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Natural killer cell engagers gained enormous interest in recent years due to their potent
anti-tumor activity and favorable safety profile. Simultaneously, chicken-derived
antibodies entered clinical studies paving the way for avian-derived therapeutics. In this
study, we describe the affinity maturation of a common light chain (cLC)-based, chicken-
derived antibody targeting EGFR, followed by utilization of the same light chain for the
isolation of CD16a- and PD-L1-specific monoclonal antibodies. The resulting binders
target their respective antigen with single-digit nanomolar affinity while blocking the ligand
binding of all three respective receptors. Following library-based humanization, bispecific
and trispecific variants in a standard 1 + 1 or a 2 + 1 common light chain format were
generated, simultaneously targeting EGFR, CD16a, and PD-L1. The trispecific antibody
mediated an elevated antibody-dependent cellular cytotoxicity (ADCC) in comparison to
the EGFR×CD16a bispecific variant by effectively bridging EGFR/PD-L1 double-positive
cancer cells with CD16a-positive effector cells. These findings represent, to our
knowledge, the first detailed report on the generation of a trispecific 2 + 1 antibodies
exhibiting a common light chain and illustrate synergistic effects of trispecific antigen
binding. Overall, this generic procedure paves the way for the engineering of tri- and
oligospecific therapeutic antibodies derived from avian immunizations.

Keywords: bispecific antibody, trispecific antibody, NK cell engager, checkpoint inhibitor, common light chain
INTRODUCTION

With the FDA approval of blinatumomab in 2014, bispecific antibodies (bsAb), particularly those
bringing immune cells in spatial proximity to malignant tumor cells, raised further interest for
therapeutic application (1, 2). Their unique mechanism is based on the simultaneous binding of a
cancer-specific antigen on the surface of a tumor cell and a specific marker on the surface of
immune cells, activating the latter, leading to efficient killing of the malignant cells. Blinatumomab
is a tandem single-chain fragment variable (scFv) targeting CD19 on B cells of acute lymphoblastic
leukemia (ALL) patients and links them via its CD3 binding moiety to cytotoxic T cells (3). Even
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though blinatumomab was granted breakthrough therapy for the
treatment of ALL, its therapeutic usage is limited by the short
half-life of the molecule, leading to the need for continuous
infusion (4). Furthermore, the high potency of bispecific T-cell
engager (BiTE) molecules is associated with increased toxicity,
resulting in a narrow therapeutic window (5–9).

To overcome the toxic effects of T cell engagers, the concept
of natural killer (NK) cell engagers was created, based on their
anti-tumor activity (10, 11). NK cells express CD16a, also known
as FcgRIIIa, which binds with low affinity to the Fc parts of
antibodies (12, 13). Furthermore, engagement of CD16a is less
demanding compared to CD3 engagement due to lower steric
hindrances and additionally facilitated by the lack of accessory
molecules (14).

Upon recognizing a target cell decorated with antibodies, NK
cells mediate antibody-dependent cellular cytotoxicity (ADCC)
resulting in killing of target cells (15, 16). This naturally
occurring mechanism was utilized by Wiernik and coworkers
to generate a CD16×CD33 bispecific killer cell engager (BiKE)
showing effective engagement of CD33-positive cells by NK cells,
resulting in cytotoxic effects (17). This concept was further
optimized by implementing an IL-15 moiety within the linker
between both scFvs, resulting in a trispecific killer cell engager
(TriKE). The additional IL-15 moiety mediated superior NK cell
cytotoxicity, degranulation and resulted in increased NK cell
proliferation and survival (18).

Recently, Gauthier et al. introduced trifunctional natural
killer cell engagers (NKCEs) co-engaging not only CD16 but
also NKp46, another activating NK cell receptor, and a tumor-
specific antigen, yielding impressive outcomes in in vitro and in
vivo experiments while exhibiting an improved safety profile
when compared to BiTEs (19).

The epidermal growth factor receptor (EGFR), a member of
the ErbB family, is expressed in a variety of cancers, including
lung cancer, bladder cancer, and colorectal cancer, where it is
associated with tumor progression and metastasis (20). Upon
binding to its receptor, the epidermal growth factor (EGF)
promotes cell proliferation and survival (21). Multiple
bispecific diabodies targeting EGFR×CD16a have been
engineered (14, 22) and recently, AFM24, a tetravalent
bispecific EGFR×CD16a targeting molecule, entered clinical
testing in a phase I/II study (NCT04259450). Even though
BiKEs and TriKEs exhibit extraordinary favorable properties,
their therapeutic usage is limited by their short half-life.

Notably, NK cell activity can be negatively influenced by
immune checkpoints (23). The PD-1/PD-L1 axis is of major
interest as it is an immune checkpoint for T cells (24–26) as well
as for NK cells (27–29). Originally described as an immune
checkpoint for T lymphocytes, the inhibition of the PD-1/PD-L1
axis showed tremendous effects in clinical applications (30–32).
In many malignant cancers, PD-L1 is upregulated to overcome
the immune surveillance (33, 34). EGFR, on the other hand, is
naturally expressed on epithelial cells in the skin and the lung
(35–37), but becomes overexpressed in many tumors of epithelial
origin, where it mediates cell proliferation and survival. This lack
of tumor specificity accounts for on-target/off-tumor side effects
Frontiers in Immunology | www.frontiersin.org 2
in immunotherapeutic treatments (38–40). Koopmans and
coworkers generated a bispecific EGFR×PD-L1 antibody,
blocking the PD-L1 immune checkpoint in an EGFR-
dependent manner, resulting in a potentially favorable safety
profile. Bispecific EGFR×PD-L1 antibodies showed a superior
tumor uptake compared to the MOCK×PD-L1 control antibody
in xenografts (41).

As EGF signaling can induce PD-L1 upregulation in tumor
cells, thereby shielding the tumor from the immune system, co-
expression of both proteins occurs predominantly on cancer cells
(42–44). To specifically target those cells, we strived to generate a
trispecific anti-EGFR×CD16a×PD-L1 antibody. We chose an Fc-
based approach, due to the significantly prolonged half-life
mediated by the size, which prevents renal clearance, and the
recycling process mediated by the binding to the neonatal Fc
receptor (FcRn).

