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HIV-1 must overcome host antiviral restriction factors for efficient replication. We
hypothesized that elevated levels of bone marrow stromal cell antigen 2 (BST-2), a
potent host restriction factor that interferes with HIV-1 particle release in some human cells
and is antagonized by the viral protein Vpu, may associate with viral control. Using
cryopreserved samples, from HIV-1 seronegative and seropositive Black women, we
measured in vitro expression levels of BST-2 mRNA using a real-time PCR assay and
protein levels were validated by Western blotting. The expression level of BST-2 showed
an association with viral control within two independent cohorts of Black HIV infected
females (r=-0.53, p=0.015, [n =21]; and r=-0.62, p=0.0006, [n=28]). DNA methylation
was identified as a mechanism regulating BST-2 levels, where increased BST-2
methylation results in lower expression levels and associates with worse HIV disease
outcome. We further demonstrate the ability to regulate BST-2 levels using a DNA
hypomethylation drug. Our results suggest BST-2 as a factor for potential therapeutic
intervention against HIV and other diseases known to involve BST-2.

Keywords: BST-2, HIV-1, DNA methylation, epigenetic regulation, expression
INTRODUCTION

To establish infection and replicate efficiently, HIV-1 must overcome host antiviral restriction
factors. Host restriction factors that inhibit HIV-1 replication are an important component of the
innate immune system that forms the first line of defense before adaptive immune responses are
mobilized and established (1–4). BST-2 (also termed Tetherin/CD317/HM1.24) was discovered as an
anti-HIV host factor responsible for the prevention of virus release (5). Subsequently, additional
mechanisms of HIV inhibition by BST-2 have been reported (6) and studies have associated BST-2
org May 2021 | Volume 12 | Article 6692411
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expression levels with HIV viral control (6–8). Downregulation
of BST-2 expression correlated with Vpu expression and elevated
BST-2 induced a requirement for Vpu to facilitate HIV particle
release in some cells (5, 9). Vpu promotes intracellular down-
regulation of BST-2 (10, 11). However, BST-2 is an interferon-
induced protein, which gets activated upon HIV infection (7, 12).
Factors regulating the expression levels of the BST-2 gene have
not been fully resolved.

The “tethering” effect mediated by BST-2 on HIV has
subsequently been shown to restrict the replication of a diverse
array of other enveloped viruses including other retroviruses,
rhabdoviruses, alphaviruses, arenaviruses, filoviruses,
herpesviruses , paramyxoviruses , orthomyxoviruses ,
orthohepadnaviruses and flaviviruses (12–21). In addition,
BST-2 expression levels are elevated in several cancers such as
head and neck, breast, cervical, lung, endometrial, myelomas,
and glioblastomas (22–29) as well as lupus erythematosus (SLE)
an autoimmune disease (30), suggesting that BST-2 could be an
immunotherapeutic target for several diseases. If BST-2 is
directly affecting these conditions, then identifying the factors
regulating BST-2 expression could develop strategies against an
array of diseases. DNA methylation has been linked with the
regulation of BST-2 expression particularly in cancer cells (24),
and in lupus (30). A few human genes implicated in HIV control
are known to be regulated by DNA methyla t ion .
Hypermethylation of FOXP3, EPB41L3, IL-2, CCR5 and HLA-
A at gene regulatory sites, are associated with reduced gene
expression and worse HIV outcome, whereas reduced
methylation corresponds with increased expression of these
genes and improved disease outcome (31–36). This highlights
the potential importance of this epigenetic mode of gene
regulation in HIV disease pathogenesis.

