nucleus.
TABLE 3 | Genes induced by Yap1p during hydrogen peroxide stress in yeast.

Gene Function Role during H2O2 stress

AHP1 Cytoplasmic alkyl hydroperoxidase Scavenge H2O2 (142–144)
GPX2 Cytoplasmic glutathione peroxidase
TSA1 Cytoplasmic thioredoxin peroxidase
CTT1 Cytoplasmic catalase T

MMT1 Mitochondrial iron exporter Reduce the mitochondrial
iron pool (145)

GSH1 Cytoplasmic glutamylcysteine
synthetase

GLR1 Cytoplasmic glutathione reductase Maintain the thiol status
(142, 146)

TRX2 Cytoplasmic thioredoxin
TRR1 Cytoplasmic thioredoxin reductase
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PerR (PerRBS) (155). When PerRSA and PerRBS were alternately
expressed in the same organism, the KatA activity and transcript
levels of PerR-regulated genes were higher with PerRSA. One
explanation is that PerRSA is more reactive than PerRBS and can
sense lower concentrations of H2O2.

The inactivation of PerR results in the derepression of the PerR
regulon, which again controls proteins that scavenge H2O2 and that
lower the level of loose intracellular iron (156) (Table 4). AhpCF and
KatA are induced to reduce the intracellular H2O2 levels. MrgA,
which is a homolog of Dps, sequesters iron. Fur, as in E. coli, helps to
reduce the intracellular iron levels by repressing iron import. The
hemAXCDBL operon encodes the early steps of heme biosynthesis.
Unlike E. coli, where OxyR induces the ferrochelatase HemH, B.
subtilis PerR does not regulate the ferrochelatase.

Interestingly, the constitutive expression of the B. subtilis
PerR regulon—in a perR mutant—causes trouble by excessively
lowering the pool of intracellular iron (159). These mutants are
more resistant to H2O2 but have trouble growing. It is unclear
which enzyme-activity deficiency causes the poor growth. The
iron deficiency was tracked to the combined repression of iron
uptake by Fur, plus iron depletion due to the induction of KatA.
Under these inducing conditions KatA becomes the single most
abundant protein in the cell, comprising a whopping 10% of the
Frontiers in Immunology | www.frontiersin.org 12
total cell protein (159). This situation is reminiscent of OxyR-
driven iron deficiency in E. coli; however, the latter is abated by
induction of the Clp system (27). It seems, then, that whereas
OxyR induction does not interfere with growth—and, indeed,
can support it via the service of cytochrome c peroxidase—the
induction of PerR is an emergency response that is incompatible
with continued growth. Perhaps B. subtilis is wired to enter a
period of stasis when exposed to H2O2 stress, with growth
resuming only after the threat has passed, whereas OxyR
allows E. coli to adjust and continue growing.

After H2O2 stress, the inactivated PerR is degraded by the
protease LonA, and the repression of the PerR regulon is restored
when the newly synthesized PerR binds either Mn or Fe (160).
BACTERIA USE PerR DIFFERENTLY
BASED ON THEIR NICHE

Similar to OxyR, PerR has also been adapted by bacteria to fit
their particular niches. Differences have emerged in the types of
PerR, what it senses, and the genes that it controls. Most bacteria
have a single PerR regulator, such as Staphylococcus aureus,
Streptococcus pyogenes, Enterococcus faecalis, and Helicobacter
hepaticus (161–165). On the other hand, Bacillus Licheniformis
has one PerR and two PerR-like proteins, both of which can
sense H2O2 by histidine oxidation (166). Other bacteria contain
both OxyR and PerR, including N. gonorrhoeae, B.
thetaiotaomicron, and D. radiodurans (133, 167, 168); it is not
yet clear why they would require both sensing systems.

The importance of PerR in different organisms may reflect the
circumstances under which these bacteria experienceH2O2 stress.
Low-level aeration induces the PerR regulon of the anaerobe
Clostridium acetobutylicum, perhaps due to endogenous H2O2

formation (169); as oxygen levels rise, induction of the regulon is
critical for cell survival. InCampylobacter jejuni, a microaerophile
that lacks SoxRS and OxyR homologs, the superoxide dismutase
sodB is induced in perR mutants (170). These observations
indicate that PerR may not be limited to defending cells against
only H2O2.