Bacac and coworkers generated a trivalent, bispecific
CEA×CD3×CEA antibody (45). In this 2 + 1 molecule, an
additional anti-CEA Fab was N-terminally fused to the anti-
CD3 Fab of a bispecific 1 + 1 CEA×CD3 antibody.
Heterodimerization of the heavy chains was ensured by the
Knob-into-Hole (KiH) technology, while light chain pairing was
mediated by the CrossMab technology (46, 47). The resulting 2 + 1
T-cell bispecific (TCB) antibody was termed cibisatamab and is
currently in phase I clinical testing (NCT03866239).

Based on that design, we aimed to generate a trispecific
antibody based on a bispecific EGFR×CD16a antibody. The
anti-PD-L1 arm should be N-terminally fused to the CD16a-
binding Fab (Figure 1), as the immune engaging moiety displays
a favorable safety profile in this “inner” position (48–50). While
the EGFR-specific Fab blocks EGF signaling, the PD-L1-specific
Fab can inhibit immune checkpoints and, in combination, both
could facilitate an enhanced tumor selectivity. Binding to EGFR/
PD-L1 may mediate clustering on target cells, leading to efficient
CD16a clustering on effector cells and, therefore, results in
potent cytotoxic activity.

The heterodimerization of the heavy chains can easily be
achieved by utilizing the Knob-into-Hole technology (51).
However, light chain pairing remains a major challenge. While
bispecific 1 + 1 antibodies yield 25% of correctly paired
antibodies if the light chain association is non-directed
(Supplementary Figure 1), in trispecific 2 + 1 antibodies, only
~3.7% of the resulting antibodies are correctly paired (Figure
1A). Technologies like orthogonal Fab interfaces (52) or the
CrossMab technology (46) can be used to circumvent this issue,
but the most straightforward approach is the utilization of a
common light chain, which pairs with all three VH-CH1
moieties and still results in fully functional binding entities
(Figure 1B).

We recently showed that immunization of chickens enables
the isolation of common light chain antibodies targeting a broad
epitope space (53), and that these antibodies can be assembled in
a heterodimerized manner resulting in biparatopic antibodies
comprising cLCs (54). Furthermore, we demonstrated a
straightforward method for humanization of chicken-derived
molecules (55). Here, we describe the affinity maturation of an
May 2021 | Volume 12 | Article 669496
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anti-EGFR cLC-based antibody by light chain shuffling and
utilization of the resulting light chain as a new common light
chain to generate anti-CD16a and anti-PD-L1 antibodies. After
humanization, we generated the first humanized bi- and
trispecific chicken-derived antibodies, simultaneously targeting
EGFR, CD16a, and PD-L1 resulting in a strong antibody-
dependent cytotoxic effect.
RESULTS

Anti-EGFR Fab: Affinity Maturation
by Light Chain Shuffling
Recently, we isolated a chicken-derived EGFR-specific antibody
termed FEB4 from an immune library comprising a restricted light
chain diversity. The respective antibody showed affinity in the
lower-double-digit nanomolar range, targeted a conformational
epitope on EGFR domain III, exhibited an overlapping binding site
with matuzumab, and inhibited EGF binding to its receptor (54).
Due to its ability to block EGF binding to its receptor, as well as
targeting a proximal binding site to the intensively investigated
matuzumab epitope, we chose FEB4 as a starting molecule.

Since yeast surface-displayed (YSD) FEB4 showed significant
binding to EGFR even at 1 nM antigen concentration when
paired with other unrelated light chains (54), we thought of a
light chain shuffling-based affinity maturation approach.

In this approach, the antigen binding of the heavy chain is
strongly reduced by introducing mutations to the CDRs.
Subsequently, by pairing this impaired heavy chain with a diverse
light chain library, variants with restored binding ability might be
Frontiers in Immunology | www.frontiersin.org 3
isolated, where light chain residues compensate for the disrupted
heavy chainCDRs. If this light chain is subsequently pairedwith the
original heavy chain, the additional binding-mediating residues of
the light chain could lead to higher affine binding (Figure 2A).

To test this hypothesis, two residues in the CDR-H2 (D54E
and T58V) and two residues in the CDR-H3 (N105Q and
D109E) were substituted, giving rise to the disrupted-FEB4-VH
(dFEB4), resulting in nearly eradicated antigen binding
(Supplementary Figure 2A). Nonetheless, antibody production
yields as a full-length IgGmolecule, as well as its ability to display
on yeast cells, remained unchanged after residue replacement.
The mutations were chosen to have no major impact on
electrostatic charge or hydrophobicity of the paratope, but only
introduce steric hindrances to prevent EGFR binding.

In order to generate a light chain library, the VL genes were
amplified from cDNAderived from the EGFR-immunized chicken
fromwhich theFEB4VHgeneoriginated (54, 56).The genes forVL
domains were inserted into a pYD1-derived vector encoding a
human lambda CL by homologous recombination in BJ5464 yeast.
Library generation resulted in 2.9×108 transformants, ensuring
sufficient oversampling of the potential diversity. Subsequently,
this light chain diversity in BJ5464 yeast cells was combined with
EBY100 yeast cells encoding the dFEB4 VH-CH1 transcript by
yeast mating. The resulting diploid common heavy chain library
was screened for binding to EGFR-ECD-Fc chimera via FACS
(Supplementary Figure 2B).