In this study, we found that increased BST-2 levels associated
with HIV control. We further show DNA methylation as one of
the regulatory mechanisms responsible for BST-2 expression
variation within HIV infected individuals. Furthermore, BST-2
methylation levels correlate with HIV outcomes in both ex vivo
and in vitro experiments, and experimental manipulation of
BST-2 methylation altered its expression levels. Together, these
data suggest that manipulation of BST-2 expression levels could
be used as a therapeutic target for viral control.
MATERIALS AND METHODS

Study Design
A chronic HIV infection cohort, Sinikithemba (SK; n=21) (37),
was compared to the HIV negative arm of the acute infection
cohort from the Females Rising through Education, Support, and
Health (FRESH; n=65) study (38, 39) in a cross sectional
analysis. We further studied a longitudinal HIV acute infection
cohort, CAPRISA 002 (n=55) (40, 41), from pre-infection to >36
months of follow-up post HIV infection. All the samples used in
this study were from South African females of Black ancestry.
The study was approved by the Biomedical Research Ethics
Committee of the University of KwaZulu-Natal.
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Sample Processing, Viral Load
Quantification and CD4 Cell Enumeration
Peripheral blood mononuclear cells (PBMCs) were isolated
within 6 hours of blood collection, and frozen in liquid
nitrogen until use. Viral load was determined using the
automated COBAS AMPLICOR HIV-1 Monitor Test v1.5
(Roche Diagnostics, Mannheim, Germany). CD4+ T cells were
enumerated using the Multitest kit (CD4/CD3/CD8/CD45) on a
four-parameter FACSCalibur flow cytometer (Becton Dickinson,
San Jose, CA, USA).

Real Time PCR Quantitation
RNA was extracted from 2 x 106 PBMCs using the TRIzol LS
Reagent (Invitrogen, Carlsbad, CA, USA). RNA from each
sample was reversed transcribed using the iScript cDNA
synthesis kit (Bio-Rad, California, United States of America).
PCR primer and cycling conditions for BST-2 and GAPDH
(housekeeping gene) are available on request. GAPDH was
used as reference gene (42). PCR-product amplification
specificity was confirmed via melting curve analysis and
agarose gel electrophoresis.

Western Blotting
Cell lysates were boiled for 10 minutes in 4X Laemmli sample
buffer (Bio-Rad), then separated by SDS-PAGE on 4 to 15% gels
(Bio-Rad, California, United States of America) and transferred
onto nitrocellulose membrane following standard methods. The
membrane was then incubated with the primary antibody (rabbit
monoclonal anti-BST-2 [cat. no. ab243229, Abcam, Cambridge,
United Kingdom], and mouse polyclonal anti-alpha-tubulin [cat.
no. ab7291, Abcam, Cambridge, United Kingdom]), diluted in
5% bovine serum albumin (BSA) (Roche, Basel, Switzerland) in
tris-buffered saline and Tween 20 at a 1:100 or 1:5000 dilution
overnight, followed by three washes in tris-buffered saline (TBS)
and Tween 20 (TBST) for 10 minutes. The membrane was
incubated with the secondary antibody (anti-rabbit, or anti-
mouse) at a 1:20,000 dilution in 5% BSA in TBST for 1 hour
on a rocker, followed by three washes in TBST for 10 minutes.
Antibody-antigen complexes were detected via enhanced
chemiluminescence reagents (SuperSignal West Dura
extended-duration substrate, Thermo Scientific, Pierce Protein
Research, United States of America). Proteins were visualized
using the ChemiDoc XRS+ system with Image Lab software (Bio-
Rad, California, United States of America).

