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Obesity is the largest risk factor for the development of chronic diseases in industrialized
countries. Excessive fat accumulation triggers a state of chronic low-grade inflammation
to the detriment of numerous organs. To address this problem, our lab has been
examining the anti-inflammatory mechanisms of two human milk oligosaccharides
(HMOs), lacto-N-fucopentaose III (LNFPIII) and lacto-N-neotetraose (LNnT). LNFPIII and
LNnT are HMOs that differ in structure via presence/absence of an a1,3-linked fucose. We
utilize LNFPIII and LNnT in conjugate form, where 10-12 molecules of LNFPIII or LNnT are
conjugated to a 40 kDa dextran carrier (P3DEX/NTDEX). Previous studies from our lab
have shown that LNFPIII conjugates are anti-inflammatory, act on multiple cell types, and
are therapeutic in a wide range of murine inflammatory disease models. The a1,3-linked
fucose residue on LNFPIII makes it difficult and more expensive to synthesize. Therefore,
we asked if LNnT conjugates induced similar therapeutic effects to LNFPIII. Herein, we
compare the therapeutic effects of P3DEX and NTDEX in a model of diet-induced obesity
(DIO). Male C57BL/6 mice were placed on a high-fat diet for six weeks and then injected
twice per week for eight weeks with 25µg of 40 kDa dextran (DEX; vehicle control),
P3DEX, or NTDEX. We found that treatment with P3DEX, but not NTDEX, led to
reductions in body weight, adipose tissue (AT) weights, and fasting blood glucose
levels. Mice treated with P3DEX also demonstrated improvements in glucose
homeostasis and insulin tolerance. Treatment with P3DEX or NTDEX also induced
different profiles of serum chemokines, cytokines, adipokines, and incretin hormones,
with P3DEX notably reducing circulating levels of leptin and resistin. P3DEX also reduced
WAT inflammation and hepatic lipid accumulation, whereas NTDEX seemed to worsen
these parameters. These results suggest that the small structural difference between
P3DEX and NTDEX has significant effects on the conjugates’ therapeutic abilities. Future
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work will focus on identifying the receptors for these conjugates and delineating the
mechanisms by which P3DEX and NTDEX exert their effects.
Keywords: glycoconjugates, human milk oligosaccharides (HMOs), lacto-N-fucopentaose III (LNFPIII), lacto-N-
neotetraose (LNnT), Lewisx antigen, metabolic syndrome, obesity
INTRODUCTION

Obesity and related metabolic syndrome (MS) pose major medical
risks to those afflicted, often worsening outcomes to infectious
diseases (i.e., COVID-19) or leading to type 2 diabetes mellitus
(T2DM), cardiovascular disease, fatty liver disease, stroke, and
cancer. As of 2017-2018, the age-adjusted prevalence of obesity was
estimated to be 42.4%. This is an 11.9% increase from 1999-2000,
suggesting that the epidemic of being obese is worsening as time
progresses (1). Obesity is defined as having a body-mass index
(BMI) ≥ 30 kg/m2, but this measure is insufficient when used as a
sole indicator for classification (2). MS is defined as having at least
three of the following criteria: waist circumference >102cm for
males; >88cm for women, elevated blood glucose levels >100mg/
dL, decreased HDL cholesterol <50mg/dL for males; <40mg/dL for
females, elevated triglycerides >150mg/dL, or elevated blood
pressure >130/85 (3). The International Diabetes Foundation
(IDF) has also suggested inclusion of additional criteria, such as
elevated circulating levels of CRP, TNFa, IL-6 (4, 5). Once an
individual is diagnosed with MS, his/her risk of serious disease
is heightened.

Metabolic inflammation is a sustained, low-grade immune
response that occurs as consequence of excess nutrient
consumption and has been identified as the nexus between the
obese state and serious complications. Within adipose tissue
(AT) depots, adipocytes (fat cells) expand in number
(hyperplasia) and size (hypertrophy) to store lipids and
prevent lipotoxic build-up in peripheral organs (i.e. liver,
pancreas, skeletal muscle, etc.) (6–11). This protective effect
subsides, however, once adipocytes encounter mechanical
stress and hypoxic conditions as a result of overexpansion (12–
14). This leads to an increase in detrimental adipokines,
chemokines, and cytokines, a decrease in anti-inflammatory or
insulin-sensitizing factors, immune cell infiltration, and insulin
resistance (IR) (15–20). In this regard, targeting altered signaling
or cellular composition of obese AT might have therapeutic
potential for those with MS.

We have been examining the mechanisms and biological effects
of two human milk oligosaccharides (HMOs), lacto-N-
fucopentaose III (LNFPIII) and lacto-N-neotetraose (LNnT).
HMOs are the third most abundant component of human milk
and provide numerous protective benefits to the breastfeeding
infant (i.e. providing nutrients, training the immune system,
preventing infection, establishing the microbiome, etc.) (21, 22).
LNFPIII and LNnT differ in structure via the presence/absence of an
a1,3-linked fucose residue. Due to the a1,3-linked fucose residue,
LNFPIII is difficult to produce via chemical or enzymatic methods.
LNnT has been synthesized by various laboratories and is present at
higher concentrations (0.74 g/L vs. 0.33 g/L) in human milk (23–
26). Glycom A/S has registered LNnT for use in infant formula in
org 2
Europe (Novel Food Application 157) and the United States (GRAS
Notice 659) (6). Pre-clinical assessment has been conducted on a
chemically synthesized version of LNnT and there were no adverse
effects at doses of up to 5000mg/kg/day in rats (26). Oral
supplementation with LNnT has also been shown to be well-
tolerated in humans (27).

