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Macrophages are critical mediators of tissue vascularization both in health and disease. In
multiple tissues, macrophages have been identified as important regulators of both blood
and lymphatic vessel growth, specifically following tissue injury and in pathological
inflammatory responses. In development, macrophages have also been implicated in
limiting vascular growth. Hence, macrophages provide an important therapeutic target to
modulate tissue vascularization in the clinic. However, the molecular mechanisms how
macrophages mediate tissue vascularization are still not entirely resolved. Furthermore,
mechanisms might also vary among different tissues. Here we review the role of
macrophages in tissue vascularization with a focus on their role in blood and lymphatic
vessel formation in the barrier tissues cornea and skin. Comparing mechanisms of
macrophage-mediated hem- and lymphangiogenesis in the angiogenically privileged
cornea and the physiologically vascularized skin provides an opportunity to highlight
similarities but also tissue-specific differences, and to understand how macrophage-
mediated hem- and lymphangiogenesis can be exploited for the treatment of disease,
including corneal wound healing after injury, graft rejection after corneal transplantation or
pathological vascularization of the skin.
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INTRODUCTION

Macrophages represent highly plastic cells of the hematopoietic system and are found in all tissues
(1). Macrophages exert multiple functions including important roles in tissue development,
homeostasis, repair and host defense. Several pieces of evidence indicate a critical role of
macrophages as mediators of neovascularization (2–4). Furthermore, macrophages have also
been shown to mediate repair of damaged vascular tissue (5). Neovascularization occurs very
diversly in different tissues. Here we review the role of macrophages in tissue vascularization with a
org April 2021 | Volume 12 | Article 6678301
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focus on blood and lymphatic vessel formation in cornea and
skin. Furthermore, a recent study showed the mediation of
vascular tissue repair by macrophages (5).

The cornea is the outer barrier of the eye and is, under healthy
conditions, transparent and the major refractive element in the
eye. The cornea belongs to the few immune-privileged tissues of
the organism and is, unlike the skin, avascular in its healthy state.
After severe injury or chronic inflammation, however, corneal
avascularity is abrogated as blood and lymphatic vessels can
sprout from the adjacent vascularized tissues into the cornea,
leading to reduced visual acuity and undesired immune
responses (6, 7). However, on the other side previous studies
also reported on beneficial roles of lymphatic vessels in the
cornea under certain disease conditions (8–10). Corneal
macrophages have been shown to be critical mediators of corneal
hem- and lymphangiogenesis (2, 11). Similar to the cornea, the
skin is an important barrier tissue protecting the body from
harmful insults of the environment. In contrast to the avascular
cornea, the skin contains a tight network of blood and lymphatic
vessels and also several resident immune cell types, including
macrophages, which have been shown to be important mediators
of skin vascularization. Comparing angiogenesis in both tissues
provides an opportunity to highlight molecular principles of
macrophage-mediated tissue vascularization.
MONOCYTE AND MACROPHAGE
HETEROGENEITY

Origin and Development of Monocytes
and Macrophages
Until recently, it was thought that macrophages exclusively
originate from hematopoietic stem cell (HSC)-derived
monocytes in the bone marrow and are released into the
peripheral blood circulation (12). The egression of monocytes
from bone marrow into blood requires the expression of the C-C
chemokine receptor type 2 (CCR2) (13, 14). Blood monocytes
can be subdivided into two subtypes: classical and non-classical
monocytes. Classical monocytes are circulating for several days
in the blood before leaving the circulation by diapedesis and
entering tissues in steady state to replenish the tissue
macrophage populations under inflammatory conditions. Non-
classical monocytes predominantly remain in the circulation (13)
and engage in long-term migration along the endothelium with
or against the flow, a process termed patrolling (14). These
monocyte subpopulations are reviewed in detail in section 2.2,
including their various expression of surface markers.

However, besides macrophages originating and renewing
from HSCs, some macrophages develop in the early embryo
before the development of HSCs. These cells are termed
erythromyeloid progenitors (EMP) (15). It was shown in mice,
that macrophages develop in the yolk sac beginning from
embryonic day 8.5 (E8.5) (16, 17). Further, the transcription
factor myeloblastosis (Myb) is required for the development of
HSCs in the bone marrow as well as for the development of all
CD11bhigh monocytes and CD11bhigh macrophages. For the
development of yolk sac-derived F4/80+ macrophages in
Frontiers in Immunology | www.frontiersin.org 2
several tissues, including liver Kupffer cells, epidermal
Langerhans cells as well as microglia cell populations, Myb was
dispensable. In adult mice, these populations can persist
independently of HSCs, suggesting that a lineage of tissue
macrophages is derived from the yolk sac and is genetically
distinct from HSC progeny (18). Additionally, it was shown in
mice, that the majority of adult tissue-resident macrophages in
various organs like liver, brain, lung and skin originates from an
Angiopoietin-1 receptor+ (Tie2) cellular pathway generating
Colony stimulating factor 1 receptor+ (Csf1r) EMPs, which are
distinct from HSCs (19, 20). It has been shown that during
inflammation there is an expansion of both HSC- and EMP-
derived macrophages, presumably performing different
functions at different stages of the inflammatory process.

In the cornea, the CCR2- population is already is present in
the cornea at E12.5, which are similar to yolk sac-derived
macrophages, whereas the CCR2+ population does not appear
in the cornea until E17.5. Besides the different phenotype and
gene expression profile, the role of these populations in corneal
wound healing is different. Whereas CCR2+ macrophages seem
to act pro-inflammatory in an early stage of corneal wound
healing, CCR2- macrophages seem to act anti-inflammatory
during the later stage of wound healing (21).