In Vitro HIV Infection
HIV-1 replication in vitro was assessed on PBMCs from 22
donors selected from the 65 healthy HIV uninfected individuals
from the FRESH cohort. Individuals with the highest (n =11) and
lowest (n=11) BST-2 mRNA levels were included. PBMCs
(2×106/mL) were stimulated for 48 hours in R10 buffer
[Roswell Park Memorial Institute (RPMI)-1640 medium
(Grand Island, NY, USA) supplemented with 10% fetal calf
serum (Hyclone Inc., Logan, UT, USA), gentamicin (Gibco-Brl,
Gaithersburg, MD, USA) (100 mg/mL)] containing 5 mg/mL
phytohemagglutinin (PHA) (Roche, Basel, Switzerland) and
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5 mg/mL interleukin-2 (IL-2) (Roche, Basel, Switzerland).
Following stimulation with PHA/IL-2, cells were washed with
R10 buffer and then infected with HIV IIIB (NIH AIDS Reagent
Repository) at 0.1 multiplicity of infection (MOI) by
spinoculation (2 hours, 300 x g at 37°C). Infection was
performed in a 24-well plate. Virus was subsequently removed
by washing the cells, followed by cell culture for 7 days. BST-2
mRNA expression levels and DNAmethylation were analyzed by
real-time PCR and pyrosequencing. Supernatants from days 2, 4
and 7 were harvested and analyzed by p24 antigen capture
enzyme-linked immunosorbent assay (ELISA [Biomérieux,
Marcy-l’Étoile, France]).

DNA Methylation by Sequencing
Primer design for the detection of methylation within the BST-2
promoter region was performed using MethPrimer online
software, default settings (43) (Forward meth primer 1
GGTTAGTTTTTGTTGTAGGAGATGG; Reverse meth primer
1 AACTATTACAAAATACCCATAAAAAAC; Forward meth
primer 2 TTGATGGTGAAGATAATTAAGGGTATT; Reverse
meth primer 2 AAAAACTACTAATCAAAACACTTC
CTAAAA). Sodium bisulphite conversion was performed on
genomic DNA extracted from PBMCs using the EZ DNA
methylation™ kit (Zymo Research, Irvine, USA). Using the
BST-2 specific primers on the bisulphite converted DNA, a
PCR was run using the following conditions (95°C for 15
minutes, 45 cycles of 95°C for 30 seconds, 60°C for 45 seconds,
72°C for 30 seconds and one cycle of 72°C for 10 minutes). The
level of methylation at specific sites within the BST-2 promoter
was measured using pyrosequencing (Roche, Basel, Switzerland).

5’-aza-2-deoxycytidine Treatment
Treatment of cells with the DNA hypomethylation drug, 5’-aza-
2-deoxycytidine (5’-Aza-CdR), was performed as previously
described (32). Briefly, PBMCs from healthy donors (n=40)
were treated with 10 µM 5’-Aza-CdR (Sigma, St. Louis, United
States America) or with dimethyl sulfoxide (DMSO; treatment
control) for 24 hours at 37°C. BST-2 mRNA levels from 5’-Aza-
CdR treated cells were compared to DMSO treated and then
plotted against the untreated mRNA levels.

Statistical Analysis
Statistical analyses were conducted using Instat Graphpad Prism
V.5 and SAS version 9.4. All expression data was log10
transformed to ensure normality (44, 45). Gene expression
levels between HIV negative and HV infected donors were
compared using an unpaired t-test. BST-2 mRNA expression
levels for HIV positive donors prior to infection and at three
months post-infection were compared using paired t-test.
Furthermore, we calculated the Pearson correlation coefficient
to measure the strength of an association between BST-2 mRNA
expression levels and methylation at each time-point.

Univariable linear mixed model with autoregressive order one
covariance structure were fitted to determine if there was an
association between BST-2 gene expression and viral load. In this
model, we included a random effect for the participant or subject.
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RESULTS

BST-2 mRNA Expression Level Associates
With HIV Viral Control
We investigated the effect of HIV infection on BST-2 mRNA
expression levels in PBMCs ex vivo. We found significantly
higher levels of BST-2 in HIV negative individuals (n=32,
FRESH cohort, black dots) compared to HIV infected late
stage antiretroviral (ARV)-naïve individuals (n=21, SK cohort,
red dots; p < 0.0001; Figure 1A). To validate these findings for
consistency of mRNA expression with protein levels, we
randomly selected donors, based on sample availability, from 5
HIV negative donors and 4 HIV infected donors, which formed
subsets of the FRESH and SK cohorts, respectively. Western blot
assays showed consistent BST-2 protein expression levels relative
to mRNA expression levels, with protein expression higher in
HIV- compared to HIV+ donors (Figure 1B). We next explored
the relationship between BST-2 mRNA expression levels and
HIV-1 viral load. A negative correlation was observed in both SK
(r=-0.53, p=0.015; Figure 1C), and CAPRISA 002 cohorts (n=28,
r=-0.62, p=0.0006; Figure 1D), all individuals analysed cross-
sectionally were past 36 months post infection in both cohorts.