LNnT is easier to synthesize and has been shown to be well-
tolerated in humans, therefore we asked if the small structural
difference between LNFPIII and LNnT impacts the conjugates’
therapeutic effect in DIOmice. LNFPIII conjugates (P3DEX) and
LNnT conjugates (NTDEX) are composed of 10-12 molecules of
LNFPIII or LNnT attached to a 40 kDa dextran carrier via an
acetylphenylenediamine (APD) linker. Previous studies have
shown that therapeutic intervention with LNFPIII-Dex (25µg/
dose) in diet-induced obese (DIO) mice twice per week for four
weeks led to improved metabolic homeostasis and increased
concentrations of circulating IL-10. Of note, P3DEX treatment
improved glucose and insulin tolerance, as well as enhanced
insulin signaling in WAT. This was shown via increased
expression of insulin receptor b (insrb), insulin receptor
substrate 2 (irs2), CCAAT/enhancer-binding protein a (cebpa),
and glucose transporter 4 (glut4). P3DEX treatment also
decreased macrophage infiltration and crown-like structures in
WAT. This coincided with decreased expression of tumor-
necrosis factor a (tnfa), caspase-1 (casp1), NLR family pyrin
domain containing 3 (nlrp3), interleukin-18 (il18), and
interleukin-1b (il1b). In addition to restoring metabolic
homeostasis and ameliorating insulin resistance, LNFPIII-Dex
treatment also decreased lipogenic genes (fas, acc1/2, scd1, and
srebp1c) and fat accumulation in the liver (28).

We report here that treatment with P3DEX, but not NTDEX,
decreases total weight gain, reduces AT, improves glucose
tolerance, and ameliorates insulin resistance. P3DEX and
NTDEX exert wide-ranging effects on circulating chemokines,
cytokines, adipokines, and incretin hormones when compared to
DIO control mice treated with the 40 kDa dextran (DEX) carrier.
Most striking, P3DEX, but not NTDEX, reduces WAT
inflammation and hepatic lipid accumulation. This suggests
that the slight structural difference between P3DEX and
NTDEX alters the conjugates therapeutic abilities and
exemplifies the differential roles that individual HMOs might
execute in vivo.
MATERIALS AND METHODS

Preparation of HMO Conjugates
LNFPIII was synthesized by Dr. Peng George Wang (Georgia
State University, Atlanta, GA) (23, 29). LNnT was synthesized by
May 2021 | Volume 12 | Article 668217
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Neose Technologies, Inc. LNFPIII (MW: 853.877 g/mol) and
LNnT (MW: 707.60 g/mol) were sent to Dr. Thomas Norberg
(Uppsala University, Uppsala, Sweden) for conjugation to
aminodextran (DEX, 40 kDa average Mw, from Invitrogen,
prod # D1861) using APD linker-spacers. On average,
conjugates had 10-12 LNFPIII or LNnT monomers per 40 kDa
dextran carrier. LNFPIII accounts for ~17-20% of the molecular
weight of the P3DEX conjugate. LNnT accounts for ~15-17% of
the molecular weight of the NTDEX conjugate.

Animal Experiments
6 to 8-week old male C57BL/6 mice were purchased from The
Jackson Laboratory and maintained on a 12h light/dark cycle in
the University of Georgia’s AALAC-accredited College of
Veterinary Medicine Animal Resources Facility with food and
water available ad libitum. After one week of acclimation, mice
were housed n=3/cage and placed on a high-fat diet (HFD: Bio-
Serv Cat. No. F3282) as described in Bhargava et al. (28). Given
that the HFD is subject to spoilage, food was replenished 3 times
per week. After 6 weeks of HFD, mice were divided into 3 cohorts
and injected twice per week for 8 weeks via the intraperitoneal
route with 25µg of 40 kDa dextran (DEX), LNFPIII conjugated to
40 kDa dextran (P3DEX), or LNnT conjugated to 40 kDa
dextran (NTDEX). An experimental timeline is shown in
Figure 1A. DEX, P3DEX, and NTDEX were dissolved in 0.9%
NaCl prior to injection in a volume of 200µL. Experiments were
performed in two independent mouse cohorts (n=6-8/group).
Metabolic studies (GTT/ITT) were performed after 4 weeks of
treatment with a 2-week rest period between in vivo assays. We
performed a glucose tolerance test (GTT) at W10 of the
experiment and an insulin tolerance test (ITT) at W12
(described below). Body weights were measured once/week and
fasting blood glucose levels were measured prior to start of HFD
(W0), pre-treatment (W6), and post-treatment (W14). Mice
were euthanized at the end of W14 via CO2 asphyxiation
followed by cervical dislocation after a 6h fast. Organs and
serum samples were collected and stored at -80°C until use.

Measurement of Body and Organ Weights
Mice were placed in a clean plastic container on a tared compact
scale (Ohaus, Cat. No. CS200) to acquire body weight
measurements (in grams). Body weights were recorded each
week on Monday afternoon to minimize daily fluctuations. Body
weights were recorded to the nearest hundredth. At sacrifice,
organs (i.e. heart, spleen, liver, kidney, AT) were placed on clean
Fisherbrand™ Polystyrene Antistatic Weighing Dishes (Fisher
Scientific, Cat. No. 08-732-112) on a tared analytical scale
(Sartorius, Cat. No. TE313S) for measurement. Organ weights
were recorded to the nearest thousandth.