Surprisingly, it has been shown that perR mutants of S.
aureus, S. pyogenes, and Group A Streptococcus have lower
virulence and lower intracellular survival in infected
macrophages (161, 164, 171, 172), even though the
derepression of the PerR regulon might be expected to induce
defenses against the oxidative stress these bacteria encounter in
their hosts. It is possible that the constitutive induction of the
PerR regulon causes secondary growth defects similar to what is
FIGURE 9 | PerR activation. PerR is a dimeric DNA-binding protein, and it
binds two metal ions per monomer. The first ion is a structural Zn2+ that is
necessary for dimerization and structural integrity. The second metal ion
enables DNA binding, and can either be Fe2+ or Mn2+. Only PerR bound to
Fe2+ is responsive to H2O2. The oxidation of Fe2+ by H2O2 generates a
localized hydroxyl/ferryl radical, which irreversibly oxidizes either of two His
ligands (H37 or H91) to form 2-oxo-histidine. Metal binding is blocked, PerR
dissociates from promoter sites, and the regulon is induced.
TABLE 4 | Genes repressed by PerR in B. subtilis (157, 158).

Gene Function Role during H2O2 stress

ahpCF
katA

Alkyl hydroperoxidase
Catalase

Scavenge H2O2

mrgA
fur

Dps homolog
Repressor of iron import

Reduce the intracellular iron pool

hemAXCDBL Heme synthesis
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seen in B. subtilis (159). If so, it may explain why the perR
mutants of these pathogens are unable to colonize their hosts. In
S. aureus and Staphylococcus epidermidis, PerR represses the
expression of ferritin under low-iron conditions where PerR
binds to Mn, and induces it in the presence of iron, indicating
that like in B. subtilis, PerR can regulate metal homeostasis
independently of oxidative stress (161, 173).
DO OxyR, Yap1p, AND PerR USEFULLY
DETECT OTHER STRESSORS?

The reactive sensors of OxyR and PerR—a hyperreactive thiol
and Fe(II), respectively—can be modified by reactive species
other than H2O2, and this observation raises the question of
whether these transcription factors profitably respond to these
other stresses. The effectors that have been examined most
closely are nitric oxide (NO) and disulfide stress.

cesses (174, 175), and it is deliberately generated at toxic levels
by macrophages as part of the cell-based immune response (176).
It is a radical species that can pair with the unpaired d-orbital
electrons of iron; as a result, NO binds heme, exposed iron-sulfur
clusters, and mononuclear iron, potentially inhibiting the
enzymes that possess these cofactors (177–180). Many bacteria
use NO-sensing transcription factors to control the synthesis of
NO scavenging enzymes. In E. coli, NorR is a Fe(II)-based
regulator that induces the NorVW NO reductase, while NsrR
is a [2Fe-2S]-containing transcription factor whose binding by
NO triggers the induction of nitric oxide dioxygenase (Hmp)
(181, 182). NsrR also appears to regulate a more expansive
regulon, although the roles of other members are less clear
(183). The Vibrio fischeri NsrR regulates an alternative oxidase
that is more resistant to inhibition by NO than are conventional
respiratory oxidases; thus, this feature of the NsrR regulon allows
this squid symbiont to sustain its respiration despite the NO that
is generated by its host (184). NO has a second route of toxicity,
too: Its reaction with superoxide, which is also produced by
macrophages, forms peroxynitrite (ONOO-), a potent univalent
oxidant that can penetrate into phagocytosed bacteria (185).

The Stamler group has presented evidence that OxyR also
provides protection against NO stress (186, 187). Null mutants
grew poorly during anaerobic respiration of nitrate, a process that
might release someNO. Notably, the sensory cysteine of OxyRwas
nitrosylated, a modification that appeared to activate OxyR so that
it induced a set of genes distinct from the conventional H2O2-
driven response. The hcp operon was among those genes, and this
group has proposed that Hcp contributes to the broader
nitrosylation of cellular proteins, in a way that protects cells
from nitrosative stress. The chemistry by which NO would
chemically derivatize the OxyR thiol is not clear; NO is a radical
species, so an oxidant, perhaps iron, needs to be involved to absorb
the extra electron. Derivatization by Hcp is plausible; nitrosothiols
readily react with activated cysteine residues, including that of
OxyR, and this modification can perturb its behavior and has even
been shown to initiate catalase synthesis—although it would seem
to lack value in this situation.
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However, other in vivo studies have elicited contradictory
results. Chemostat cultures of E. coli that were grown
anaerobically in the presence of 5 mM NO induced genes
associated with NorR, NsrR, and Fur but not OxyR (188). Studies
that have used even higher concentrations of NO sources, such as 1
mM acidified NaNO2, activated NO-detoxifying systems such as
hmpA, norV, and norW, but not OxyR (189). It is possible that the
identity and dose of these nitrosative stressors as well as the growth
conditions contributed to the discrepancies.

The role of Yap1p in protecting yeast from nitrosative stress is
also unclear. Exogenous nitrosoglutathione elicited the synthesis
of superoxide dismutase and catalase, and this response
depended upon Yap1p (190). However, a study that used a
nitric oxide donor did not detect this effect (191). The
possibility exists, then, that the effects of NO and/or
nitrosothiols upon OxyR and Yap1p are adventitious.
Similarly, exogenous NO can react with the Fe(II) in bacterial
PerR and, by inactivating the repressor, trigger induction of its
regulon (192). However, members of this regulon do not provide
any obvious route to remediate this stress, and so it seems likely
that effect is merely incidental to the iron-binding activity of NO.

