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The microenvironments formed by cortical (c) and medullary (m) thymic epithelial cells
(TECs) play a non-redundant role in the generation of functionally diverse and self-tolerant
T cells. The role of TECs during the first weeks of the murine postnatal life is particularly
challenging due to the significant augment in T cell production. Here, we critically review
recent studies centered on the timely coordination between the expansion and maturation
of TECs during this period and their specialized role in T cell development and selection.
We further discuss how aging impacts on the pool of TEC progenitors and maintenance of
functionally thymic epithelial microenvironments, and the implications of these chances in
the capacity of the thymus to sustain regular thymopoiesis throughout life.

Keywords: thymus, thymic epithelial cells, tolerance, early postnatal life, aging
INTRODUCTION

The current pandemic caused by the SARS-CoV-2 virus underscores the importance of maintaining
a pool of immunologically competent T cells, which are capable of responding to virtually any new
foreign threats while tolerant to the host own tissues. The establishment of a diverse T cell receptor
(TCR) repertoire arises from the random recombination of V(D)J gene segments during T cell
development in the thymus. Yet, the arbitrariness underlying this process can also produce
autoreactive T lymphocytes. The thymus has developed several control mechanisms to
simultaneously establish T cell immunity against non-self elements and impose self-tolerance.
Particularly important in the choreography of T cell selection are thymic epithelial cells (TECs),
which represent a key component of the thymic stromal microenvironment. TECs are typically
subdivided into functionally distinct cortical (cTEC) and medullary (mTEC) lineages (1). While
cTECs primarily mediate T cell lineage commitment and positive selection, mTECs fine-tune the
negative selection of autoreactive thymocytes or promote their deviation into the T regulatory cell
lineage (2). It is conceptually accepted that cTECs and mTECs differentiate from thymic epithelial
progenitors (TEPs) present within the embryonic and postnatal thymus (2). Deficits in the function
of TECs arise with aging, cytoablative regimens and infection, leading to a lower naïve T cell output.
These thymic failures are pertinent in the elderly and patients undergoing bone marrow
transplantations (BMT), contributing to their poor T-cell responses to new pathogens or
predisposing to autoimmunity (3). Thus, the preservation of a regular thymic function also
depends on the maintenance and differentiation potential of bipotent or lineage restricted TEPs.
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In this review, we focus on critical changes in the molecular traits
of TECs that occur during the first weeks of the murine postnatal
life, and integrate how these alterations might precede events
coupled with thymic involution.
THE BUILD-UP OF TEC
MICROENVIRONMENTS

The initiation of TEC development coincides with the onset of
thymus organogenesis, which starts around day 9-10 of the
murine embryonic gestation (E9-10) (4). The expression of
Forkhead box protein N1 (Foxn1) in the ventral area of the
common thymus and parathyroid primordium marks a critical
step in TEC specification (5). Still, Foxn1 expression needs to be
continuously maintained during the differentiation of c/mTEC,
wherein it imposes a complex genetic program that confers them
the capacity to support distinct stages of thymopoiesis (6). TEPs
formed during early thymus ontogeny constitute the primordial
building blocks for the establishment and maintenance of c/
mTEC microenvironments (7–9). Our comprehension about the
mechanisms underlying TEC differentiation has considerably
advanced with the identification of distinct populations
containing bipotent or lineage-restricted progenitor activity
(10–21) [further detailed below and reviewed in (22, 23)].
These studies led to the proposal of different refined models of
TEC differentiation, whereby TEPs traverse through transitional
stages that share a closer or distinct relationship with cTEC- or
mTEC-unipotent precursors, prior to the commitment in mature
c/mTEC subsets [reviewed in (2, 24, 25)]. Yet, it remains unclear
the trajectories and molecular elements governing the
differentiation of TEC progenitors into mature c/mTEC lineages.