Following the first sorting round, a large population of yeast
cells displaying EGFR-specific antibodies was enriched. A kinetic
off-rate screening utilizing 1 nM EGFR-ECD-Fc competing with
1 µM His-tagged EGFR-ECD was performed to ensure the
FIGURE 1 | Possible light chain pairing combinations and structural model of trispecific antibodies. (A) In 2 + 1 trispecifics, 27 different light chain pairing
combinations are possible, resulting in only ~3.7% correctly paired antibodies. The correctly paired variant is highlighted. (B) Structural model of a 2 + 1 trispecific
antibody exhibiting common light chains to circumvent light chain mispairing. Intended functionalities are depicted.
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isolation of affine variants. Five unique antibody variants were
identified and analyzed by flow cytometry for EGFR binding
(Supplementary Figure 3A). All variants showed a significant
binding at low antigen concentrations and exhibited diverse VL
sequences comprising different CDR lengths and amino acid
compositions (Supplementary Figure 3B). VL sequences were
reformatted into pTT5-derived vectors for mammalian cell
expression encoding the lambda CL sequence by Golden Gate
Cloning and co-transfected in Expi293F cells with a pTT5 vector
encoding the parental FEB4 heavy chain. Biolayer interferometric
(BLI) measurements of sterile filtered cell culture supernatants
revealed that, except for one variant, all light chains mediated an
elevated affinity compared to the parental antibody
(Supplementary Figures 3C, D). The variant with the highest
affinity was chosen, which exhibited an affinity of 6.4 nM after
Protein A chromatography purification, representing a five-fold
improvement in KD value (Figure 2B). This heavy chain – light
chain combination was termed dFEB4-1.

Subsequently, dFEB4-1 was analyzed via size exclusion
chromatography (SEC), resulting in an improved profile
compared to the parental variant since no aggregates could be
detected (Supplementary Figure 3E). Thermal stability was
analyzed using NanoDSF, showing that dFEB4-1 exhibited a
slightly higher TM value compared to the parental antibody
(Supplementary Figure 3F).

Biolayer interferometric measurements revealed no epitope
drift, as dFEB4-1 targeted the same epitope as the parental FEB4
mAb, exhibiting an overlapping epitope with matuzumab, but
not with cetuximab (Supplementary Figure 4). These results are
in accordance with previous binning experiments performed
with the parental antibody variant (54). Additionally, BLI
measurements showed that EGF interferes with the ability of
dFEB4-1 to bind EGFR (Figure 3A), comparable to the parental
molecule or cetuximab (54). Furthermore, dFEB4-1 was able to
Frontiers in Immunology | www.frontiersin.org 4
inhibit EGF-induced phosphorylation of AKT in EGFR-positive
A549 cells (Figure 3B).

Taken together, these results indicate that dFEB1-VL exhibits
more favorable biophysical properties in terms of affinity and
stability, while no epitope drift was observed. Therefore, dFEB1-
VL was chosen as a novel common light chain for all subsequent
sorting approaches to isolate binding molecules against CD16a
and PD-L1.

Chicken Immunization and Library
Generation
CD16a for chicken immunization was produced in-house as two
variants. The first one was a bivalent N-terminal Fc-fusion, where
the Fc exhibited the P329G LALA and the N297A mutation to
circumvent Fc-binding by the CD16a moiety, which would have led
to aggregation (57, 58). The second variant was a monomeric
CD16a protein with an N-terminal His-tag and a C-terminal
TwinStrep-tag. Both constructs were expressed in Expi293F cells
and purified either using Protein A chromatography or Strep-Tactin
XT columns, respectively according to the manufacturer’s
description. Immunization was started utilizing Fc-tagged CD16a,
and after two doses, the animal was boosted with monomeric
CD16a, resulting in high titer values for both antigens.
Additionally, a second chicken was immunized with commercially
available PD-L1-Fc chimera (PeproTech), also leading to a high
antibody titer after four immunizations (Supplementary Figure 5).

Library generation yielded in 7.1×109 or 6.5×109 transformed
yeast cells for the CD16a and PD-L1 libraries, respectively.
Simultaneously, the dFEB1-VL light chain-encoding pYD1
plasmid was transformed into BJ5464 yeast cells. Both haploid
yeast cell populations were subsequently mated, resulting in
diploid yeast cells displaying VH domains from either the
CD16a- or the PD-L1-immunized chicken, paired with the
previously described dFEB1-VL common light chain.
A

B

FIGURE 2 | Affinity maturation of EGFR-binding FEB4 (A) Schematic representation of light chain shuffling approach. The mutations in the CDR-H2 and CDR-H3
disrupt the binding to EGFR. By shuffling with a light chain immune repertoire derived from EGFR-immunized chicken by yeast mating and FACS sorting, an affinity
maturated variant was isolated. (B) BLI affinity measurements of FEB4-derived antibodies at different maturation steps.
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Anti-CD16 Fab Library: Screening and
Characterization
The yeast library was sorted over three rounds against CD16a-Fc
and monomeric CD16a, resulting in the enrichment of a binding
population (Supplementary Figure 6A). Sequence analysis of
twenty randomly chosen clones revealed 17 different VH
sequences. All variants were reformatted using Golden Gate
Cloning as described before (53), utilizing an aglycosylated
N297A Fc to circumvent CD16a:Fc-interactions. All 17
variants were loaded onto AHC BLI biosensors and tested for
Frontiers in Immunology | www.frontiersin.org 5
specific antigen binding. The best-performing variant NKE14
specifically bound both human CD16a isoforms with 5.6 nM or
5.9 nM affinity, respectively (Supplementary Figure 6B).
Furthermore, NKE14 exhibited an excellent aggregation profile
in SEC experiments, as well as a notable TM value as determined
by NanoDSF (Supplementary Figures 6C, D).