Glucose Tolerance Test (GTT)
A glucose tolerance test (GTT) were performed after 4 weeks of
treatment (W10), according to Beguinot & Nigro with some
modifications (24). Mice were fasted for 6h to obtain baseline
blood measurements. Various fasting periods have been utilized
in published studies involving GTTs and ITTs, but 6h fasts
appear to be more physiological than longer 14-16h fasts.
Frontiers in Immunology | www.frontiersin.org 3
Previous studies have shown that prolonged fasting in mice
results in increased insulin sensitivity, whereas fasting in humans
leads to inhibition of insulin-stimulated glucose uptake (25, 26).
Moreover, prolonged fasting in mice may lead to a state of
starvation (30). To ensure translatable results, we utilized a 6h
fasting period in our experiments. During GTTs, blood was
acquired via tail snip and measured using a Bayer Contour®

Next blood glucose monitoring system (Bayer, Parsippany, NJ).
Basal glucose measurements were taken before mice were
administered 2g glucose/kg (Sigma, Cat. No. G8270) in 10µL/g
body weight via oral gavage. Thereafter, blood glucose
measurements were taken at 15, 30, 60, 90, 120, 150, and 180-
minute timepoints.

Insulin Tolerance Test (ITT)
An insulin tolerance test (ITT) was performed after 6 weeks of
treatment (W12) to allow for a 2-week rest period between
metabolic tests. The ITT was also performed according to
Beguinot & Nigro with the aforementioned fasting modification
(24). During the ITT, mice were fasted for 6h prior to baseline
blood glucose measurements and intraperitoneal injection of
0.5IU/kg insulin (Humulin® R U-100, Lilly, Cat. No. HI-210)
diluted in 0.9% NaCl in an injection volume of 3.6µL/g body
weight. Thereafter, blood glucose measurements were taken at 15,
30, 60, and 90-minute timepoints. If blood glucose levels dropped
below 36mg/dL, mice were rescued via injection of 20% aqueous
glucose solution (Sigma, Cat. No. G8270).

Serum Evaluation of Adipokines,
Chemokines, and Cytokines
The Bio-Plex Pro Mouse Cytokine 23-Plex Assay (Bio-Rad, Cat.
No. M60009RDPD) and the Bio-Plex Pro Mouse Diabetes 8-Plex
Assay (Bio-Rad, Cat. No. 171F7001M) were performed in multi-
plex, according to Bio-Rad’s Technical Note 5975. These two
panels can be performed via multiplex without altering assay
sensitivity, specificity, and accuracy. Serum samples collected at
sacrifice after a 6h fast and frozen at -80°C were prepared
according to manufacturer ’s instructions. Adipokines,
chemokines, and cytokines were detected and quantified using
the Bio-Rad Bio-Plex® 200 System, available at UGA’s
Cytometry Shared Resource Laboratory.

Histopathology
WAT and liver samples were preserved in 10% formalin and
processed, sectioned, and stained with hematoxylin & eosin
(H&E) by the Comparative Pathology Lab in the College of
Veterinary Medicine at the University of Georgia. Dr. Tamas
Nagy, a board-certified pathologist, then assessed inflammation
with WAT sections and lipid accumulation in the liver.

Measurement of ALT and AST
Liver function was assessed via measurement of alanine
aminotransferase (AST) and aspartate aminotransferase (ALT).
ALT was measured in serum using the Alanine Aminotransferase
(ALT or SGPT) Activity Colorimeteric/Fluorometric Assay Kit
(Biovision, Cat. No. K752), according to manufacturer’s
instructions. AST was measured in serum using the Aspartate
May 2021 | Volume 12 | Article 668217
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Aminotransferase (AST or SGOT) Activity Colorimetric Assay
Kit (Biovision, Cat. No K753), according to manufacturer’s
instructions. Absorbance was measured using the SPECTROstar
Nano Microplate Reader (BMG Labtech).

Statistical Analysis
Statistics were performed using One-Way or Two-Way ANOVA
with Dunnett’s Multiple Comparisons Tests in GraphPad
Prism 8. * or ** was used to indicate significance (*p<0.05 or
**p<0.01). ^ was used to indicate a trend (^p<0.10). Values are
presented as mean ± SEM. Experiments were repeated twice for a
total n=12-14 per treatment group.
RESULTS

LNFPIII Conjugates Reduce Total Body
and Organ Weights
Male C57BL/6 mice were placed on HFD for 6 weeks (W0-6)
prior to beginning treatment twice per week with 25ug DEX,
P3DEX, or NTDEX (W7-14) via the intraperitoneal route. Body
weight was monitored weekly throughout the duration of the
experiment (W0-W14). An experimental timeline is shown in
Figure 1A. Mice treated with P3DEX weighed less overall than
mice treated with the DEX carrier control or NTDEX (Figure
1B). Compared to DEX, P3DEX treatment reduced total body
weight. This reduction trended towards significance (Two-Way
ANOVA with Dunnett’s Multiple Comparisons Test; ^<0.10) at
W9, 12, and 13. While it appears that the DIO mice treated with
P3DEX begin to show lessened body weight and reduced total
weight gain at W5 and W6 of the experiment, the difference is
neither trending, nor significant at these timepoints. In Figure
1B, statistical analysis performed at W5 between DEX and
P3DEX resulted in a non-trending or non-significant p-value
of 0.5482 (One-Way ANOVA with Dunnett’s Multiple
Comparisons Test, *p<0.05, ^p<0.10). At W6, the p-value for
the statistical test performed between DEX and P3DEX was equal
to 0.2719 (One-Way ANOVA with Dunnett’s Multiple
Comparisons Test, ^p<0.10, *p<0.05). Treatment with NTDEX
did not cause a significant reduction in total body weight at any
point of measurement. Furthermore, there was no significant
difference in total body weight between the 3 groups prior to
treatment. When normalizing the body weights and examining
total weight gain over time, it is clear that P3DEX treatment led
to a reduction in total weight gain when compared to DEX-
treated animals (Figure 1B). This trended toward significance at
W8, 9, 10, 11, and 12 (Two-Way ANOVA with Dunnett’s
Multiple Comparisons Test; *<0.05, ^p<0.10), and became
significant at W13 (Two-Way ANOVA with Dunnett’s
Multiple Comparisons Test; *p<0.05, ^p<0.10). When we
normalized the body weight in Figure 1C, the difference
between DEX and P3DEX remained non-trending and non-
significant at W5 and W6, with a p-value of 0.4307 and 0.1891,
respectively (One-Way ANOVA with Dunnett’s Multiple
Comparisons Test, *p<0.05, p<0.10). For these reasons, we are
confident that the trending and significant differences we observe
Frontiers in Immunology | www.frontiersin.org 4
at later timepoints are divergent and a result of P3DEX
intervention. Again, treatment with NTDEX did not cause a
significant reduction in total weight gain at any point of
measurement and nearly mirrors the DEX control.