BST-2 mRNA levels and viral load were also tested
longitudinally at three timepoints (3, 12 and >36 months) in
the CAPRISA 002 cohort. The results of the generalized
estimating equation (GEE) model revealed consistent results to
the cross-sectional data where higher mRNA levels associated
with decreased viral load (Effect = -0.022; Standard error =
0.009; p=0.0003).

Effect of BST-2 DNA Methylation on BST-2
Expression and HIV Disease
The inverse effect of DNA methylation on BST-2 expression has
been shown previously in the context of cancer and autoimmune
studies (24, 30). Here, we examined the effect DNA methylation
on BST-2 expression levels within an HIV setting. Nine CpG sites
located within 200 bp of the transcription start site were
evaluated for methylation levels (Figure 2A) in HIV positive
and negative individuals (SK vs. FRESH cohort respectively). All
sites showed significantly higher methylation levels within the
HIV infected group (Figures 2B–J), suggesting that increased
BST-2 methylation levels in chronic HIV infection results in
decreased expression level of the gene as observed in Figure 1.

The average methylation across the nine CpG sites was
compared to BST-2 mRNA expression levels in samples with
four different HIV serostatus or disease stages, i.e. pre-infection,
3, 12- and >36-months’ post-infection using n=27 matched
ARV-naïve samples, based on sample availability. An inverse
correlation was observed at all time points; pre-infection (r=-
0.52, p=0.0056; Figure 3A), 3 months (r=-0.50, p=0.0097;
Figure 3B), 12 months (r=-0.44, p=0.02; Figure 3C) and >36
months (r=-0.46, p=0.0178; Figure 3D). These data strongly
point to methylation as a major contributor in regulation of BST-
2 expression levels.

Comparison of BST-2 DNA methylation pattern with mRNA
expression levels indicate distinctions at the four timepoints.
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At the pre-infection time point, BST-2 expression levels are
relatively low, with modest methylation of the gene. Three
months after HIV infection, BST-2 expression levels increase
with a concomitant decrease in methylation, perhaps as a result
Frontiers in Immunology | www.frontiersin.org 4
of the immune response in acute infection, including IFN-I
production, which is known to enhance BST-2 production (3)
(Figure 4). Methylation begins to increase at 12 months’ post
infection, and by 36 months post infection, the mean expression
A B

DC

FIGURE 1 | BST-2 mRNA and protein expression levels within HIV-negative and positive individuals. (A) Comparison of BST-2 mRNA expression levels measured in HIV
negative and positive donors from the FRESH, (black dots), and SK, (red dots) cohorts, respectively. Significantly elevated BST-2 levels are found within HIV negative donors
vs. positives (p<0.0001). These represent unmatched donors from two separate cohorts. The HIV positive donors are ARV naïve chronically infected. (B) Protein levels of BST-
2 were measured on 5 HIV negative donors and 4 HIV infected donors from the FRESH and SK cohorts, respectively. BST-2 protein levels were assessed using a Western
blot assay. The levels of HIV infected donors are lower than the HIV negative. (C) BST-2 mRNA expression levels were correlated with log viral load within the SK cohort.
Higher mRNA levels correlated with lower log viral load levels (r=-0.53, p=0.0150). (D) A negative correlation was also observed when examining the effect of BST-2 mRNA
expression levels and viral load using the CAPRISA 002 cohort at the >36 month time point (r=-0.62, p=0.0006).
A