Subpopulations of Murine Monocytes
and Macrophages
In mice, the antigenic differentiation of two monocyte subsets
was first achieved after the observation that monocytes could be
subdivided according to their expression of CCR2, L-selectin
(CD62L) and CX3C chemokine receptor 1 (CX3CR1) (13, 22–
25). CCR2+CD62L+CX3CR1low expressing monocytes have pro-
inflammatory characteristics and are recruited into the tissue
during inflammation, e.g., for host defense, whereas CCR2-

CD62L-CX3CR1high monocytes/macrophages have anti-
inflammatory properties and replenish the tissue resident
macrophage population, mediate wound healing and patrol the
vasculature (13, 26–28). CCR2+CD62L+CX3CR1low expressing
monocytes are known to be the “inflammatory” subset, whereas
CCR2-CX3CR1high expressing monocytes are considered as the
“resident” subset. Besides CCR2 as a marker for monocytes/
macrophages, Geissmann et al. identified an additional marker,
lymphocyte antigen 6C (Ly6C), for CCR2+ monocytes/
macrophages (13). In particular, CCR2+CD62L+CX3CR1low

Ly6C+ monocytes seem to have an outstanding importance for
the infiltration into inflamed tissues (29). These cells produce
pro-inflammatory cytokines and chemokines, including tumor
necrosis factor (TNF)-a, Interleukin (IL)-1b, IL-6, IL-12, IL-23,
and C-C motif chemokine 11 (CCL11) (30, 31). Additionally,
cells express high levels of Triggering receptor expressed on
myeloid cells 1 (TREM1), which can potently amplify pro-
inflammatory responses (32).

Fate-mapping studies as well as single cell analyses were
recently able to provide major insights into the heterogeneity
of macrophages. In this context, a study performed by Yona et al.
demonstrated, that tissue resident macrophage populations,
including peritoneal, splenic and lung macrophages, as well as
liver Kupffer cells, are established prior to birth and are
April 2021 | Volume 12 | Article 667830
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disconnected from monocyte input in adult steady state (27).
Furthermore, this study demonstrated that in steady state
monocytes with a CX3CR1intLy6C+ expression form a short-
lived obligatory precursor intermediate for the generation of
Ly6C- monocytes, which dynamically control the lifespan of their
progenitors (27). A very recent study from Wieghofer et al.,
provided further insight into the heterogeneity of macrophages
in various tissues of the eye, including the cornea (33). In this
study, a combination of three techniques, single-cell RNA
sequencing, embryonic and adult cell fate mapping and
parabiosis with the use of reporter mouse lines was deployed
to compare the transcriptional profiles, origin and turnover
characteristics of retinal microglia, and resident macrophages
in the ciliary body as well as in the cornea (33). Out of 17
different clusters containing CD45+CD3-CD19-Ly6G- cells, five
clusters were significantly enriched in the cornea. Furthermore,
this study showed, that all investigated compartments of the
adult murine eye contained macrophages of prenatal origin that
derive either from the yolk sac and/or the fetal liver to various
degrees. However, in the cornea of adult mice, macrophages are
continuously replaced with cells derived from the definitive
hematopoiesis with a short turnover (33).

A number of markers that are expressed by macrophages can
be used for characterization and localization during experimental
set ups, including F4/80, CD11b and CD68 (34–36). Besides
macrophages, F4/80 is also a marker for microglial cells (37).
Additionally, myeloid dendritic cells, blood monocytes and
eosinophilic granulocytes also express low levels of F4/80 (38),
whereas CD11b is also expressed on neutrophils, peritoneal B1
cells, CD8+ dendritic cells (DCs), natural killer cells (NK) and a
subset of CD8+ T cells (39–41). CD11b is also highly expressed in
CD4+ conventional DCs and in conventional DCs type 2
regardless of their CD4 expression (42). CD68 is also present
on basophils, dendritic cells, fibroblasts, Langerhans cells, mast
cells, CD34+ progenitor cells, neutrophils, osteoclasts, activated
platelets and B and T cells (43, 44). Additional markers widely
used for the characterization of tissue resident macrophages are
CD64 and Mer tyrosine kinase (MerTK). A combination of
different markers including CD11b, F4/80, CD64, MerTK and
CD68 for flow cytometry is commonly used to characterize
tissue-resident macrophages (45). Furthermore, the
characterization of macrophages is also possible using
immunofluorescence. For example, Saylor et al. developed an
automated, multiplexed staining approach including anti-CD68,
-CD163, -CD206, -CD11b, and -CD11c antibodies to identify
macrophages in tumor tissue (46).

Interestingly, macrophages share the marker Lymphatic
Vascular Endothelial Hyaluronan Receptor 1 (LYVE-1) with
lymphatic endothelial cells (LECs) (47). Therefore, these cell
types also have to be discriminated, e.g. by using further specific
markers for LECs such as the transcription factor Prospero
homeobox protein (Prox-1) (48) and the membrane
glycoprotein Podoplanin (6, 49, 50). Besides lymphatic vascular
endothelium, LYVE-1 serves for both, macrophages and LECs as
receptor during hyaluronate metabolism and angiogenesis (2, 3,
6, 51–53). Intriguingly, a recent study of Chakarov et al. has
shown that two independent monocyte-derived tissue resident
Frontiers in Immunology | www.frontiersin.org 3
macrophage populations exist across various tissues with specific
niche-dependent phenotypes and functional programming,
distinguished by their LYVE-1, MHC II and CX3CR1
expression pattern (54). LYVE-1lowMHC IIhighCX3CR1high

macrophages are preferentially located, but conserved, in sub
tissular niches located adjacent to nerve fibers, whereas LYVE-
1highMHC IIlowCX3CR1low macrophages are preferentially
located adjacent to blood vessels (54). LYVE-1lowMHC
IIhighCX3CR1high macrophages exhibit potent immune-
regulatory potential, while LYVE-1highMHC IIlowCX3CR1low

macrophages are able to express higher levels of genes which
are involved in wound healing, repair, and fibrosis, as well as
blood vessel morphology and leukocyte migration (54).