The expansion and functionalization of c/mTEC
compartment during early postnatal stages generates a
supportive microenvironment that increases thymopoiesis,
reaching its peak during young adulthood. Thereafter, T cell
production progressively declines with aging, becoming residual
in the aged thymus (26). During these periods, TECs undergo
concomitant alterations in their composition and differentiation
program. Although the density of TECs based on flow cytometry
analysis might be underestimated (27), the number of TECs
vigorously expands during postnatal life and early adulthood,
followed by a progressive decline with age (28, 29). Changes in
the size of TEC microenvironment appears to relate with the
function of the thymus. While a reduction in the TEC
compartment below a certain threshold restrains thymopoiesis
(30, 31), the expansion of the thymic epithelial niche, for
example via transgenic expression of Foxn1 or Cyclin D1,
increases T cell generation (32, 33). Along this line, the
frequency of cycling TECs is elevated during fetal life,
progressively declines during the postnatal life and become a
rare fraction in the aged mouse thymus (28). Transcriptomic
analysis revealed that the expression of cell-cycle regulators is
downregulated in TECs as early as 1 month (34). Moreover, the
enforced expression of cMyc in TECs promotes the expansion of
the TEC compartment, via the engagement of a genetic program
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akin to the one found in embryonic TECs (35). These results
suggest that the loss in the proliferative rate of TECs, together
with other alterations such as changes in cell survival and rate of
differentiation, may contribute to a reduction in the size of TEC
compartments with age. In the next sections, we outline specific
cellular and molecular alterations that take place in c/mTEC
during early postnatal life, and conjecture how those changes
may anticipate subsequent functional losses in the capacity of
TECs to sustain regular thymopoiesis in the long-term.
THE ASSEMBLY OF FUNCTIONALLY
DEDICATED CTEC AND MTEC
COMPARTMENTS

The first weeks of the postnatal life marks a period of intense
turnover and functional diversification in the TEC niche,
wherein key mature subsets in tolerance induction are
generated or expanded (23). During this period, the changes in
the cellularity and functionality of cTECs appear to unfold
concomitant with the expansion and diversification of mTECs
(11, 12, 36–38). This leads to a conspicuous inversion in the
cTEC/mTEC ratio within the first 2 weeks after birth, which
correlates with the intensification of thymopoiesis (11, 12, 28). In
this regard, the consequent rise in the number of positive and
negative selection events, will impose an increase demand on
TEC compartments. Given that mature cTECs and mTECs have
a limited life-span, the maintenance and specialization of their
microenvironment seem to depend on the continual
differentiation of their progenitors. These functional
requirements are in part met by a symbiotic relationship with
thymocytes (discussed further below) that stimulate specific
proliferative and differentiation programs in TECs (39).

It remains surprising how little we know about the molecular
program that underlies the differentiation of cTECs. Despite
these gaps, several studies highlight that cTECs undergo
molecular and functional changes during neonatal and puberty
periods. In particular, cTECs downregulate the expression
of key thymopoietic factors, such as Dll4 and IL-7, during
the first weeks of postnatal life, which result from continual
lymphoepithelial interactions (37, 38, 40, 41). These quantitative
and qualitative disruptions in cTECs appear to anticipate the
bona fide hallmarks that characterize TECs in the involuted
thymus. In contrast to cTECs, our understanding of the
cartography of mTEC differentiation is more complete (22).
This process depends on reciprocal signals provided by several
types of hematopoietic cells (1). These lymphoepithelial
interactions, commonly referred as thymic crosstalk, engage
specific members of the tumor necrosis factor receptor
superfamily (TNFRSF), including receptor activator of NF-kB
(RANK), CD40 and lymphotoxin b receptor (LTbR), in mTECs
and their progenitors, leading to the activation of a nuclear factor
kappa B (NF-kB)-dependent maturation program [reviewed in
(1, 22)]. The cooperative action of TNFRSF members is not only
important for the expansion of mTEC niches but also for their
functional diversification. Upon the initial subdivision in
June 2021 | Volume 12 | Article 668528
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mTEClow and mTEChigh (42), the discovery of Autoimmune
regulator (Aire)-, Ccl21- and forebrain embryonic zinc finger-
like protein 2 (Fezf2)-expressing cells revealed that mTECs
harbors a variety of functionally distinct mature subsets (1, 22).
Although Aire+ and Fezf2+ cells emerge during embryonic life (1,
22), their abundance significantly increases in the first weeks of
life. In this regard, RANK-mediated signaling is essential to the
expansion of Aire+ mTECs, whereas CD40 also contributes to
this process (43, 44). Although LTbR signaling was initially
coupled to the development of Aire+ (45) and Fezf2+ lineages
(46), subsequent studies indicated its involvement in the
architecture of postnatal medullary compartment (47). Aire
and Fezf2 regulate the capacity of mTECs to express large sets
of non-overlapping tissue restricted antigens (TRAs), which are
randomly organized in patterns of gene expression at the single
cell level (48–50) and are reported to decrease their levels with
age (51–53). In this regard, an earlier study underscore the
importance of Aire expression in mTECs during neonatal
period (54), which corelates with their capacity to control the
generation of a unique population of T regulatory cells (55). It
remains to be determined whether Aire expression during this
temporal window particularly impacts on the quantity or quality
of TRAs expression by mTECs.