B D E F

G IH J

C

FIGURE 2 | Examining DNA methylation levels across unmatched HIV uninfected and infected donors. (A) Location of nine CpG sites within the BST-2 promoter
region 200bp upstream of the TSS. (B-J) Using HIV negative (FRESH) and HIV positive (SK) cohorts the percentage methylation, using pyrosequencing of bisulfite
converted DNA, was calculated for each of the nine sites.
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of BST-2 dips to pre-infection levels while methylation
is considerably higher than that at pre-infection timepoint
(Figure 4). Overall, these results suggest that DNA methylation
is not the sole contributor to BST-2 expression variation.
Frontiers in Immunology | www.frontiersin.org 5
In Vitro HIV Infection and 5’-Aza-
CdR Treatment
We next examined the impact of BST-2 mRNA expression
levels on HIV replication in vitro. HIV replication was
assessed by the amount of p24 released into tissue culture
supernatant following infection of PBMCs from HIV negative
individuals either having the highest (n=11) or lowest (n=11)
BST-2 mRNA expression levels screened from a cohort of 65
HIV negative donors. p24 measurements, taken at days 2, 4
and 7, showed that individuals with higher BST-2 expression
(dotted line, Figure 5A) significantly associated with lower
viral replication, at days 4 and 7 post infection, compared to
lower BST-2 expression individuals (solid line, Figure 5A;
ANOVA, p<0.001). Further, a negative correlation between
HIV replication and BST-2 mRNA expression levels was
observed at day 7 (r=-0.63, p=0.0019, Figure 5B). These
data support a model in which higher BST-2 levels diminish
HIV replication.

Next, we tested whether DNA methylation correlated with
BST-2 mRNA expression levels in an in vitro HIV infection
assay. Individuals with high BST-2 expression levels (red
dotted line, Figure 5C) possessed low methylation levels
(blue dotted line) measured at days 0, 2, 4 and 7 days post
HIV infection. Conversely, low BST-2 mRNA expression
donors (red solid line, Figure 5C) associated with high
methylation levels (blue solid line) throughout the time
course. Further, the overall difference between the
methylation levels within donors either possessing high or
low BST-2 expression levels was significant (Figure 5C;
ANOVA, p<0.001). Thus, BST-2 mRNA expression levels
associate with the level of BST-2 DNA methylation, even
within an in vitro time course of HIV infection.

5’-Aza-CdR induces hypomethylation due to its ability to
inhibit DNA methyltransferases, the enzymes responsible for
methylation. As manipulation of BST-2 expression could be
considered as a therapeutic intervention in HIV disease, we
tested whether 5’-Aza-CdR enhanced BST-2 expression
differentially among donors as a function of the intrinsic
expression level of BST-2. BST-2 levels were measured from
HIV negative healthy donor PBMCs (n=40) treated with
either 5’-Aza-CdR or DMSO (to measure baseline potential
for stimulation in each subject). BST-2 ratios of 5’-Aza-CdR/
DMSO treated mRNA levels were then plotted against
the BST-2 levels measured in corresponding untreated
PBMCs (Figure 5D). A negative correlation between levels
of BST-2 mRNA expression in untreated and Aza-CdR
treated PBMC (R=-0.46, p=0.0027; Figure 5D) was
observed. Donors with the lowest intrinsic (i.e. untreated)
BST-2 mRNA expression levels had the greatest increase in
mRNA expression following 5’-Aza-CdR treatment. These
data point directly to DNA methylation as a primary factor in
regulating BST-2 gene expression. Increasing BST-2 gene
expression by demethylation may therefore enhance resistance
to HIV, given the observation that higher BST-2 expression
associates with HIV control.
A B