Activation Phenotypes of Macrophages
A plethora of functional macrophage phenotypes exist. For a
long time, macrophage phenotypes were classified into two
polarized macrophage subtypes, depending on their activation
state. The “classical” activation of macrophages occurs via
stimulation by pro-inflammatory mediators, e.g. Interferon
(IFN)-g , TNF-a or lipopolysaccharides (LPS). These
macrophages show an increased expression of pro-
inflammatory cytokines such as TNF-a, IL-6 and IL-12,
increased antigen presentation and production of nitrogen and
oxygen radicals as well as increased microbicidal activity (55).
This macrophage phenotype occurs primarily in early phases of
inflammatory responses. In contrast, “alternative” activation of
macrophages is mediated by the Type 2 cytokines IL-4 and IL-13
which induce the expression of hallmark genes such as Retnla
(resistin-like molecule alpha), Chil3 (chitinase-like 3), and Arg1
(arginase 1) (55, 56). IL-4/IL-13-activated macrophages show an
increased activity in signaling pathways that are important for
the termination of an immune response, leading to an increase of
the expression of prophagocytic, antioxidant and motility-
enhancing factors, while the expression of pro-inflammatory
factors is decreased (55). Furthermore, IL-4Ra-activated
macrophages are crucially involved in tissue repair, evidenced
by defective skin wound healing in Il4rafl/−Lyz2-cre mice (57).
In this study, IL-4Ra-activated macrophages were shown to
have a major impact on the collagen-modifying function of
fibroblasts and thereby on scar formation (57). Macrophages in
Il4rafl/−Lyz2-cre mice fail to initiate an essential repair program
rather than an unrestrained pro-inflammatory response which
was reported in prior studies by Chen et al. (58). It is clear,
however, that this subdivision is an oversimplification and only
reflects two extremes of polarization and that in tissues a wide
range of activation states exist in parallel (56).
CORNEAL MACROPHAGES

Previous studies have demonstrated that resident tissue
macrophages and antigen-presenting cells (APCs) are present
in various tissues of the eye, including the iris, ciliary body, uvea,
retina, conjunctiva, and cornea (59–63). It was also shown that
macrophages express low levels of MHC II and further
costimulatory molecules, which enables them to act as APCs,
April 2021 | Volume 12 | Article 667830
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although working less efficiently than dendritic cells due to their
relatively reduced ability to migrate and prime naïve T cells (42,
64–67). In this regard, it should be noted that there are several
lines of evidence that Langerhans cells are not DCs but rather a
population of specialized macrophages (42, 68). Furthermore, it
was demonstrated that a high number of CD45+ cells (leucocytes)
with pleomorphic and dendriformmorphology were found within
the pericentral and central region of the corneal stroma (69). It was
demonstrated, that all CD45+ cells in the corneal stroma are also
CD11b+ and around 50% of the CD45+ cells were also F4/80+.
Approximately 30% of all CD45+ cells and 50% of F4/80+ cells co-
expressed MHC II, whereas only a very small number of the
CD45+ cells were positive for CD11c (dendritic cells) or Ly6G
(granulocytes) (69). In short, this study shows that two different
subsets of F4/80+ macrophages exist in the cornea, discriminated
based on their MHC II expression. No T cells and NK cell markers
were found in the naïve corneal stroma, indicating that all cells
identified in the stroma were of the myeloid lineage (69).

Early experiments from Streilein and colleagues indicated that
the cornea has no MHC II+ cells capable of stimulating acute
allogeneic rejection (70). Subsequently, two independent studies
described a network of CD11b+ macrophage-like cells as well as a
significant number of CD45+ leukocytes in the stroma and CD11c+

DCs in the corneal epithelium of normal mouse corneas (69, 71).
MHC II+ cells were typically located in the periphery of the corneal
epithelium with a dendritic morphology in various species,
including mice (72) and humans (72–74). It was also shown, that
CCR2- macrophages, which already exist in the cornea at E12.5,
may be derived from progenitors originating in the fetal liver or
earlier yolk sac (17), as yolk sac progenitors seem to express only
low levels of CCR2. The CCR2+ population does not appear in the
cornea until E17.5 (21). It was also demonstrated that CCR2−

macrophages in the cornea were mainly maintained through local
proliferation and were rarely replaced by blood monocytes,
whereas CCR2+ macrophages with a lower ability to proliferate
were replaced by blood monocytes (21). It was proposed that the
turnover rate of bone marrow-derived CX3CR1+ cells in the cornea
is fast (approximately 40% in 4 weeks) compared to other non-
lymphoid tissues (75), including lung, liver and brain [turnover of
less than 5% in 4 weeks (76)]. This study also proposed, that the
higher turnover rate in the peripheral cornea is a reflection of the
close location to the vascular limbus (75).

Taken together, macrophages are also present in the immune-
privileged cornea, preferable in the periphery of the corneal
stroma. However, macrophages are also found occasionally in
the central cornea, with a possible origin in the bone marrow as
well as in the yolk sac. Nonetheless, the normal central cornea is
devoid of MHC II+ cells (70, 77).
CORNEAL HEM- AND
LYMPHANGIOGENIC PRIVILEGE

In most tissues and organs, blood and lymphatic vascular
systems are essential to supply organs and tissues with oxygen
and nutrients, to drain redundant fluid and metabolites and to
Frontiers in Immunology | www.frontiersin.org 4
support the immune system to protect the body against foreign
organisms (78, 79). However, there are some tissues that do not
rely on the presence of blood and/or lymphatic vessels to
maintain their unique structure and fulfill their function. The
cornea is one of these rare tissues that actively maintains an
avascular state, which is called “corneal (lymph)angiogenic
privilege” (80) (Figure 1A). In general, it seems that the
maintenance of corneal avascularity does not only occur as a
result of the upregulation of anti-angiogenic factors, but also
from the downregulation of pro-angiogenic factors in the healthy
cornea (81). It has been shown in this context, that the balance
between angiogenic and anti-angiogenic factors especially in the
corneal epithelium plays an important role in corneal
avascularity (82–84). This includes the pro-angiogenic factors
fibroblast growth factor-2 (FGF-2), vascular endothelial growth
factor (VEGF) and the transforming growth factor-a (TGF-a)
(85, 86), as well as the anti-angiogenic factors including
endostain (87), thyrosinase (88), semaphorin 3F (89),
angiostatin (90) and thrombospondin (TSP-1) (91–96). TSP-1,
an anti-angiogenic, multifunctional extracellular matrix protein,
plays an interesting role in the lymphangiogenic privilege of the
cornea. It was shown that aged (6-month-old) TSP 1-/- mice
develop a spontaneous ingrowth of lymphatic vessels into the
cornea, which was also shown in mice lacking the TSP-1 receptor
CD36 (95). Mechanistically, it was demonstrated that TSP-1
down-regulates the expression of VEGF-C via CD36 in
macrophages, proposing that macrophages are involved in the
maintenance of the lymphangiogenic privilege of the cornea (95).
Additionally, factors which can act pro- as well as anti-
angiogenic are also present in the cornea, including TGF-b
(97–99). It was further demonstrated that corneal avascularity
is dependent on the expression of soluble VEGF receptor 1
(sVEGFR-1) in the corneal epithelium (100). The lack of
sVEGFR-1, which serves as an endogenous VEGF−A trap
(101), abolishes corneal avascularity in mice (100). A further
crucial regulator of lymphatic vessel growth is sVEGFR-2, which
inhibits lymphangiogenesis by blocking VEGF−C function (102).
Further studies showed that also sVEGFR-3 is expressed in
the cornea and is essential for corneal alymphaticity (103).
This protein binds and sequesters VEGF-C, thereby
blocking signaling through VEGFR-3 and suppressing
lymphangiogenesis induced by VEGF-C. The knockdown of
sVEGFR-3 leads to neovascularization in the mouse cornea.
In contrast, the overexpression of sVEGFR-3 inhibits
neovascularization in a murine suture injury model (103).
Membrane-bound VEGFR-3 is also strongly constitutively
expressed by the corneal epithelium and is mechanistically
responsible for suppressing inflammatory corneal hem- and
lymphangiogenesis (104).