At sacrifice (W14), we collected and weighed subcutaneous
(scWAT), visceral (VAT), and brown (BAT) adipose tissue, as
well as livers, hearts, spleens, and kidneys. Figure 1D
demonstrates that we saw a trend towards reduction of scWAT
in P3DEX-treated mice compared to those treated with DEX
(One-Way ANOVA with Dunnett’s Multiple Comparisons Test;
*p<0.05, ^p<0.10). We saw no effect of NTDEX on scWAT
compared to DEX. In terms of vWAT, we noted a significant
reduction in P3DEX-treated mice compared to those treated
with DEX (Figure 1E). We observed no differences in BAT
between groups, but this is a smaller AT depot (Figure 1F). We
did not observe a significant difference in liver, heart, spleen, or
kidney weights (Figures 1G–J).

LNFPIII Conjugates Improve Glucose
Tolerance and Reduce Insulin Resistance
We measured 6h-fasting blood glucose levels prior to HFD (W0),
prior to treatment (W6), and prior to sacrifice (W14). Prior to HFD
(W0), the average fasting blood glucose for all male mice was
within normal range (88.5-154.9 mg/dL) (31). This was elevated
prior to treatment (W6), demonstrating that the HFD induced
metabolic dysfunction. Prior to sacrifice and post-treatment, mice
treated with P3DEX had significantly lower fasting blood glucose
levels (Figure 2A) than those treated with DEX. NTDEX
treatment did not result in reductions in fasting blood glucose
levels compared to those treated with DEX. When administered an
oral gavage of 2g glucose/kg body weight during a GTT, mice
treated with P3DEX exhibited a less dramatic increase in blood
glucose levels at the 15-minute timepoint compared to those
treated with DEX or NTDEX. P3DEX-treated animals were able
to return to basal blood glucose levels more quickly than DEX- or
NTDEX-treated mice. Mice treated with P3DEX had significantly
lower blood glucose levels throughout the duration of the GTT and
this was significant at 30, 60, 90, 120, 150, and 180 minutes (Figure
2B). When given an intraperitoneal injection of 0.5IU/kg body
weight insulin, mice treated with P3DEX exhibited a greater
decrease in blood glucose levels overall compared to those
treated with DEX or NTDEX. Mice treated with P3DEX had
significantly lower blood glucose levels throughout the duration
of the ITT and this trended towards significance at 15 minutes
(Figure 2C). Blood glucose levels of P3DEX-treated mice was
significantly lower than DEX-treated mice at the 30-minute
timepoint (Figure 2C). Thereafter, blood glucose levels between
groups appeared to stabilize. This shows that DIO mice treated
with DEX or NTDEX were less responsive than mice treated with
P3DEX when injected with a bolus of insulin, suggesting the
presence of IR in the DEX and NTDEX groups.

LNFPIII and LNnT Conjugates Alter
Hematopoietic Signals
Individuals diagnosed with MS are at higher risk of infection and
illness, suggesting that the constant presence of low-grade
May 2021 | Volume 12 | Article 668217
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inflammation exhausts and dampens the immune response to other
pathogens or insults (32, 33). In order to maintain function,
progenitor cells depend on nutrients and hematopoietic signals to
proliferate and differentiate into diverse white blood cells (WBC)
populations (34, 35). IL-3, for example, promotes proliferation of
hematopoietic cells (34, 36). G-CSF and GM-CSF are then
responsible for differentiation of cells into specific lineages (i.e.
granulocytes and monocytes) and subsequent activation (34, 37).
High levels of IL-3, G-CSF, or GM-CSF can lead to increased
populations of WBCs, which can exacerbate inflammation and
damage normal tissues. High WBC counts have been associated
with parameters related to inflammation and well-documented in
obese subjects (38–43).

We measured IL-3, C-CSF, and GM-CSF in serum samples
collected from fasting DIO mice treated with DEX, P3DEX, or
NTDEX. Serum from DIO mice treated with P3DEX or NTDEX
trended towards decreased IL-3 levels compared to the DEX
control (Figure 3A). G-CSF and GM-CSF were also slightly
reduced, with the reduction in G-CSF becoming significant
following NTDEX treatment (Figure 3A). These results suggest
that both P3DEX and NTDEX have potential to dampen the
excessive immune response associated with the obese state.

LNFPIII and LNnT Conjugates Alter
Chemoattractant Signals
WBCs depend on chemoattractant signals for migration to
injured sites. In the obese state, expansion of WAT enhances
Frontiers in Immunology | www.frontiersin.org 5
chemokine release and attracts WBCs to AT depots (44). This
worsens metabolic inflammation and associated comorbidities.