In vivo, CD16a recognizes Fc portions of target-bound IgG1
antibodies, leading, upon CD16a clustering, to an efficient ADCC
response. To investigate, whether the epitope of NKE14 on CD16a
overlaps with the Fc recognition site, an epitope binning experiment
A B

D

C

FIGURE 3 | Ligand-receptor blockage of isolated cLC-mAbs. (A) BLI-assisted EGF-inhibition assay. Immobilized dFEB4-1 binds to EGFR at different EGF concentrations,
revealing a dose-dependent binding. (B) Western blot analysis of inhibition of EGF-induced phosphorylation of AKT in A549 cells. 50 µg/mL dFEB1-4 and 10 ng/mL EGF
were utilized. The western blot was performed three times, yielding reproducible results. (C) Epitope determination of NKE14. Immobilized NKE14 binds to CD16a at
different scFv-Fc concentrations. CD16a:Fc-binding led to diminished binding of NKE14 to CD16a in a dose-dependent manner. (D) PD-1:PD-L1 interaction inhibition
assay. Immobilized ICI2, ICI12, ICI13, or durvalumab binding to PD-L1 at different amPD-1-Fc concentrations, revealing dose-dependent binding.
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in the premixed setup was performed in a dose-dependent manner.
NKE14 was loaded onto Fab2G biosensors and was subsequently
exposed to high binding CD16a 176V isotype pre-incubated with
different molar ratios of an unrelated scFv-Fc fusion, which
contained a glycosylated Fc, allowing for CD16a binding. The
binding of the Fc fusion by CD16a impaired the binding of
NKE14 to CD16a in a dose-dependent manner, indicating that
NKE14 binds to an epitope that is also involved in the interaction of
CD16a with Fc regions (Figure 3C).

Anti-PD-L1 Fab Library: Screening
and Characterization
The PD-L1 library was sorted for two rounds utilizing
consecutively 1 µM and 250 nM of His-tagged PD-L1 (R&D
systems) until a clear enrichment of binders was observed
(Supplementary Figure 7A). In order to isolate mAbs capable
of inhibiting the interaction between PD-L1 and PD-1, an epitope
binning-based screening was applied as previously described (54).
Therefore, the enriched library was stained with 10 nM
biotinylated PD-L1 to ensure the staining of high affine binders.
To isolate only antibodies able to block the interaction between
PD-L1 and PD-1, 100 nM of the FDA-approved anti-PD-L1
antibody durvalumab with a known epitope was applied to the
library. Double-positive yeast cells for PD-L1 and durvalumab are
indicative for surface-displayed Fabs that target a non-overlapping
epitope with durvalumab (Supplementary Figure 7B).
Conversely, the sorting gate was applied to isolate yeast cells
exhibiting a chicken-derived Fab fragment that does bind PD-L1
but is not interacting with durvalumab, as those are expected to
compete with durvalumab for binding to related epitopes on PD-
L1 (Supplementary Figures 7C, D). VH genes of this population
were amplified after plasmid isolation and reformatted into IgG1
LALA chimeric antibodies by Golden Gate cloning. Sanger
sequencing revealed five unique clones that were subsequently
produced in Expi293F cells and purified by Protein A
chromatography. Three out of these five immune checkpoint
inhibitor variants (ICI), termed ICI2, ICI12 and ICI13, bound
PD-L1 with affinities ranging from 3.0 nM to 5.8 nM, and
therefore the non-binding variants ICI7 and ICI15 were omitted
from further analysis (Supplementary Figure 8A). Biophysical
characterization showed excellent aggregation behavior of all three
remaining variants, as well as prominent thermal stabilities
(Supplementary Figures 8B, C).

For further functional characterization, an affinity-matured PD-1
variant (amPD-1/HAC-V), which was described by Maute and
coworkers (59), was produced as a bivalent Fc-fusion protein in
Expi293F cells and purified by Protein A chromatography. BLI
experiments revealed an affinity of 3.5 nM towards PD-L1,
underlining its significantly elevated affinity compared to wild type
PD-1, with a KD value determined to be between 4 µM and 7 µM
(Supplementary Figure 8A) (60, 61). This high affine variant was
utilized to measure antibody-mediated ligand receptor blockage.

Fab2G tips were loaded with the respective anti-PD-L1
antibodies, either chicken-derived or durvalumab as a positive
control, and subsequently associated to 250 nM PD-L1
preincubated with different concentrations (0 nM up to 1000
nM) of amPD-1-Fc. All isolated antibodies showed significantly
Frontiers in Immunology | www.frontiersin.org 6
impaired binding to PD-L1 in the presence of amPD-1-Fc in a
dose-dependent manner comparable with durvalumab,
indicating that all isolated antibodies target the interaction site
of PD-1 and PD-L1 (Figure 3D).

Furthermore, an epitope binning in the in-tandem setup was
performed with PD-L1 immobilized on Ni-NTA biosensors,
followed by ICI2, ICI12, ICI13, or durvalumab. Subsequently,
all mAbs of interest and amPD-1-Fc were applied, revealing that
all antibodies share an overlapping epitope with each other and
the PD-1 interaction site, confirming the YSD-assisted epitope
binning-based screening as well as the blockage assay
(Supplementary Figure 9). Since ICI2 revealed the highest
affinity towards PD-L1 and exhibited promising blocking
properties, it was chosen for further engineering.

Humanization
For therapeutic usage, avian-derived antibodies are unsuitable due
to their high immunogenicity, likely resulting in anti-drug-
antibodies (ADA), which diminish the effectiveness of
therapeutic mAbs (62). To circumvent this problem, our group
previously established a YSD-based humanization strategy (55). In
brief, the CDRs of the chicken-derived antibody are grafted onto a
human acceptor framework with simultaneous randomization of
Vernier residues, critical for CDR orientation. A YSD library is
generated and displayed on the surface of yeast cells. The most
affine humanized variants can be isolated via FACS.

Since dFEB4-1, NKE14, and ICI2 all comprise an identical
common light chain, a simultaneous humanization might not
lead to identical light chains regarding the Vernier residues.
Therefore, dFEB4-1 was humanized first. Over two rounds of
sorting, including a kinetic off-rate screening, humanized
variants were enriched (Supplementary Figure 10A). Of ten
randomly chosen clones, seven unique variants were identified,
which were subsequently reformatted into a chimeric IgG1
format and verified for effective target binding (Supplementary
Figure 10B). The variant hdFEB4-1-4 displayed the highest
affinity with 23.5 nM. It was analyzed in a SEC experiment
and revealed an excellent aggregation profile (Supplementary
Figure 10C). Additional measurements of thermal stability
underlined the notable stability. (Supplementary Figure 10D).
The light chain of hdFEB4-1-4 was therefore chosen as a fixed
common light chain for the further humanization of the VH
domains of NKE14 and ICI2. Therefore, these libraries only
comprised randomized Vernier residues in the VH domains.