The role of mTECs in tolerance induction extends beyond
their promiscuous gene expression capacity. CCL21-producing
cells represent a prototypical example of alternative roles of
mTECs. CCL21-expressing mTEC represent a subset of mTEClo

and control the migration of positively selected thymocytes
towards the medulla (56, 57). CCl21+ cells emerge during
embryogenesis and their numbers also undergo a marked
increase during the first weeks of life (57). Recent single cell
RNA sequencing analysis suggests that Aire- and Ccl21a-
expressing mTEC subsets do not share a direct lineage
relationship (58). Moreover, the discoveries that Aire+mTECs
differentiate into Post-Aire cells (59, 60) further extended our
view on the heterogeneity within thymus medulla. Post-Aire
mTECs shutdown the expression of Aire, certain TRAs, CD80
and MHCII, while acquiring traits of terminally differentiated
keratinocytes (61, 62). Two reports identified a highly
differentiated mTECs that share molecular traits with tuft cells
found at mucosal barriers. Fate-mapping analysis suggests that
this subset can develop via an AIRE-dependent and AIRE-
independent pathway (63, 64). Although their complete
functional relevance remains elusive, tuft-like mTECs appear
to regulate the development of invariant NKT cells and ILCs (63,
64). Future studies may uncover new specialized mTEC subsets
and their role in imposing the limits of tolerance, or alternative
processes in thymus biology.
THE THYMIC EPITHELIAL CELL
PROGENITOR RESERVOIR

The diversification of TECs during the first weeks of life is
dictated by the intricate balance between the rate of proliferation
and differentiation of mature subsets. The rapid turnover of TEC
Frontiers in Immunology | www.frontiersin.org 3
microenvironments, with an estimated replacement time of one
to two weeks to mTECs (28, 59), implicates the requirement for a
regular generation of mature TECs from their upstream
progenitors. One possibility is that bipotent TEPs continually
produce lineage-committed precursors lacking long-term self-
renewal capacity. Alternatively, and not mutually exclusive, the
abundance of bipotent TEPs might decrease with age, being the
maintenance of cortical and medullary epithelial niches assured
by downstream compartment-restricted precursors. In the last
years, several studies provide evidence for the existence of an
arsenal of subsets enriched in purported bipotent TEC
progenitors in the postnatal thymus (10, 13–15). One approach
has employed in vitro 2D-clonogenic (10) or spheroids (13)
assays to respectively isolate TEC progenitors that reside within
EpCAM+Ly51+cTECs or EpCAM- cells, which were expanded
in vitro and revealed the capacity to give rise to c/mTEC.
Nonetheless, a more recent study indicate that cells isolated
from EpCAM-derived spheroids represent mesenchymal
progenitors (65). Other methodologies resolved bipotent
progenitor activity within defined subsets of UEA-1−MHIIlo

Sca-1+ TECs (14) and MHCIIhi Ly51+Plet1+ cTECs (15).
Both strategies employ reaggregate organ cultures (RTOCS)
to determine the precursor-product lineage relationship
to mature cells. Despite the advances, it remains to be
determined the physiological contribution of these cells to the
TEC microenvironment in the adult thymus. Thus, we still lack
experimental evidence that demonstrates the existence of bona-
fide bipotent TEC progenitors in the postnatal thymus, and their
identification at the single cell level.