DC

FIGURE 3 | Correlation of DNA methylation and BST-2 mRNA expression
levels across HIV disease. Average methylation was calculated as the
average methylation level across nine sites within 200bp upstream of the
transcription start site. A strong negative correlation was observed at
each of the time points examined for a set of n=27 matched samples at
varying time points across disease progression. (A) pre-infection
(r=-0.52, p=0.0056), (B) 3 months’ post infection (r=-0.50, p=0.0097),
(C) 12 months’ post infection (r=-0.44, p=0.02) and (D) >36 months
(r=-0.46, p=0.0178).
FIGURE 4 | DNA methylation levels dictate BST-2 mRNA levels during HIV
disease. Baseline levels of 27 matched samples at varying time points across
disease progression show at the pre-infection higher methylation (Black) and
low BST-2 expression (Red), while at acute infection (3-month post infection)
methylation and expression levels are at similar level, due to IFN induction.
The BST-2 expression and methylation levels invert at 12 months’ post
infection. The most dramatic difference is observed at the >36 months
timepoint, these individuals are at a chronic phase of infection, at this time
point we observe the lowest expression and highest methylation.
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DISCUSSION

Here we show that expression levels of BST-2, a potent antiviral
cellular protein are negatively associated with viral loads in an
antiretroviral-naive cohort of women followed longitudinally from
acute HIV-1 infection. Similar results were obtained from an
ART-naive chronically infected cohort of participants with
unknown time of infection. BST-2 levels are lower in chronically
infected HIV individuals compared to uninfected persons,
however in longitudinally followed matched samples, BST-2
levels first increase significantly over baseline and then decline
slowly. We showed BST-2 expression and DNAmethylation levels
within the gene promoter region are negatively correlated. These
findings are consistent in HIV infected subjects in studies
performed ex vivo and in vitro. Moreover, we pharmacologically
altered BST-2 expression levels by manipulating methylation levels
with 5’-Aza-CdR, leading to an increase in BST-2 mRNA
expression, especially within cells with lower intrinsic BST-2 levels.

BST-2 levels have been shown to inhibit the production of
HIV-1 particles by hindering the release of virion progeny (5, 46).
However, HIV-1 has developed the ability to counteract this
mechanism through the accessory viral protein, Vpu. BST-2 is
trafficked from the viral budding sites on the cell surface by a Vpu-
mediated mechanism, which thereafter sequesters the host protein
to a perinuclear compartment (47). Vpu-null or defective viruses
are most prone to BST-2-mediated inhibition. Previous studies
have demonstrated that BST-2 surface levels are elevated during
Frontiers in Immunology | www.frontiersin.org 6
acute infection and then progressively decrease throughout the
stages of infection, even after initiation of ART (7, 8). In line with
these findings, we observed an elevation in mRNA expression of
BST-2 during acute infection both ex vivo and in vitro, with a
subsequent decrease observed by 36 months post HIV-infection.
The plasticity of BST-2 methylation observed suggests that
methylation levels are a strong regulator of BST-2 expression
even within a disease setting, although the mechanism
regulating the methylation levels requires investigation.

Due to sample availability, we used bulk PBMCs to measure
BST-2mRNA expression, rather than CD4+ T cells specifically. A
previous study measuring cell surface BST-2 showed no
differences in expression patterns between individual cells types,
PBMCs, mononuclear leukocytes, including CD4-positive, CD8-
positive T lymphocytes, B cells, across stages of HIV infection (7).
Although the level of mRNA expression does not always reflect
protein expression levels, our Western blot assay in a small
number of participants suggested a fair correlation. Sample
limitations prevented us from examining the correlation
between BST-2 mRNA levels and cellular surface expression,
however, previous studies have demonstrated the correlation
between these subsets (24, 48, 49). These studies have shown
that BST-2 mRNA and protein levels correlate in mice, monkeys
and humans. Furthermore, the studies also show specific tissues
and cell types have strong correlations. The effect is observed
across diseases (cancer, SIV, and Mouse mammary tumor virus)
and healthy human controls (24, 48, 49).
A B