We measured eotaxin/CCL11, KC/CXCL1, MCP-1/CCL2,
MIP-1a/CCL3, MIP-1b/CCL4, and RANTES in serum samples
collected from fasting DIO mice treated with DEX, P3DEX, or
NTDEX. We saw no differences in circulating levels of eotaxin/
CCL11, a chemokine known to attract eosinophils (Figure 3B).
While circulating eotaxin/CCL11 is known to increase in the
obese state, neither P3DEX, nor NTDEX altered these levels (45,
46). This makes sense as we have no evidence that either
conjugate alters eosinophil function. KC/CXCL1 is a
neutrophil chemoattractant that increases in patients with
T2DM, as well as in diabetic-prone db/db mice with evidence
of impact on pancreatic islet function (47–49). P3DEX treatment
resulted in a significant decrease in serum KC/CXCL1 compared
to the DEX control (Figure 3B). NTDEX treatment did not
reduce serum KC/CXCL1, suggesting mechanistic differences
between NTDEX and P3DEX conjugates. It is well-reported
in the literature that P3DEX and NTDEX act on macrophages
(50–54). MCP-1/CCL2 is instrumental for macrophage
recruitment to AT depots and circulating concentrations are
increased in the obese state (55). Furthermore, mice deficient
in MCP-1 signaling exhibit lessened macrophage infiltration and
inflammation in AT depots (56, 57). P3DEX treatment resulted
in a significant decrease in serum MCP-1/CCL2 compared to
the DEX control (Figure 3B). Although NTDEX also appeared
to decrease circulating MCP-1/CCL2 levels, this decrease was
A

B C

FIGURE 1 | LNFPIII conjugates reduce total body and organ weights. (A) Experimental design. Male C57BL/6 mice were placed on HFD for 6 weeks prior to
intervention twice per week with 25mg DEX, P3DEX, or NTDEX. (B, C) P3DEX reduces total body weight and weight gain. Two-way ANOVA with Dunnett’s Multiple
Comparisons Test. (D–F) P3DEX reduces scWAT and WAT, but not BAT. (G–J) P3DEX and NTDEX have no effect on liver, heart, spleen, and kidney weights. One-
way ANOVA with Dunnett’s Multiple Comparisons Test. *indicates a significant difference between DEX and P3DEX (p ≤ 0.05). ^indicates a trend between DEX and
P3DEX (p ≤ 0.10).
May 2021 | Volume 12 | Article 668217
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not significant (Figure 3B). Neither P3DEX, nor NTDEX
had an effect on MIP-1a/CCL3 or MIP-1b/CCL4 (Figure 3B).
MIP-1a and MIP-1b are also elevated in genetic (ob/ob, db/db)
and DIO mice, as well as obese humans (19, 58, 59). While
MIP-1a and MIP-1b both increase in the obese state, there is
evidence that they do not alter macrophage infiltration in AT.
RANTES is responsible for T cell recruitment and is also
increased in the obese state (58, 59). We noted a significant
reduction in serum RANTES following P3DEX treatment
(Figure 3B). NTDEX also appeared to reduce serum
Frontiers in Immunology | www.frontiersin.org 6
concentration of RANTES, but this was not significant (Figure
3B). Overall, these results demonstrate that P3DEX is more
effective at decreasing circulating chemoattractant signals
than NTDEX.

LNFPIII and LNnT Alter Cytokines Involved
in Innate and Adaptive Immunity
Given their pleiotropic nature, cytokines are difficult to
characterize in the context of DIO. We measured numerous
innate and adaptive cytokines in serum samples collected from
A B

FIGURE 3 | LNFPIII and LNnT conjugates alter hematopoietic and chemoattractant signals. Measurements of (A) hematopoietic and (B) chemoattractant cytokines
are shown here in response to DEX, P3DEX, or NTDEX treatment. One-way ANOVA with Dunnett’s Multiple Comparisons Test. *indicates a significant difference (p ≤

0.05). ^indicates a trend (p ≤ 0.10).
A B

C

FIGURE 2 | LNFPIII conjugates improve glucose homeostasis and reduce insulin resistance. (A) P3DEX reduces fasting blood glucose levels. (B) P3DEX improves
glucose tolerance. (C) P3DEX improves insulin sensitivity. Two-way ANOVA with Dunnett’s Multiple Comparisons Test. *indicates a significant difference between
DEX and P3DEX (p ≤ 0.05). ^indicates a trend between DEX and P3DEX (p ≤ 0.10). (**p ≤ 0.01).
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fasting DIO mice treated with DEX, P3DEX, or NTDEX. Once
macrophages are recruited to AT depots, IFNg secretion helps
these cells maintain classical (M1) activation (60). Neither P3DEX,
nor NTDEX, had a significant effect on circulating concentrations
of IFNg (Figure 4). P3DEX treatment led to a slight,
nonsignificant, reduction in IL-1a (Figure 4). IL-1b was
unaffected by P3DEX or NTDEX treatment (Figure 4). Both IL-
1a and IL-1b are elevated in obese individuals with reductions
documented following weight loss (61–63). IL-2, involved in T cell
proliferation and activation, was lowered, but nonsignificant, in
response to P3DEX and NTDEX (Figure 4). IL-4 trended towards
reduction in P3DEX-treated mice and was significant for those
treated with NTDEX (Figure 4). This reduction was
unanticipated, given that both P3DEX and NTDEX promote
TH2 responses and alternative activation (M2) of macrophages
(51–54). P3DEX and NTDEX treatment also led to slight
reductions in IL-5, another TH2 cytokine, which tends to help
maintain homeostasis inWAT depots (Figure 4) (64). P3DEX did
not impact circulating IL-6 levels, but NTDEX eliminated IL-6
compared to the DEX control (Figure 4). IL-9, a TH2 cytokine,
trended toward decreased circulating levels in DIO mice treated
with NTDEX (Figure 4) (65). Neither P3DEX, nor NTDEX
treatment, had a significant effect on circulating IL-10 levels
(Figure 4). While P3DEX and NTDEX did not impact levels of
IL-12(p40), P3DEX treatment led to a significant reduction in IL-
12(p70) (Figure 4). This reduction in the bioactive form of IL-12
suggests quelling of the TH1 immune response, which might
contribute to P3DEX’s therapeutic effects (66). We observed no
differences in serum IL-13, another TH2 cytokine that aids in
overcoming insulin resistance (Figure 4) (67). IL-17a increased in
response to P3DEX and NTDEX treatment, but this increase was
not significant (Figure 4). Last, we observed a slight, but
nonsignificant, reduction in TNFa in response to P3DEX and
NTDEX treatment (Figure 4). Similar to other markers,
circulating TNFa is elevated in obese individuals (17).
Moreover, neutralization of TNFa led to improved insulin
responses (15). Overall, P3DEX treatment seems to decrease
circulating cytokine levels, both inflammatory and TH2-
associated. While these cytokine responses are ambiguous when
considered on their own, they are indispensable for delineating
how P3DEX treatment reduces body weight and improves glucose
homeostasis in vivo.