Additionally, the corneal (lymph)angiogenic privilege is
provided by the special anatomy of the cornea, which ensures
a constant dehydration, resulting in periodically ordered, tightly
packed collagen lamellae and a compact keratocyte network. The
periodicity is highly dependent on the state of stromal hydration.
In case of stromal edema, the compactness of the stroma is
disturbed and therefore vessels can easier grow in-between the
April 2021 | Volume 12 | Article 667830
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FIGURE 1 | Macrophages in corneal neovascular disease. (A) The naive cornea is devoid of blood and lymphatic vessels. Few
lesser extent in the central cornea. (B) An acute incisional injury (left) leads to the ingrowth of lymphatic, but not blood vessels.
vessels. Corneal neovascularization in both injury models critically depends on the presence of corneal macrophages. (C) Bac
infection, whereas lymphatic vessels only appear in the late stage of infection. Both are critically dependent on the presence o
lymphatic vessels independently of the presence of corneal macrophages. (D) The low-risk corneal transplantation setting (left
whereas the high-risk corneal transplantation setting (right) with pre-existent blood and lymphatic vessels is likely to result in gr
(B–D) result in the accumulation of corneal macrophages.
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lamellae (105, 106). However, in early studies it was shown, that
corneal swelling can occur without vascularization (107).
Currently, it is thought that also the limbus may act as a
physical and physiological barrier to invading vessels in the
immediate vicinity and might also prevent an overgrowth of
the cornea with conjunctival epithelial cells (108–112).
Disturbances of limbal stem cells for example by UV-light may
also deregulate the (lymph)angiogenic privilege of the cornea
(113). However, other studies question the concept of the
limbal barrier to corneal vascularization as the basis of corneal
angiogenic privilege (81, 114).

Besides being a (lymph)angiogenic privileged tissue, it is well
established that the cornea is also an immune-privileged tissue
(115). Anterior chamber-associated immune deviation (ACAID)
is an example for this immune privilege, which partially depends
on an eye-derived, suppressor-inducing macrophage subset that
acts through NK cells (116, 117) and suppresses antigen-specific,
delayed-type hypersensitivity (DTH) (118). It was shown that
corneal immune privilege is co-responsible for the (lymph)
angiogenic privilege of the cornea (119). Interestingly, several
molecules are involved in maintaining both corneal angiogenic
and immune privilege such as the thrombospondins (95, 96).

Due to the here described (lymph)angiogenic privilege,
corneal wound healing after (minor) injury usually takes place
without any neovascularization. However, after severe injury,
e.g. as a result of trauma, infection, and inflammatory or
degenerative disorders, the (lymph) angiogenic privilege of the
cornea might be overwhelmed (“threshold concept”), leading to
the invasion of blood and/or lymphatic vessels into the cornea
(corneal neovascularization).
CORNEAL NEOVASCULARIZATION IN
PATHOLOGY AND DISEASE

Breakdown of Corneal (Lymph) Angiogenic
Privilege
Corneal avascularity is highly important for the maintenance of
corneal transparency, ensuring the basis of good visual acuity.
However, a variety of diseases and surgical manipulations can
lead to the breakdown of the hem- and lymphangiogenic
privilege of the cornea resulting in pathological corneal hem-
and lymphangiogenesis. Diseases that can be associated with
corneal neovascularization include inflammatory disorders,
corneal graft rejection after transplantation, infectious keratitis,
contact lens-related hypoxia, alkali burns, stromal ulceration, or
limbal stem cell deficiency. In these conditions, the balance
between pro-angiogenic and anti-angiogenic factors is
disturbed and leads to an upregulation of pro-angiogenic
factors, and a downregulation of anti-angiogenic factors
followed by neovascularization (120–122). Blood vessels
directly reduce corneal transparency if growing into the optical
zone or due to secondary effects such as hemorrhage and lipid
exudation through immature and leaky capillaries. Unlike blood
vessels, clinically invisible lymphatic vessels do not reduce the
transparency of the cornea. However, they contribute to various
Frontiers in Immunology | www.frontiersin.org 6
inflammatory diseases of the ocular surface, including corneal
transplant rejection, dry eye disease (DED) and ocular allergy (7,
123). In those diseases, the corneal lymphatic vessels facilitate the
migration of APC from the ocular surface to the regional lymph
nodes, which induces undesired immune responses (124–126).
On the other hand, lymphatics may also be involved in draining
excess tissue fluid thus contributing to corneal transparency and
vision (9).