For both libraries, three rounds of sorting with decreasing
concentration of the respective antigen were sufficient to enrich
humanized binders (Supplementary Figures 11A, B). Plasmids
were isolated from the enriched populations, VH sequences were
amplified by PCR and subsequently inserted into pTT5-derived
expression vectors exhibiting an IgG1 LALA Fc by Golden Gate
cloning. Sequencing revealed three unique humanized variants for
the hNKE14-library and six unique variants for the hICI2-library.
All respective variants were produced in Expi293F cells and
purified by Protein A chromatography, followed by subsequent
affinity determination using BLI (Supplementary Figures 12A, B).
The hNKE14 variants displayed affinities in the range of 15.5 nM to
25.7 nM, while the hICI2-variants exhibited binding affinities
May 2021 | Volume 12 | Article 669496
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between 1.8 nM and 3.2 nM, which was marginally elevated
compared to the parental ICI2 chicken-derived mAb. Based on
their KD values, as well as excellent aggregation behavior and high
thermal stability (Supplementary Figures 12C–F), hNKE14-8 and
hICI2-3 were chosen for subsequent use.

Construction and Characterization of
Bispecific and Trispecific cLC Antibodies
The humanized Fab fragments were subcloned into a bispecific 1 +
1 and a trispecific 2 + 1 format via Golden Gate Cloning. The Fc
fragments exhibited a Knob-into-Hole mutation to force
heterodimerization of the heavy chains. Furthermore, a His-tag
was cloned C-terminally to the Hole- and a TwinStrep-tag was
C-terminally fused to the Knob-Fc to allow a two-step purification
yielding only correctly assembled heterodimeric antibodies as
previously described (54). As controls, one-armed hdFEB4-1-4
and hNKE14-8 variants were cloned following identical
architecture. To circumvent CD16a interaction with the Fc, the
LALA mutation was applied to all produced heterodimeric
antibodies. All variants were produced in Expi293F cells and
purified by IMAC, followed by StrepTactin XT chromatography.
Furthermore, monovalent one-armed (oa) variants of hdFEB4-1-4
(oahdFEB4-1-4) and hNKE14-8 (oahNKE14-8), exhibiting His-
and TwinStrep-tags, were cloned and produced identically.

SDS-PAGE analysis under reducing conditions showed the
expression of similar amounts of both heavy chains, indicating
Frontiers in Immunology | www.frontiersin.org 7
correct pairing of all produced bi- and trispecific molecules
(Supplementary Figure 13A). Additionally, a SDS-PAGE under
non-reducing conditions was performed, revealing a single band at
~200 kDa, which is 50 kDa, the size of a single Fab arm, larger
compared to the bispecific mAb under the same conditions. This
verified the correct size of the trispecific antibody as well as the
success of the purification process (Supplementary Figure 13B).

Hydrophobic interaction chromatography (HIC) was
performed comparing the bispecific and trispecific variant.
While trispecific antibodies eluted at a later retention time, it
showed a uniform peak indication no semi-paired species like
half antibodies, Hole-Hole homodimers or missing light chains
(Supplementary Figure 14A). SEC analysis revealed little
aggregation and a high uniformity of the analytes
(Supplementary Figure 14B). Comparing the retention times
with a molecular weight standard underlined the correct size of
the produced variants, which is in accordance to the SDS-PAGE
analysis (Supplementary Figure 14C).

BLI measurements were performed to determine the affinity of
the respective antibodies to all three targets of interest. Variants
hdFEB4-1-4, hNKE14-8, and hICI2-3 only bound their respective
antigen and showed no binding to any other target of interest. The
bispecific hdFEB4-1-4×hNKE14-8 bound EGFR and CD16a with
an affinity comparable to its humanized parental variants and
displayed no affinity towards PD-L1. Only the trispecific variant
was able to bind all three antigens with high affinity (Figure 4).
FIGURE 4 | BLI-measurements of humanized mono-, bi-, and trispecific antibodies against EGFR, CD16a, and PD-L1. While all antibodies bind exclusively to their
respective target with distinguished affinity, the trispecific antibody binds all three antigens.
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To mediate EGFR- and PD-L1-blockage, as well as effector cell
recruitment, simultaneous binding of all target proteins is crucial.
To test this mode of action, the antibodies of interest were loaded
onto AHC biosensors and subsequently incubated in a consecutive
mannerwith all three target proteins of interest, adding one antigen
at a time. While hdFEB4-1-4, hNKE14-8, and hICI2-3 again
showed only binding towards their respective target protein
(Supplementary Figure 15), the bispecific variant showed
simultaneous binding to EGFR and CD16a. Solely the trispecific
variant was able to simultaneously bind all antigens at the same
time, revealing true trispecific binding modalities (Figure 5).

As the trispecific antibody is intended to facilitate an elevated
tumor specificity due to simultaneous binding to EGFR and PD-L1
compared to the bsAb solely targeting EGFR, cell-binding
experiments were performed on EGFR/PD-L1 double-positive
A431 cells using flow cytometry as described before (55)
(Supplementary Figure 16A). Due to its bivalency, the trispecific
constructs exhibited a stronger cell binding, in comparison to the
bispecific variant (Supplementary Figure 16B).