LNFPIII Conjugates Modulate
Adipokine Secretion
Measurement of AT-specific markers (adipokines), rather than
pleiotropic cytokines, might provide more insight on the
therapeutic or non-therapeutic effects of P3DEX and NTDEX
in the context of DIO. Ghrelin, for instance, is an orexigenic
adipokine that stimulates food intake (68). Circulating levels of
ghrelin are lower in the obese state and higher in those that are
lean (69–71). Ghrelin also quells secretion of markers related to
inflammation and inhibits NF-kB signaling (72, 73). Although
we were unable to monitor food intake in our studies, we found
that P3DEX treatment led to a slight, but nonsignificant, increase
in ghrelin (Figure 5A). P3DEX treatment also led to a significant
Frontiers in Immunology | www.frontiersin.org 7
decrease in leptin, a hormone generated in AT in proportion to
fat content (Figure 5A) (74). Circulating leptin concentrations
coincide with reductions in AT (75, 76). Decreases in leptin also
coincide with increases in orexigenic peptides (i.e. ghrelin),
which might explain the slight increase shown in Figure 5A
(77, 78). NTDEX treatment led to a trending reduction in
circulating levels of resistin, while P3DEX treatment led to a
significant decrease (Figure 5A). P3DEX treatment seems to
have beneficial effects on specific adipokines (i.e. leptin and
resistin), which corresponds with its effects on adipose tissue
and glucose homeostasis.

LNnT Conjugates Alter the Incretin Effect
During the incretin effect, glucose-dependent insulinotropic
polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) are
released from the gut to stimulate insulin secretion in response
to food intake (79). P3DEX and NTDEX reduced circulating
levels of GIP, with the reduction induced via NTDEX being
significant (Figure 5B). In pancreatic islets, decreases in GIP
correspond with decreases in insulin and glucagon secretion
(80). Both P3DEX and NTDEX did not have an effect on GLP-1,
another incretin hormone (Figure 5B). P3DEX treatment
led to a slight reduction in glucagon and NTDEX treatment
led to a significant reduction (Figure 5B). NTDEX treatment led
to a significant reduction in GIP, which aligns with the
corresponding decrease in glucagon. We observed a trending
increase in the ratio of insulin to glucagon in response to
NTDEX treatment, an indicator of excess nutrient load
(Figure 5B) (81). We conclude here that P3DEX treatment has
beneficial effects on specific adipokines (i.e. ghrelin, leptin, and
resistin), while NTDEX might impact incretin hormones and
postprandial insulin release. These findings further support that
these two HMO conjugates differ in terms of mechanism and
therapeutic potential.
FIGURE 4 | LNFPIII and LNnT conjugates alter innate and adaptive
cytokines. Measurement of innate and adaptive cytokines are shown here in
response to DEX, P3DEX, or NTDEX treatment. One-way ANOVA with
Dunnett’s Multiple Comparisons Test. *indicates a significant difference (p ≤

0.05). ^indicates a trend (p ≤ 0.10).
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LNFPIII Conjugates Reduce WAT
Inflammation and Hepatic
Lipid Accumulation
We report various in vivo changes in response to both P3DEX and
NTDEX. Upon examination of vWAT tissue, we observed what
appeared to decreased immune cell infiltrate and crown-like
structures in DIO mice treated with P3DEX compared to DEX
and NTDEX (Figures 5C–E). DIO mice treated with NTDEX
exhibited greater inflammation within vWAT even when
compared to the DEX control (Figure 5E). In the liver, we
observed significant lipid accumulation in DIO mice treated with
the DEX control (Figure 6A). In contrast, we observed reduced
lipid accumulation in the livers of DIO mice treated with P3DEX
(Figure 6B). DIO mice treated with NTDEX showed greater lipid
accumulation than the DEX control, suggesting a worsening of MS
(Figure 6C). This was corroborated by the increased ratio of
aspartate aminotransferase (AST) to alanine aminotransferase
(ALT) detected in the serum of DIO mice treated with NTDEX
(Figure 6D). At the tissue level, it is clear that NTDEX does not
induce the same therapeutic benefit as P3DEX.
DISCUSSION