Downstream of TEC progenitors, complementary studies
documented how mTEC compartments evolved from bipotent
TEP and mTEC-restricted precursors (mTEPs), including
mTEC-restricted SSEA-1+ and podoplanin+ (PDPN) mTEPs
(16, 18). Fate-mapping studies show that the adult mTEC
network arise from fetal- and newborn-derived TEPs
expressing beta5t (b5t), a prototypical cTEC marker. Yet, the
contribution of b5t+ TEPs to the adult mTEC niche decreases
with age (19, 20), suggesting that the maintenance of the adult
medullary epithelium is assured by mTEPs. Although bipotent
TEPs might lose the expression of some traits found in the
embryo (e.g. b5t), it is also possible that the abundance and/or
the self-renewal properties of bipotent TEPs and/or lineage-
restricted progenitors decline with time. Supporting this view,
the clonogenic activity of purported bipotent TEPs that reside
within the cortex decrease with age (10) and Cld3,4+SSEA1+

mTEC-restricted cells become rare in the adult thymus (16).
Given that the numbers of embryonic TEPs dictates the size of
functional TEC microenvironments (30), we infer that the loss in
the TEC network that takes place with age may result from the
decrease in the bioavailability and self-renewal capacity of TEPs
early in life.

The advent of single cell RNA sequencing (scRNAseq)
analysis have also contributed to our understanding of the
heterogeneity and dynamic of TEC progenitors. This approach
has emerged as a new unbiased method to identify novel subsets,
providing a valuable platform to analyze their developmental
June 2021 | Volume 12 | Article 668528
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trajectories and determine their relationships with progenitor
subsets identified by conventional methodologies. In this regard,
new clusters termed “pre-Aire mTEC 1 and 2” (66) appear to
present molecular traits similar to the ones found in podoplanin+
(PDPN) mTEPs (18). A subsequent study identified a novel
cluster of “intertypical TECs” (51) that harbors traits akin to the
ones found in podoplanin+ (PDPN) mTEPs (18), UEA-
1−MHIIloSca-1+ (14) and MHCIIhi Ly51+Plet1+ (15) TECs.
Since “intertypical TECs” are further segmented in distinct 4
subclusters, it would be interesting to determine if they associate
to a particular bipotent or unipotent subset. Moreover,
scRNAseq analysis reveal the existence of a previously
unrecognized cluster of “perinatal cTECs”. Interestingly, this
subset harbors cells with a highly proliferative status and their
abundance declines with age (51). Moreover, the combination of
scRNAseq and fate mapping analysis revealed that b5t+ TEPs
acquire senescent-like properties with age, potentially explaining
their failure to contribute to mTEC lineage beyond the neonatal
stage (19, 20). Together, these findings indicate that the
integration of multiple experimental approaches provides a
more complete strategy to resolve the intricacies of the TEC
compartment. Future studies should attempt to identify specific
markers to resolve the newly characterized populations at a
single level.
CONCLUDING REMARKS

The aforementioned studies underscore that the period between
birth and early adulthood is a time of intense alterations in TEC
microenvironments, which prepares them to the highly demand
role of choreographing the selection of growing number of T cell
precursors. In this sense, it is remarkable to appreciate the
synchronous coordination between TEC differentiation and
the requisites imposed by T cell development. Yet, the erosion
of the pool of TEC progenitors seem to accompany the
generation of specialized subsets with key roles in tolerance
induction. We reason that an in-depth molecular analysis of
TEC differentiation during early postnatal may provide insights
on how TEC niches are maintained, and can be repaired in the
Frontiers in Immunology | www.frontiersin.org 4
aged thymus. Despite recent advances, it remains unclear how
changes in the bioavailability of TEPs impact on the maintenance
of TEC microenvironment across life, and ultimately on thymic
output. Another unexplored area pertains to the physiological
causes underlying the presumed age-dependent decrease and/or
senescence of TEPs. Knowledge in these areas will not only
permit to comprehend the basic principles that governs thymic
function, but also target pathways for the treatment of disorders
coupled to dysfunctional thymic/T cell responses.
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