Cell-Based PD-L1 Blockage Reporter
Assay
To verify the PD-L1 blocking activity of the generated antibodies
in a cell-based context, the Promega PD-L1 blockage assay kit
was utilized. hICI2-3 showed efficient blockage of the PD-1:PD-
L1 interaction comparable to durvalumab, underlining its
Frontiers in Immunology | www.frontiersin.org 8
prominent feature as a checkpoint inhibitor. The trispecific
antibody showed significant PD-L1 blocking, even though to a
less dominant effect compared to hICI2-3. This diminished EC50

value most probably originates in the monovalent binding of PD-
L1 by the trispecific antibody, compared to the bivalent binding
of the parental hICI2-3. The bispecific anti-EGFR×CD16a
antibody, lacking the PD-L1 specific binding arm, does not
interfere with the PD-1:PD-L1 interaction even at high
concentrations (Figure 6A).
Antibody-Dependent Cell-Mediated
Cytotoxicity Reporter Assay
To investigate immune cell stimulation and efficiency of cell
killing comparing the different antibody variants, the Promega
ADCC luminescent reporter assay was used. As target cells,
EGFR/PD-L1 double-positive A431 cells were utilized. The
oahdFEB4-1-4 and oahNKE14-8 variants, as well as hICI2-3,
all exhibiting the LALA mutation, as expected failed to mediate
ADCC effects at high concentrations. The bispecific variant,
simultaneously binding to EGFR on A431 target cells and
CD16a on effector cells, mediated an ADCC effect that showed
a significantly higher fold of induction than the bivalent hdFEB4-
1-4 exhibiting a wild type IgG1 Fc. This indicated the effector cell
engaging properties of the hNKE14-8 Fab fragment in a
bispecific construct. The trispecific antibody, able to
FIGURE 5 | Characterization of bi- and trispecific humanized antibodies. BLI-assisted simultaneous binding assay. The bi- or trispecific antibodies were loaded onto
biosensors, and antigens are added step-wise, revealing EGFR×CD16a bispecific or EGFR×CD16a×PD-L1 trispecific binding, respectively.
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additionally bind PD-L1 simultaneously to EGFR and CD16,
showed the most potent ADCC effect, presumably due to
bivalent target cell binding (Figure 6B).
DISCUSSION

In this study, we established a generic straightforward method to
generate humanized bi- and trispecific common light chain
antibodies derived from chicken and describe the first trispecific
antibody utilizing a single cLC. To this end, we applied a novel,
straightforward method for the affinity maturation of cLC-based
heavy-chain only binders by light chain shuffling. Furthermore, we
illuminate the usage of yeast surface display-assisted epitope-
binning based screening (54), to identify highly potent immune
checkpoint inhibitors.

While the six CDRs comprise 40 to 50 residues, previous studies
demonstrated that only 18-19 amino acids shape the paratope and
are involved in antigen binding (63–67). Usually, these residues are
distributed between the heavy and light chain CDRs, but since FEB4
VH tolerates combination with various unrelated VL domains (54),
the crucial residues are located in the heavy chain CDRs. Light chain
shuffling is a commonly used method to improve antibody affinity
(68, 69). To simplify the screening procedure, we deliberately
Frontiers in Immunology | www.frontiersin.org 9
introduced affinity lowering mutations in the FEB4 CDRs to be
able to screen for regain of high affinity upon combination with
novel light chains. After reverting the VH CDRs to the wildtype
sequence, an affinity matured variant was generated, where the VL
contributes to antigen binding. Even though the change in affinity is
only five-fold, this affinity maturation process could be a valuable
addition to the armory of light chain shuffling-based affinity
maturation approaches.

We recently described a YSD-assisted epitope binning-based
screening approach to isolate anti-EGFRantibodies exhibitingnon-
overlapping epitopes to generate a biparatopic antibody (54). In this
study,wemodified that approach to isolate antibodies exhibiting an
overlapping epitope with the therapeutic antibody durvalumab.
Durvalumab is an FDA-approved antibody that binds an epitope of
PD-L1 that efficiently disrupts PD-L1/PD1 interaction. Hence, we
aimed at isolating common light chain binders from chickens
recognizing a durvalumab-like epitope. Epitope binning
experiments utilizing BLI proved that a panel of cLC antibodies
was isolated and that these mAbs can effectively inhibit the
interaction of PD-1 and PD-L1. This straightforward method
could be applied to generate blocking antibodies against
numerous immunoligands in an epitope-specific screening.

Our group previously showed that chicken-derived immune
libraries, exhibiting common light chains can successfully be
A

B

FIGURE 6 | PD-1/PD-L1 blockage and ADCC cell-based reporter assays. (A) PD-1/PD-L1 blockage assay. hICI2-3 (pink), durvalumab (gray) were tested in
comparison to the trispecific construct (blue) and the bispecific construct (green). EC50 values: durvalumab, 586 pM; hICI2-3, 728 pM; trispecific, 5.2 nM. (B) ADCC
reporter bioassay. Bivalent hdFEB4-1-4 with a wildtype IgG1 Fc (red) and the bispecific construct with the LALA mutation were tested in comparison to the trispecific
antibody. As controls, one-armed hdFEB4-1-4 (orange), one-armed hNKE14-8 (black), and hICI2-3 were tested. EC50 values: hdFEB4-1-4 (wtFc), 271 pM, bispecific
antibody, 362 pM; trispecific antibody, 7.0 pM. A&B) Luciferase activity is plotted against the logarithmic antibody concentration. All measurements were performed
in duplicates, and the experiments were repeated at least three times, yielding similar results.
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screened to isolate high affine binders targeting a large epitope
space (53) and that these cLC mAbs can be utilized to construct
biparatopic/bispecific antibodies exhibiting improved properties
compared to their parental, monospecific counterparts (54). As
those molecules were still of avian germline origin, we
established an expeditious humanization technique, based on
CDR-grafting and randomization of Vernier residues, to
generate humanized antibodies with parental-like properties,
high germline identity and low number of T cell epitopes (55).
This strategy was used here for the first time to generate
humanized bi- and trispecific molecules starting from
avian antibodies.

The 2 + 1 antibody format, often utilized in the context of TCBs,
has been used for various bispecific antibodies and applications (45,
48, 50, 70–73). These TCBs share a common architecture, as the
CD3-engaging Fab fragment is located directly on the Fc, N-
terminally fused to an additional Fab arm. The other two Fab
arms bivalently bind to the tumor cells. We adopted this general
architecture and placed the CD16a-binding Fab armdirectly on the
Fc, N-terminally fused to the anti-PD-L1 Fab arm (Figure 7). The
utilizationof aCD16a-bindingmoiety, in contrast to aCD3binding
one could positively contribute to the safety profile of themolecule,
as CD3 engagement is often associated with cytokine release
syndromes and cytokine storms (74). However, there is a more
profound clinical experience with CD3-specific antibodies. The
CD3-specific antibody muromonab was the very first approved
antibody in 1985, and with catumaxomab and blinatumomab, two
CD3-specific bsAb were approved by the FDA (3, 75, 76). CD16a-
specific antibodies, on the other hand, are in preclinical stages and
Frontiers in Immunology | www.frontiersin.org 10
only one CD16a-engager, AFM24, recently entered phase I/II
studies (NCT04259450). Future clinical studies will reveal the
true potential and safety profile of CD16a-engaging bi- and
trispecific antibodies.