Although LNFPIII and LNnT differ only by the presence or
absence of an a1,3-linked fucose in their structures, their
therapeutic effects in a DIO model differ significantly in vivo.
In general, HMOs present in human breastmilk are known to
Frontiers in Immunology | www.frontiersin.org 8
block infection, modulate the immune response, shape the
intestinal microbiome, and serve as nutrients for brain
development (22, 82). However, the effects of specific groups of
HMOs (nonfucosylated neutral HMOs, fucosylated HMOs, and
sialylated HMOs) or individual HMOs themselves have not been
thoroughly studied. 2’-fucosyllactose (2’FL; fucosylated) and
LNnT (neutral) are the two most abundant and well-studied
HMOs to date [Ref]. 2’FL has been reported at ~2.74g/L in
secretor mothers, while LNnT has been reported at ~0.74g/L
(21). Both HMOs have been purified from human breastmilk
and/or synthesized at industrial levels for supplementation in
infant formula (23, 29, 83–85). LNFPIII, in contrast, is less
abundant (~0.33g/L) and expensive to acquire from purified
human breastmilk (21). It has also not been synthesized via
chemical or enzymatic methods at an industrial level. To
determine if LNnT would function in vivo similar to LNFPIII,
we initiated studies to compare the therapeutic effects of LNFPIII
conjugates to LNnT conjugates in a murine model of DIO.

Previous studies demonstrate both LNFPIII and LNnT
conjugates promote M2 macrophage polarization, an immune
process that has been deemed important for regulating and
ameliorating adipose tissue inflammation and treating T2DM
(51, 52, 86, 87). Several anti-diabetic drugs on the market, such as
metformin and several thiazolidinediones target insulin
resistance in part via altering M1/M2 macrophage polarization
and reducing inflammation within WAT (88, 89). Bhargava et al.
(2012) demonstrated that LNFPIII conjugates improve glucose
tolerance and insulin resistance, as well as reduce WAT
inflammation and ameliorate non-alcoholic hepatosteatosis in a
A B

C D E

FIGURE 5 | LNFPIII conjugates reduce adipokines and WAT inflammation, while LNnT conjugates alter incretin effect hormones. Measurement of (A) adipokines and
(B) incretin effect hormones in DIO mice treated with DEX, P3DEX, or NTDEX. One-way ANOVA with Dunnett’s Multiple Comparisons Test. *indicates a significant
difference (*p ≤ 0.05, **p ≤ 0.01). ^indicates a trend (p ≤ 0.10). Histological analysis of vWAT depots from DIO mice treated with (C) DEX, (D) P3DEX, or (E) NTDEX.
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similar model of DIO (28). We expand on these studies herein,
demonstrating that DIO mice treated with LNFPIII conjugates
(P3DEX) exhibit reductions in total weight gain and
subcutaneous/visceral AT (Figures 1B–E). Reductions in total
weight gain and subcutaneous/visceral AT depots were not
reported in Bhargava et al. (2012), but it is important to note
the difference in treatment duration between the two studies. In
Bhargava et al. (2012), DIOmice treated with LNFPIII conjugates
twice per week for four weeks. The experimental timeline here
differs, during which treatment was performed twice per week for
eight weeks. It is possible that the longer duration of treatment
used in this experiment allowed for differences in weight gain and
subcutaneous/visceral AT depots to become apparent. Similar to
Bhargava et al. (2012), we observed significant reductions in
fasting blood glucose levels post-treatment (Figure 2A), as well as
improved glucose and insulin tolerance (Figures 2B, C). It is
striking that the LNnT conjugates (NTDEX) did not induce these
effects. We have shown in previous studies that P3DEX acts on B
cells, macrophages, dendritic cells, adipocytes, and hepatocytes
(28, 50, 52–54, 86, 90–94). NTDEX activates macrophages, but
not dendritic cells, suggesting differences in cellular mechanisms
between the two glycans (51). We also have evidence that P3DEX
Frontiers in Immunology | www.frontiersin.org 9
and NTDEX act on adipocytes in vitro (unpublished). Thus, it is
likely that M2 macrophage polarization is not the sole
mechanism via which P3DEX exerts its therapeutic effect.
Furthermore, additional studies must be performed in parallel
to delineate the mechanistic differences present between the two
HMO conjugates.

This is the first in vivo report comparing the therapeutic effects
of P3DEX and NTDEX in a DIO model. Compared to P3DEX,
NTDEX did not reduce weight gain or improve glucose
homeostasis. Both P3DEX and NTDEX had differential effects
on circulating chemokines, cytokines, adipokines, and incretin
hormones (Figures 3–5). Only P3DEX reduced weight gain and
improved glucose homeostasis, yet both P3DEX and NTDEX
altered cytokines involved in hematopoiesis and may each have
roles in reducing inflammation (Figures 1–3). The effects of
P3DEX appear to be more pronounced as treatment of DIO
mice led to reductions in several chemotactic cytokines (i.e. KC,
MCP-1, RANTES) (Figure 3). This could be due to reductions in
AT mass and subsequent decreases in pro-inflammatory signals
from AT depots. P3DEX and NTDEX also altered numerous
innate and adaptive cytokines, but given the pleiotropic nature of
these markers, it is difficult to make conclusions about the role that
A B