“Disulfide stress” is a term attached to conditions that create
and disseminate disulfide bonds among cellular proteins. In many
studies it is imposed by exposing microbes to diamide, a manmade
reagent designed to create disulfide bonds from cellular thiols (193).
In some bacteria diamide elicits defensive responses that include the
induction of redoxin-based disulfide-reducing systems; these
regulons (194, 195) are independent of the systems that detect
and suppress H2O2 stress. Diamide can activate OxyR inside E. coli,
but very high doses are needed (75). One wonders, then, what the
natural circumstances are that trigger “disulfide stress” responses.
Further, because OxyR-controlled redoxins have not yet been
assigned a role in defraying H2O2 stress, it is formally possible
that the sensory thiol of OxyR serves a second purpose of detecting
and defusing thiol-targeting electrophiles.

Thus far, the only condition under which disulfide stress is
known to naturally occur in E. coli is during periods of rapid cystine
import (196). This situation arises when sulfur-limited cells, which
induce all forms of sulfur importers, encounter cystine. Gross over-
import of cystine results, and disulfide-exchange reactions cause
disulfide bonds to be transferred from the imported cystine to
cytoplasmic proteins. OxyR is modified, and it induces its regulon.
Both the thioredoxin and glutaredoxin systems that it induces act to
minimize the disulfide stress. Disulfide stress can also be imposed by
exposing cells to antimicrobial plant compounds such as diallyl
thiosulfinate and diallyl polysulfanes; the induction of ahpC, trxA,
and trxC results (197). It seems unlikely that E. coli naturally
encounters these chemicals.

Similar stresses can activate Yap1p of yeast. It is directly
modified by diamide—without the mediation of Gpx3—and the
H2O2-sensing C303 is not involved in the resultant conformational
change (198). Instead, disulfide linkages are formed between C598
and C620, C620 and C629, and C598 and C629. Glutathione
reductase and thioredoxin are subsequently induced. However,
broadly speaking, the activation of these systems by disulfide-
generating agents—and perhaps by nitrogen species—has
April 2021 | Volume 12 | Article 667343
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attracted a fair amount of attention without compelling evidence
that these outcomes are not accidental.
WHAT’S NEXT?

Todate, themechanismsbywhichH2O2poisons bacteria havebeen
explored primarily in test tubes. From those studieswehave learned
that H2O2 stress is iron-focused, driven by reactions with enzymic
iron-sulfur clusters and Fe(II) prosthetic groups and with the pool
of loose iron. The high rate constants of these reactions, and the
abundance of vulnerable enzymes, means that low-micromolar
concentrations of H2O2 suffice to bring bacterial growth to a halt.
The known defenses remediate the same injuries that have been
discovered, which provides confidence that the overall picture has
come into shape. In E. coli, the most-examined microbe, it appears
that the endogenous levels of H2O2 in the fully aerated bacterium
falls just short of the threshold for H2O2 toxicity—and for the
inductionof emergency responses. Those responses, then, evidently
exist to shield the cell from external H2O2.

The next step is to figure out how this information translates
to real-world environments. The broad distribution of H2O2

defenses, and in particular of inducible defenses, suggests that
H2O2 stress is a pervasive phenomenon that extends, at least
episodically, to most biological habitats. Yet the actual
circumstances and severity of oxidative stress remain poorly
understood. Plausible sources of stress range from the redox
collision that occurs at oxic/anoxic interfaces to the oxidative
burst of mammalian and plant defenses. We infer that different
microbes may encounter this stress in different circumstances, as
the defensive regulons have been modified to suit their specific
Frontiers in Immunology | www.frontiersin.org 14
situations. The rationale for these differences is not always clear;
in particular, we do not yet understand why some organisms use
OxyR as a sensor, why others use PerR, and why a third set
employ both. Thus, if we are to fully understand oxidative stress,
we will need to continue to expand these studies beyond E. coli
and yeast, and we will need to evaluate the intensity of H2O2

stress and the role of these systems in natural habitats.
For many microbiologists, the key questions concern whether

host-generated H2O2 plays a role in suppressing invasion by
most bacteria—and, if it does so, by which strategies dedicated
pathogens manage to circumvent this stress. It may seem
intuitively obvious that phagocytic H2O2 is a potent defense,
but back-of-the-envelope calculations suggest that the H2O2

levels may not rise as high as workers have sometimes
assumed. Part of the difficulty here is that phagocytic action
has typically been studied using as prey the same professional
pathogens that have, by definition, developed ways to elude the
toxicity. We endorse the idea of studying the process using the
99% of bacteria that phagocytes efficiently kill.
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