Role of Macrophages in Corneal
Neovascularization
Macrophages play a pivotal role in corneal neovascularization.
Macrophages are able to secrete paracrine factors, such as VEGF-A,
which promotes hem- and lymphangiogenesis by binding on
VEGFR-2 (2), and VEGF-C and VEGF-D, which promote
lymphangiogenesis by binding to VEGFR-3 (127, 128). In
addition, macrophages also express VEGFR-1 and VEGFR-3
which both may mediate chemotactic effects in myeloid cells and
thereby perpetuate an inflammatory hem- and lymphangiogenic
response (“immune amplification”) (2). Notably, so far it is not
reported in the literature whether macrophage-derived VEGF-A
is critical for corneal vascularization, and it is unclear by which
other mediator macrophages precisely might mediate corneal
vascularization. Besides secreting lymphangiogenic and
angiogenic growth factors (2), macrophages also directly
contribute to corneal lymph vessel formation by integrating into
newly formed corneal lymphatic vessels (3). That means
macrophages have a dual important role in mediating corneal
lymphangiogenesis (129). Furthermore, macrophages seem to be
essential also for maintenance of (corneal) lymphatics (130). It was
shown that depletion of macrophages significantly reduces corneal
hem- and lymphangiogenesis (2, 131, 132). Recent studies have
also identified distinct functions of early- versus late-phase
corneal wound macrophages in hem- and lymphangiogenesis:
whereas early-phase wound macrophages are essential for
the initiation and progression of injury-mediated corneal hem-
and lymphangiogenesis, late-phase wound macrophages
control the maintenance of established corneal lymphatic
vessels, but not blood vessels (10, 11). Furthermore, studies
indicate that the type of corneal damage controls the hem-
and lymphangiogenic potential of corneal macrophages:
whereas an acute perforating incision injury induced wound
macrophages with lymphangiogenic, but not hemangiogenic
potential with an increased expression of VEGF-C and D,
suture placement into the corneal stroma provoked wound
macrophages with hem- and lymphangiogenic potential (Figure
1B). Interestingly, in a model of Pseudomonas aeruginosa-
induced bacterial keratitis, corneal hemangiogenesis was induced
in early as well as late stages, whereas lymphangiogenesis
was induced solely in late stages, which was strongly dependent
on corneal macrophages (Figure 1C) (10). Taken together,
the hem- and lymphangiogenic potential of corneal wound
macrophages is determined by the type of the corneal damage
and the phase of corneal injury (11). However, based on
currently available data, it seems not possible to speculate or
conclude whether different macrophage populations or different
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activation phenotypes are separately regulating corneal hem- and/
or lymphangiogenesis.

Another poss ib i l i ty o f macrophages promot ing
hemangiogenesis is VEGF-independent, as macrophages might
act as bridge cells on the tips of sprouting lymphatics guiding the
cells into finding and anastomosing with tip cells from other
sprouting lymphatics (133, 134). However, this pathway has not
been shown for corneal neovascularization so far.

It should be noted that corneal neovascularization might also
occur independent of macrophages. An example is corneal
lymphangiogenesis induced by Herpes simplex virus 1 (HSV-
1) (135). It was shown in this context that lymphangiogenesis
depends on VEGF-A/VEGFR-2 signaling but not on VEGFR-3
ligands. Importantly, macrophages were not the source of
VEGF-A and did not play a role in the induction of the
lymphangiogenic response. Infected epithelial cells were
discovered as the primary source of VEGF-A in this model,
suggesting that HSV-1 directly induces vascularization of the
cornea through up-regulation of epithelial VEGF-A expression
and not via macrophages (Figure 1C).

We have recently demonstrated an important role of
Interleukin-10 (IL-10)-activated macrophages in inflammatory
corneal neovascularization. In particular, we could show
that the multifunctional cytokine IL-10, which acts anti-
inflammatory as well as immune-regulatory, controls the
corneal lymphangiogenesis and the resolution of corneal
inflammation via macrophages (8). In healthy corneas, the
expression of IL-10 was unverifiable, however macrophages
which infiltrated inflamed corneas after corneal injury showed
a strong increase in IL-10 expression. In vitro stimulation of
macrophages with IL-10 led to an anti-inflammatory, but
surprisingly pro-lymphangiogenic phenotype, characterized by
an upregulation of VEGF-C. In IL-10 deficient mice, corneal
injury resulted in both reduced expression of VEGF-C and
reduced corneal lymphangiogenesis. However, the loss of IL-10
had no effect on corneal hemangiogenesis (8). The deletion of the
central mediator of IL-10 signaling, Signal transducer and
activator of transcription 3 (Stat3), specifically in myeloid cells
resulted in reduced corneal lymphangiogenesis and persistent
corneal inflammation in injured corneas, reinforcing the critical
role of IL-10+ macrophages in the regulation of corneal
lymphangiogenesis and inflammation (8). These findings
indicate that IL-10 leads to an anti-inflammatory but pro-
lymphangiogenic VEGF-C secreting macrophage phenotype
during an inflammatory corneal response. These macrophages
can induce the activation and growth of lymphatic vessels,
leading to an egress of inflammatory cells and the termination
of the local inflammatory response (8).

Role of Specific Macrophage Subpopulations in
Corneal Neovascularization
Not much is known about the role of specific macrophage
subpopulations during corneal neovascularization. In a mouse
model with either a knockout of CCR2 or CX3CR1, or a
macrophage depletion model, corneal neovascularization
was induced by alkali injury (136). It was shown in this
Frontiers in Immunology | www.frontiersin.org 7
model that CCR2-deficient mice exhibited reduced corneal
neovascularization with reduced macrophage infiltration,
whereas corneal neovascularization in CX3CR1-deficient mice
was increased with reduced macrophage infiltration. Macrophage
depletion did not affect corneal neovascularization, which is in
contrast to other studies showing that macrophage depletion
inhibits corneal neovascularization (2, 11). It should also be
noted that this study only assessed corneal hemangiogenesis
and did not analyze corneal lymphangiogenesis (136).

Corneal Transplantation and the Role of
Macrophages in Transplant Rejection
Corneal transplantation (keratoplasty) is the most frequently
performed form of transplantation worldwide, with more than
100.000 transplants per year (137). Due to the immunological
privilege of the cornea, keratoplasty usually results in good
transplantation outcomes (138, 139).