Notably, the inner anti-CD16a Fab arm of the trispecific
construct exhibits binding kinetics similar to the parental
monospecific antibody as well as to the bispecific variant. The
ability to accept a N-terminal Fab-based fusion partner is most
probably dependent on the shape of the paratope of the inner
Fab. Prior studies utilizing tandem Fabs or 2 + 2 bispecifics found
that for some mAbs their affinity is slightly decreased in this
inner position, while for other antibodies no major impact on
affinity was observed (77–82). This underlines the suitability of
the hNKE14-8 Fab arm to be used in this 2 + 1 architecture.
However, future studies need to test different trispecific formats
and arrangements of cLC Fabs to elucidate the perfect domain
orientation to facilitate the maximal efficacy.

In TCBs that made their way to the clinic, the correct light
chain pairing is mediated by application of the CrossMab
technology (45, 83, 84). Even though this positively contributes
to the correct pairing, some antibodies may exhibit scrambled
light chains and are challenging to purify from the correctly
assembled pool. Moreover, antibody production requires
expression of two heavy and two light chains and finding a
production cell line with the desired expression level of all four
strands to maximize yield and correct assembly can be a
challenging task. In our approach, a single common light chain
is utilized, circumventing additional engineering of the Fab and
solely resulting in correctly paired light chains.

While bivalent binding has a positive effect on target cell
engagement (70), it does not allow for a more defined selection of
tumor cells. By utilizing two different Fab arms against EGFR
and PD-L1, the trispecific molecule of this study might exhibit
elevated tumor selectivity. Koopmans and coworkers
demonstrated that an EGFR×PD-L1 bispecific antibody
showed an elevated tumor specificity and tumor uptake
(Figure 7) (41). Furthermore, the blockage of the PD-1:PD-L1
axis contributes to NK cell and T cell-mediated killing, as it is an
immune checkpoint for both cell types (24–29).

However, in complex molecules like trispecific antibodies
with intended synergistic effects, the affinity of the single Fab
arms and their interplay might have a significant impact on
safety and efficacy. To translate this molecule to further
preclinical studies, the affinities of the anti-EGFR and anti-PD-
L1 arms might need to be optimized to facilitate a maximal
discrimination between single positive healthy cells and double
positive malignant cells, while the blocking activity of both Fabs
should not be compromised. Furthermore, the affinity of the
anti-CD16a Fab might need to be adjusted to facilitate an
optimal NK cell engagement with reasonable activation in
respect to safety. While plenty of affinity tweaking technologies
are described in literature (85–88), this is beyond the scope of
this proof of concept study.

Furthermore, theutilizationof aneffector competent or a (glyco-)
engineered Fc combined with the 2 + 1 architecture couldmediate a
stronger NK cell activation due to avidity in CD16a binding.
FIGURE 7 | Schematic representation of the intended mode of action of the
trispecific checkpoint inhibitor and natural killer cell engager. As EGF-binding
is blocked, downstream signaling is inhibited. Simultaneously, PD-L1 is
blocked, inhibiting interaction with PD-1 on T cells and NK cells. PD-L1
inhibition facilitates T cell-mediated cytotoxicity against the tumor. While the
simultaneous binding of EGFR and PD-L1 mediates an elevated tumor
specificity, the recruitment of cytotoxic NK cells via CD16a engagement,
paired with checkpoint inhibition, leads to an effective ADCC reaction.
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However, thismight also lead to crosslinkingof aneffector cell bound
by the Fab to a second effector cell bound to the Fc, resulting in target
cell independent activity, as known from bivalent CD3-targeting
antibodies (89). To circumvent this risk, many NK cell engagers in
the literature bind toCD16a inmonovalent fashion (14, 17, 18). One
the other hand, a competent or a (glyco-)engineered Fc in
combination with a 1 + 1 bsAb can effectively engage NK cells
(90). Still, NK cell activity is also dependent on the distance between
the target and the effector cell (91–93). Therefore, depending on the
epitope of a tumor-specific Fab, an adjacent anti-CD16a Fab arm
engagingNKcellsmightmediate amore favorable target:effector cell
distance compared to the an Fc. Furthermore, the generation of a
stable glycoengineered cell line for the production of antibodies
is laborious and analysis of antibody glycoforms remains complex
(94–96). Nevertheless, this study presents a modular and
straightforward method to generate human trispecific cLC
antibodies, not limited to NK cell engagers, therefore paves the
way for all kinds if 2 + 1 antibodies not restricted to certain antigens.

Geiger et al., recently demonstrated an elegant way to further
elevate tumor specificity in the 2 + 1 format by fusing an anti-
idiotypic scFv masking the CD3 binding Fab. Only after tumor-
associated proteolytic cleavage of the linker, the CD3-specific Fab is
unmasked and able to engage T cells, resulting in an elevated safety
profile (97). A second possible engineering strategy to further
elevate tumor specificity is to incorporate tumor-specific antigen
binding. Mimoto and coworkers recently presented an antibody
that bound hIL-6R only in the presence of ATP, which is found in
high concentrations in the tumor microenvironment (TME), but
only in low concentrations in healthy tissue (98). An additional
method to elevate tumor specificity is to incorporate pH-responsive
binding modalities into the antibody (99). While healthy tissue
exhibits a nearly neutral pH around pH 7.4, the TME can exhibit a
significantly reduced pH between pH 6.5 and pH 6.9 (100, 101).
Our group previously demonstrated an efficient strategy to
incorporate pH-responsive binding into a common light chain
by histidine scanning and FACS-assisted screening of an YSD
library. We confirmed in a human bispecific antibody, that only
one of both Fab arms became pH-responsive. In contrast, the
second Fab arm, paired with the identical his-doped cLC,
remained pH-independently in its binding behavior (102). This
technology could be applied to only facilitate CD16a-binding
under acidic conditions as found in the TME, resulting in no NK
cell engaging in healthy tissue and therefore contributing to
tumor specificity.
MATERIAL AND METHODS

Plasmids and Yeast Strains
All plasmids, as well as their utilization for library generation by
homologous recombination, Golden Gate cloning, or for
expression, were previously discussed in detail (53–55). Yeast
strains and their handling are described elsewhere (53, 102).