DC

FIGURE 5 | BST-2 mRNA expression and methylation levels correlate in an in vitro viral replication assay, and treatment with a DNA hypo-methylation drug
increases BST-2 mRNA expression levels. (A) Individuals were pre-selected based on BST-2 expression levels for a HIV replication assay. PBMCs from HIV negative
donors (n=22) were infected with HIV IIIB viral strain, the amount of virus present was determined by measuring the p24 antigen using an ELISA assay.
Measurements of p24 for both high and low BST-2 donors were taken at days 2, 4 and 7. Donors with higher BST-2 levels (dotted line) had lower level of p24, while
donors with lower BST-2 levels (solid line) had significantly higher p24 levels (p<0.001). (B) A negative correlation was observed when comparing the HIV replication
levels against the BST-2 mRNA levels at day 7 from the in vitro HIV infection assay (r=-0.63, p=0.0019). (C) mRNA and DNA were used to measure BST-2
expression (red) and methylation levels (blue), respectively, from high and low BST-2 donors (n=22) at four time points during the viral replication assay, days 0, 2, 4
and 7. Within high BST-2 donors, we find high expression (red dotted line) associated with lower methylation (blue dotted line) and vice versa for low BST-2 levels,
where low expression (red solid line) associated with higher methylation (blue solid line). (D) PBMCs from HIV negative donors (n=40) were split into three subsets;
the first subset was treated with a DNA methyltransferase inhibitor that causes hypomethylation (5’-Aza-CdR), while the second subset was treated with DMSO.
Both subsets were incubated for 24 hours. BST-2 mRNA expression from 5’-Aza-CdR and DMSO treated cells were compared and plotted as a fold change against
BST-2 mRNA from an untreated time point (third subset), a significant correlation was observed (R=-0.46, p=0.0027).
May 2021 | Volume 12 | Article 669241

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Singh et al. Effect of BST-2 on HIV-1 Pathogenesis
It is plausible that other human HIV restriction factors could
be regulated through DNA methylation. Each factor contributing
toward the overall HIV disease outcome. Whole genome
methylation analysis on a pair of monozygotic twins with
discordant HIV status found several distinct differential
methylation regions in the HIV infected twins (50, 51).
Furthermore genome-wide methylation analysis of 85 unrelated
individuals with varying HIV statuses showed differential genome-
wide patterns which was associated with their ability to control
HIV replication (52). Future studies should focus on larger cohorts
of monozygotic twins or consider longitudinal studies such that
the changes in DNA methylation profiles may be followed up at
the different time points of HIV infection.

DNA methylation is just one of the mechanisms
contributing to the variation in BST-2 expression levels.
Another mechanism identified is a proposed regulatory
variant, rs12609479, located in the BST-2 promoter region,
which associated with decreased risk of acquiring HIV-1. The
rs12609479-A allele associated with increased BST-2 expression
and decreased risk of acquiring HIV-1 (53, 54). The 9 CpG sites
that were examined in this study did not contain any
polymorphisms and rs12609479 was not located in a CpG
site. Despite rs12609479 not being affected by methylation,
previous studies have shown diverse changes with respect to
minor allele frequency across various ethnic groups (55, 56).
Future studies are required to fully understand all the
contributing factors responsible for BST-2 expression
variation including methylation status across various ethnic
groups. Despite these limitations, we found a reproducible
association of BST-2 mRNA expression levels with HIV
control. Our results were further validated with in vitro data.

In conclusion, we reproducibly demonstrate BST-2
expression levels associate with HIV viral control within a
high disease burden setting. DNA methylation was shown to
regulate BST-2 levels and observed to associate with HIV
disease. The use of the demethylating drug 5’-Aza-CdR in
vitro resulted in increased BST-2 expression levels among
donors with low baseline expression levels. Thus, HIV control
through higher BST-2 expression levels, as determined in part
by decreased methylation, may suggest strategic mechanisms
for HIV cure therapy.
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