This immunological privilege of the cornea actively
suppresses immune responses against the allograft, enabling
the transplantation of HLA-mismatched corneal grafts
without the need of systemic immunosuppression (119, 140).
However, the immunological privilege of the cornea is not
invulnerable. In this regard, it has been shown that e.g. severe
inflammation can overcome the immunosuppressive
mechanisms of the cornea and results in an immunological
scenario similar to solid organ transplantation, where e.g.
HLA-matching and systemic immunosuppression are
necessary to avoid immune-mediated allograft rejection (140–
142). Thus, in eyes with compromised immunological
privilege graft failure caused by immune rejection continues to
be a major barrier to transplantation success. Keratoplasty can
thus be divided into two risk categories dependent on the
immunological status of the host cornea. In the so-called low-
risk setting, the immunological privilege of the cornea is intact
and graft rejection is unlikely. In contrast, in the high-risk
setting, the immunological privilege of the cornea is lost, and
the risk of graft rejection is significantly increased (Figure 1D)
(141, 143). It is now widely accepted that the vascularization
status of the cornea is the most important factor defining the
low- or high-risk status of the host. Avascular hosts are generally
considered as low-risk hosts, whereas vascularized hosts are
generally considered as high-risk hosts. In this regard, it has
been demonstrated that preexistent pathological lymphatic
vessels facilitate trafficking of APCs from the graft site to
regional draining lymphoid tissues where APCs can then
present alloantigens to host T cells. In fact, in the murine
model of corneal transplantation it was clearly shown that
lymphatic and not blood vessels determine the high-risk state
of neovascularized recipient beds (124). Pathological preexistent
blood vessels then facilitate the homing of primed effector T cells
to the graft site where allorejection is mediated (141).

Early research in rat eyes have demonstrated reduced
rejection rates of corneal transplants after depletion of
macrophages, demonstrating the crucial role of macrophages
in corneal transplantation (131, 144). In this study, all
transplants in the control group were rejected within 17 days,
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whereas the transplants in macrophage-depleted eyes were not
rejected during the entire follow-up period over 100 days post
transplantation. Additionally, a reduced vascular response in
clodronate-treated recipient corneas was observed, indicating
that a positive graft outcome might (indirectly) depend on
corneal vessels (145). In a pre-vascularized high-risk
transplantation model, depletion of macrophages did not fully
prevent, but significantly delayed graft rejection (146).
Additionally, corneal neovascularization was significantly
reduced after macrophage depletion in this model (131). It was
also shown that the depletion of macrophages results in a
strongly downregulated local and systemic immune response
after transplantation (144). Additionally, large numbers of
CD11b+, F4/80+ and iNOS+ (inducible nitrous oxide synthase)
macrophages infiltrated corneal allografts during rejection in
mice, indicating that these cells might directly contribute to
corneal graft rejection (147). As the use of clodronate liposomes
to deplete macrophages may also affect APCs like DCs (148,
149), the conclusions regarding the role of macrophages
indicated by these experiments have to be drawn with caution,
because the findings may also be indirectly caused by the
affection of other cell types.

The gold standard to prevent or treat corneal graft rejection is
the application of glucocorticosteroids (150, 151). The treatment
with glucocorticosteroids leads to decreased corneal infiltration of
macrophages and reduced expression of pro-inflammatory
cytokines, such as TNF-a and IL-1b (152). Furthermore,
glucocorticosteroids also significantly reduce progressive corneal
hem- and lymphangiogenesis, which likely contributes to reduced
rejection rates (152). A recent study showed that the topical
application of VEGF-C and VEGF-C prevents the in growth of
lymphatic vessels into the murine cornea after suture-placement in
a high-risk corneal transplantation model (153). Further it was
shown that the topical application of VEGF-C and VEGF-D
increases the number of macrophages, together with a decreased
expression of the anti-inflammatory macrophage marker
Arginase-1, as well as of the immune modulatory cytokine
TGF-b (153). Moreover, it was shown, that corneal crosslinking
with UVA light together with riboflavin leads to a regression of
preexisting blood and lymphatic vessels significantly via induction
of apoptosis in vascular endothelial cells with a reduced number of
macrophages and CD45+ cells (154).

In summary, modulation of corneal macrophages does not
only alter the inflammatory and cellular milieu in transplanted
corneas, but also affects corneal neovascularization (131). Thus,
the beneficial effect of macrophage depletion on graft survival
may be attributable to diminished corneal neovascularization.
The effect of a modulation of macrophage function without
altering the corneal vascular response in the context of
transplantation was not shown yet.

Novel Beneficial Functions of Macrophage-Mediated
Corneal Lymphangiogenesis in the Regulation of
Corneal Edema and Transparency
Outside the eye, e.g. in the skin, it is well-established that
lymphatic vessels regulate tissue pressure, allow fluid drainage
Frontiers in Immunology | www.frontiersin.org 8
and prevent the development of edema (155). However, so far it
remained elusive, whether lymphatic vessels have similar
functions in the cornea and are involved in the regulation of
edema and transparency. Recently, we have therefore
investigated whether an incisional corneal injury that leads to
acute corneal edema and transparency loss is accompanied by
the ingrowth of lymphatic vessels into the cornea and whether
corneal lymphangiogenesis potentially contributes to the healing
response. This type of corneal injury indeed resulted in a
transient ingrowth of lymphatic vessels into the cornea (9).
Importantly, blockade of lymphangiogenesis resulted in
increased corneal thickness, arguably due to delayed drainage
of corneal edema, and a trend towards prolonged corneal
opacification (9). Corneal lymphangiogenesis after this type of
corneal injury was dependent on the presence of macrophages, as
macrophage depletion using clodronate liposomes significantly
reduced corneal lymphangiogenesis (11). This study indicates
that corneal lymphangiogenesis plays an important role in the
regulation of corneal edema and transparency, and is also in line
with the finding that corneal lymphangiogenesis may be
beneficial in bacterial keratitis by improving corneal edema in
later disease stages (10). Whether this holds true also for chronic
forms of (mild) corneal edema needs to be studied. That would
open completely new therapeutic options for common diseases
leading to corneal transplantation.
SIMILARITIES AND DIFFERENCES OF
MACROPHAGE-MEDIATED
NEOVASCULARIZATION IN CORNEA
AND SKIN