C D

FIGURE 6 | LNFPIII conjugates reduce hepatic lipid accumulation and liver damage. Liver sections from DIO mice treated with (A) DEX, (B) P3DEX, or (C) NTDEX.
(D) Ratio of circulating AST:ALT. One-way ANOVA with Dunnett’s Multiple Comparisons Test. *indicates a significant difference (p ≤ 0.05).
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they might have in ameliorating MS (Figure 4). Furthermore, an
increase/decrease in one marker can lead to a compensating
increase/decrease in another. We saw a trending decrease in IL-4
for animals treated with P3DEX and a significant decrease for
those treated with NTDEX. P3DEX and NTDEX both promote
TH2 responses and alternative activation (M2) of macrophages, so
this result was unexpected (51–54). The role of IL-6 in DIO is
controversial, as some studies suggest that IL-6 exacerbates insulin
resistance and others note beneficial effects (95–97). Given that we
do not observe improvements in glucose or insulin tolerance in
DIO mice treated with NTDEX, it is likely that elimination of IL-6
does not have a significant therapeutic impact in our studies.
Furthermore, deletion of IL-6 in in vivo studies have not been
successful in delineating its role in DIO and T2DM (97). P3DEX
has been shown to increase circulating IL-10 levels in DIO mice,
but the studies presented herein are different in terms of
experimental conditions and design (i.e. animal housing facilities,
longer treatment period, etc.) (28). IL-17a is a prominent marker
of inflammation and is elevated in obese individuals, but there
is also evidence of an anti-adipogenic role for this cytokine
(98). The fasting serum samples analyzed here offer a snapshot
in time following 8 weeks of DEX, P3DEX, or NTDEX treatment.
It is well-known that these markers fluctuate over time and/or
depend on disease progression. Another method to determine the
specific roles and importance of the documented adipokines,
chemokines, or cytokines would be to eliminate these molecules
in DIO mice on DEX, P3DEX, and NTDEX treatment regimens
and evaluate whether the conjugates’ therapeutic capabilities
are altered.

While the chemokine and cytokine results do not allow us to
focus on a distinct mechanism, it is clear that P3DEX and NTDEX
altered adipokines and incretin hormones in a more straight-
forward manner (Figure 5). Adipokines, such as ghrelin, leptin,
and resistin, are directly secreted from AT depots and
indispensable for metabolic regulation. We observed a slight,
but non-significant increase in ghrelin in response to P3DEX
treatment (Figure 5A). Ghrelin is known to decrease in the obese
state and inversely correlates with BMI, so the observed increase
in response to P3DEX treatment aligns with the decreased weight
gain that we report here (99–101). In the obese state, individuals
often present with low ghrelin levels and high leptin levels to
which they become resistant (102). P3DEX slightly increased
circulating ghrelin, as well as significantly decreased circulating
leptin, an adipokine generated in proportion to fat content
(Figure 5A) (103). P3DEX also significantly decreased resistin,
an adipokine known to increase with inflammation and insulin
resistance (Figure 5A) (104). Resistin also perpetuates states of
inflammation via induction of pro-inflammatory cytokines (i.e.
IL-1, IL-6, IL-12, TNFa, etc.) and molecules related to
chemoattraction (i.e. VCAM-1, ICAM-1, MCP-1, etc.) (105,
106). Whether these changes occur as a result of overall
decreases in AT or if P3DEX acts directly on adipocytes to
modulate ghrelin, leptin, and resistin secretion is yet to be
investigated. In contrast to P3DEX, NTDEX induced significant
changes in incretin hormones. NTDEX treatment led to a
significant decrease in GIP, a hormone that stimulates insulin
secretion and synthesis, as well as glucagon secretion (Figure 5B)
Frontiers in Immunology | www.frontiersin.org 10
(80). In this regard, the observed decrease in response to NTDEX
treatment could be damaging in the context of DIO. This decrease
also corresponded with a significant decrease in glucagon
secretion (Figure 5B) and a trending increase in the ratio of
insulin:glucagon (Figure 5B).

Similar to Bhargava et al. (2012), P3DEX decreased WAT
inflammation and lipid accumulation in the liver (Figures 5, 6).
However, NTDEX treatment seemed to worsen WAT
inflammation and increase hepatic lipid accumulation even
compared to DEX treatment (Figures 5, 6). This was
exemplified by the significant increase in the ratio of AST :
ALT in DIO mice treated with NTDEX (Figure 6D). We
expected NTDEX to ameliorate WAT inflammation and
hepatic lipid accumulation similar to P3DEX, however, NTDEX
appeared to have a damaging effect at the tissue level. Future
studies will further investigate mechanistic changes induced by
P3DEX and NTDEX at the tissue level in this DIO model.

The complete mechanism of both LNFPIII and LNnT
conjugates is unknown. Internalization of LNFPIII conjugates
occurs via a receptor-mediated process, which undergoes clathrin-
dependent endocytosis (53). Internalization does not require
TLR4 or MyD88, but does require CD14. Signaling continues
via CD14/TLR4-Ras-Raf1-TPL2-MEK to induce ERK and NFkB
signaling. This results in production of anti-inflammatory
mediators, such as IL-4, IL-10, MMP9, and CCL22. In contrast,
LNnT conjugates do not activate antigen-presenting cells (APCs)
via TLR4/MD2/CD14, so it is probable that the fucose residue on
LNFPII is vital for signaling (54). It is also likely that, while anti-
inflammatory in vivo, LNnT conjugates induce effects that differ
from LNFPIII conjugates. LNFPIII conjugates also act directly on
adipocytes and hepatocytes, but it is unknown whether this is the
case for LNnT conjugates. To further investigate the mechanism
of LNFPIII and LNnT conjugates, we have generated monoclonal
antibodies (mAbs) that will serve as useful probes for future
studies (i.e. co-immunoprecipitation). We hope to determine the
receptors that P3DEX and NTDEX bind to in various cells,
elucidate their overall mechanisms, and determine if P3DEX
might be a useful treatment for humans with MS.
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