Both cornea and skin are protective barrier organs that shield the
body from harmful insults of the environment. The skin consists
of the epidermis, the dermis and the dermal white adipose tissue.
In contrast to the avascular cornea, skin contains in the steady
state an interwoven network of blood and lymphatic vessels, in
which diverse leukocyte subsets such as dermal dendritic cells,
T cells, and macrophages are embedded (156). Studies in PU.1-/-

mice, in which the myeloid cell lineage is severely impaired and
which lack skin resident F4/80+ myeloid cells, revealed that
macrophages are dispensable in developing skin vasculature
(157, 158). However, macrophages critically regulate pericyte
development in the skin and the dermal lymphatic vessel caliber,
as shown in both, macrophage deficient PU.1-/- and Csf1r-/- mice
(158, 159)

Based on their spatial relationship to dermal vessels, skin-
resident macrophages were defined as perivascular (direct
contact with vessel or < 15 µm from vessel) or interstitial
macrophages (> 15 µm from vessel) (156, 160). In human skin
the proportion of perivascular macrophages (PVMs) increases
from the apical towards the deep dermis (156). PVMs
are considered to have maintenance functions in steady state
tissues, such as regulating vascular permeability and scavenging
blood-derived pathogens (160). Under inflammatory conditions
April 2021 | Volume 12 | Article 667830

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Hadrian et al. Macrophage-Mediated Tissue Vascularization
PVMs have been shown to guide neutrophils during
extravasation into infected dermis and to regulate dendritic cell
clustering in perivascular areas (161, 162). Interestingly, a subset
of skin PVMs has been identified, which protrudes across
endothelial junctions into microvessels in order to take up
macromolecules from the blood stream (163).

Comparable to the inflamed cornea, macrophages have a
critical function in regulating neovascularization in skin under
inflammatory conditions. Vascularization upon skin injury and
during the wound healing response is a useful experimental
model to study the molecular basis of neovascularization (164).
Upon skin injury a high number of myeloid cells is recruited
from the blood and forms together with mainly fibroblasts,
myofibroblasts and endothelial cells a highly vascularized
granulation tissue within several days (165). In this model,
angiogenesis is at the core of an efficient repair response and
critical for timely wound closure. With time, inflammation
declines, and the granulation tissue matures into scar tissue,
characterized by regression of blood and lymph vessels (29, 166).
By using mouse models of diphtheria toxin-inducible cell
depletion, several groups provided evidence that angiogenesis
in the developing granulation tissue requires myeloid cells (167–
169). Similar to the cornea, early-phase wound macrophages in
skin wounds were shown to be essential for the initiation of
wound vascularization (11, 167). Specifically, myeloid cell–
derived VEGF−A was shown to be critical for the induction of
wound angiogenesis and tissue growth during the early phase of
skin repair (29). While the role of specific macrophage
populations in corneal neovascularization is not entirely
resolved, blood-derived inflammatory CCR2+Ly6Chigh

monocytes/macrophages were identified as the critical source
of VEGF−A in skin wounds (29).

The Role of HIF During Macrophage-
Mediated Vascularization in Skin
and Cornea
A major transcription factor, which is stabilized during
physiological skin wound healing and which is required for the
induction of Vegfa, is Hypoxia-Inducible Factor 1 a (HIF-1a)
(170, 171). Stabilization of HIF-1a is impaired in a diabetic
environment and in aged mice, conditions with a typically
impaired wound healing response. Interestingly, angiogenesis
and wound closure are improved in diabetic mice when HIF-1a
is stabilized (170–174). Up to date, in classic repair models in the
cornea (e.g. corneal incision injury, suture-induced corneal
neovascularization) a functional impact of HIF-1a stabilization
on neovascularization and repair has not been described. Of
note, in a mouse model of corneal HSV−1 infection, hypoxia in
the cornea and subsequent stabilization of HIF-1a in immune
cells has been shown (175). However, whether HIF-1a is
activated specifically in macrophages and whether this has a
functional impact in this infection model, remains open. Chen
et al. could show an inhibition of VEGF expression and corneal
neovascularization by shRNA targeting HIF-1a in a mouse
model of closed eye contact lens wear (176). In skin, wound
healing studies using mouse models with cell type-specific Hif1a
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gene deletion revealed that endothelial cell-, fibroblast-, and
epidermis-specific HIF-1a are critical for Vegfa expression,
angiogenesis, and timely wound closure (177–179). However,
direct evidence that myeloid cell-derived Vegfa expression
depends on HIF-1a activation in early phase wound
macrophages is lacking. Yet, the critical role of HIF-1a in
regulating Vegfa expression in macrophages and the
inflammatory phenotype of skin macrophages is well
documented (180), proposing that HIF-1a might regulate
Vegfa expression in early phase wound macrophages. Both,
hypoxia and inflammatory stimuli such as TNF-a, IL-1b, and
bacterial products have been shown to stabilize HIF-1a in a NF-
kB (nuclear factor kappa-light-chain-enhancer of activated B
cells)-dependent manner (181, 182). Interestingly, by day 1 after
injury the wound tissue was shown to be normoxic, while
macrophages already expressed Vegfa (183), indicating that in
the very early phase of healing other signals than hypoxia might
induce an angiogenic phenotype in macrophages. Recently,
mitochondrial metabolism has been identified as critical
regulator of HIF-1a activation in macrophages in vitro. Under
inflammatory conditions, macrophages repurpose their
mitochondria from ATP production towards production of
mitochondrial reactive oxygen species (mtROS), which stabilize
HIF-1a independently of hypoxia (184). In future studies it will
be interesting to understand whether mtROS operate in wound
macrophages to mediate the wound angiogenic response.

Macrophage-Mediated
Lymphangiogenesis in the Skin
As revealed by imaging of lymphatic vessels in Vegfr3 reporter
mice (Vegfr3EGFPLuc), lymphangiogenesis is a transient process
during skin wound healing, peaking in the mid-phase
of healing and returning back to basal levels after re-
epithelialization is completed (166). In experimental mouse
models of skin wound healing and contact hypersensitivity,
treatment with the synthetic glucocorticoid dexamethasone
blocks lymphangiogenesis, showing that lymphangiogenesis is
tightly connected with the inflammatory response in the skin
(166). A similar finding was reported in corneal repair; after
suture placement in the cornea corticosteroids were identified as
strong inhibitors of corneal lymphangiogenesis (152).
Furthermore, by phase-specific macrophage depletion our
group has shown that in the injured cornea early-phase
macrophages are essential for initiation of lymphangiogenesis
(11). Yet, the assessment of lymphangiogenesis in skin wounds
upon diphtheria toxin-mediated macrophage ablation is lacking
(11, 167–169). However, similar to the inflamed cornea,
independent groups identified F4/80+/LYVE-1+ lymphatic
structures in early granulation tissue after excisional punch
injury, indicating that macrophages contribute to lymphatic
vessels during physiological skin repair (185, 186). The crucial
function of macrophages in regulating lymphangiogenesis in
skin wounds was further demonstrated by treating wounds
of diabetic mice with IL-1b-activated macrophages, which
resulted in the formation of granulation tissue and of new
F4/80+/LYVE-1+ lymphatic vessel structures (186). Further,
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macrophages are well-known sources of lymphangiogenic
paracrine factors. The critical impact of macrophage-derived
VEGF-A, VEGF-C, and VEGF-D on lymphangiogenesis was
shown by Kataru et al. in an ear skin inflammation model
(187). Following the intradermal injection of Toll-like receptor
(TLR) ligands, depletion of macrophages by clodronate or
blockade of VEGF−A or VEGF−C/D resulted in significantly
attenuated lymphangiogenesis in the inflamed skin and impaired
inflammation resolution (187). Expression of Vegfc in skin
macrophages has been shown to be controlled by the
transcription factor tonicity-responsive enhancer-binding
protein (TonEBP, also known as NFAT5) (188). In this study,
deletion of Nfat5 specifically in myeloid cells prevented
high salt diet-induced Vegfc expression and subsequently
lymphangiogenesis in the skin (188). Interestingly, in a mouse
model of bacterial skin infection it was found that salt
accumulated at the site of the skin lesion drives inflammatory
macrophage activation via TonEBP to facilitate pathogen
removal (189). Whether myeloid cell-specific TonEBP has a
function during skin and corneal repair is unknown. It will be
interesting to study in the future the interrelationship between
salt concentrations, TonEBP activation, lymphangiogenesis, and
macrophage activation in both tissues.
CONCLUSIONS AND PERSPECTIVES

Macrophages originating either from HSCs or the yolk sack, can
act inflammatory as well as anti-inflammatory, characterized by
their surface marker expression. In the eye, several studies have
demonstrated, that resident tissue macrophages as well as APCs
are present in most tissues of the eye, including the corneal
limbus. Although, the cornea is an immune-privileged tissue,
macrophages are also present in the cornea, preferable in the
periphery of the corneal stroma. However, macrophages are also
found occasionally in the central cornea, with a possible origin in
the bone marrow as well as in the yolk sac. Nonetheless, the
normal central cornea is devoid of MHC II+ cells.

The healthy cornea is one of the rare avascular tissues of the
organism, following the “corneal (lymph)angiogenic privilege”,
which is actively maintained by the balanced expression of pro-
and anti-angiogenic factors. Is this equilibrium somehow
disturbed (e.g. in infectious keratitis, stromal ulceration, or
limbal stem cell deficiency), the imbalance of these factors
leads to a pathological vascularization of the cornea, often
mediated by macrophages that secrete paracrine factors,
such as VEGF-A promoting hem- and lymphangiogenesis,
and VEGF-C and VEGF-D spec ifica l ly promot ing
lymphangiogenesis. Additionally, the expression of VEGFR-1
and VEGFR-3 mediates chemotactic effects and perpetuates an
inflammatory hem- and lymphangiogenic response. However,
not much is known about the role of specific macrophage
subpopulations during corneal neovascularization and the
available data is still ambiguous. Recently, factors like IL-10
found their way into corneal neovascularization research
by acting anti-inflammatory as well as immune-regulatory
Frontiers in Immunology | www.frontiersin.org 10
and by controlling corneal lymphangiogenesis and the
resolution of corneal inflammation via macrophages. In
corneal transplantation, graft survival can be increased by
depleting corneal macrophages, which may also be attributable
to diminished corneal neovascularization.

Outside the eye, e.g. in the skin, it is well-established that
lymphatic vessels regulate tissue pressure, allow fluid drainage
and prevent the development of edema. Not much is known
about a similar concept in the cornea, but we recently
demonstrated increased corneal thickness after blockade of
lymphangiogenesis in an acute corneal wound model. If this
might also be true for chronic forms of (milder) corneal edema, it
would open new therapeutic options for common edematous
corneal diseases necessitating corneal transplantation.

In contrast to the avascular cornea, the skin contains in the
steady state an interwoven network of blood and lymphatic vessels
containing various types of immune cells, including macrophages.
Under inflammatory conditions, macrophages have a comparable,
critical function in regulating neovascularization in skin and
cornea. Similar to the cornea, early-phase wound macrophages
in skin wounds were shown to be essential for the initiation of
wound vascularization. In contrast to the role of specific
macrophage populations in corneal neovascularization, it was
shown, that blood-derived inflammatory CCR2+Ly6Chigh

monocytes/macrophages act as the critical source of VEGF−A in
skin wounds. In contrast to corneal wound healing, in skin HIF-
1a is an important transcription factor which is required for the
induction of Vegfa. However, it should be mentioned, that
stabilization of HIF-1a in immune cells has been shown in a
mouse model of corneal HSV−1 infection. The use of
glucocorticoids blocks lymphangiogenesis, which is similar in
the skin and the cornea. Phase-specific macrophage depletion
studies have shown that in the injured cornea early-phase
macrophages are essential for initiation of lymphangiogenesis.
By now, this information for skin is lacking, whereas it is known,
that macrophages play a crucial role in lymphangiogenesis
during skin repair by the expression of VEGF-C. One
transcription factor acting as an inducer for VEGF-C in
macrophages is TonEBP. However, whether TonEBP plays also
a crucial role during lymphangiogenesis during corneal wound
repair is still unknown.
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