Chicken Immunization
Chicken immunization and library generation were performed as
previously described (56). In brief, two chickens (Gallus gallus
Frontiers in Immunology | www.frontiersin.org 11
domesticus) were immunized with CD16a or PD-L1, respectively.
Five immunizations were performed for the CD16a-immunized
animal on days 1, 14, 28, 42, and 56. For the first two
immunizations, CD16a-Fc (produced in-house) was utilized,
all subsequent immunizations were performed with a mixture
of CD16a-Fc and TwinStrep-tagged CD16a (produced in-house).
After the fourth immunization, the serum titer against both
antigens was determined. The animal was sacrificed on day 63,
followed by isolation of the spleen and RNA extraction. For the
second chicken, an identical immunization plan was applied,
utilizing PD-L1-Fc (PeproTech) as the antigen. All chicken
immunizations, as well as sacrifice of the animal and
subsequent RNA extraction from resurrected spleen cells, were
performed at Davids Biotech GmbH. Experimental procedures
and animal care were in accordance with EU animal welfare
protection laws and regulations.

Library Generation and
Sorting Procedure
RNA, isolated from bursa fabricii and the spleen of immunized
animals, was transcribed to cDNA utilizing SuperScript III
Reverse Transcr ip tase ( Inv i t rogen) fo l lowing the
manufacturer’s instructions as described previously (53, 56).
Amplification of VH and VL domain genes, homologous
recombination in yeast, yeast mating for library generation, as
well as general yeast handling and induction of gene expression
were performed as described elsewhere (53, 102).

For kinetic off-rate screening to identify affinity matured
FEB4 variants by light chain shuffling and humanized dFEB4-1
variants, the respective libraries were stained with 1 nM EGFR-
ECD-Fc for 10 min, washed three times, and then incubated
with 1 µM EGFR-His for 30 min at RT. Only variants
with a slow off-rate remained bound, and all other displayed
Fabs are saturated with EGFR-ECD-His. Detection of Fc-tagged
EGFR was done utilizing the anti-human Fc-PE secondary
antibody (InVitrogen). An identical approach was conducted
for the kinetic off-rate screen of humanized NKE14 variants,
utilizing 1 nM CD16a-ECD-Fc and 1 µM TwinStrep-
tagged CD16a.

Reformatting, Expression, and Purification
of Chimeric and Humanized Full-Length,
One-Armed, Bispecific, and
Trispecific Antibodies
Reformatting of isolated chicken-derived chimeric and humanized
Fabs into standard IgG1 antibodies, one-armed variants, and
bispecific variants were done by Golden Gate cloning as
described previously (54). Reformatting into trispecific antibodies
was done following the general architecture of cibisatamab (IMGT
entry ID 10636). The hICI2-3 Fab (VH andCH1)wasC-terminally
fused with a partial hinge (EPKSCD), enabling the formation
of a disulfide bond between the heavy and the light chain,
followed by a (G4S)2-linker and the VH domain of hNKE14-8
(47). Cloning was done by amplification of both hICI2-3 Fab and
the hNKE14-8 VH domain encoding sequences utilizing the
primers depicted in Supplementary Table 1, followed by Golden
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Gate assembly utilizing an IgG1 LALA Hole His-tag Entry
vector, similar as previously described (53, 54). All variants were
expressed in Expi293F cells following the manufacturer’s protocol
and subsequent purification was performed as described before
(53, 54).

Affinity Determination, Epitope Binning,
Receptor-Ligand Competition and
Simultaneous Binding Assay via
Biolayer Interferometry
Affinity determination and epitope binning in the in-tandem
setup were performed as previously described (54).

For the EGF competition assay, cetuximab, FEB4 or dFEB4-1
(10 µg/mL) were loaded onto AHC biosensors until a layer
thickness of 0.7 nm to 1 nm was reached. Association was
measured against 100 nM EGFR-ECD preincubated with
0 nM, 100 nM or 1000 nM EGF for 600 s.

For the Fc competition assay, NKE14 (10 µg/mL) was
loaded onto Fab2G biosensors until a layer thickness of 0.7 nm
to 1 nm was reached. Association was measured against 100 nM
CD16a preincubated with 0 µM, 0.1 µM, 1 µM or 5µM scFv-Fc
for 600 s.

For the PD-1 competition assay, durvalumab, ICI2, ICI12,
and ICI13 (10 µg/mL) were loaded onto Fab2G biosensors until a
layer thickness of 0.7 nm to 1 nm was reached. Association was
measured against 250 nM PD-L1-ECD preincubated with 0 nM,
25 nM, 50 nM, 75 nM, 100 nM, 250 nM, 1000 nM amPD-1-Fc
for 600 s.

For the simultaneous binding of multiple antigens to one
antibody, the mAb of interest (10 µg/mL) was loaded onto AHC
biosensors until a layer thickness of 1 nm was reached.
Subsequently, the association against 1 µM CD16a-ECD was
measured for 600 s. Next, 500 nM EGFR followed by 1 µM PD-
L1-ECD were added, each over a course of 600 s. As controls,
measurements with biosensors only incubated with CD16a-ECD
and EGFR-ECD, only with CD16a-ECD or PBS, respectively,
were performed.

All measurements were performed utilizing the Octet RED96
system (FortéBio, Molecular Devices) at 30 °C and 1000 rpm.

Humanization
Humanization of chicken-derived antibodies was performed as
described before (55). In brief, the CDR regions of the antibody of
interest were grafted onto the human acceptor framework IGHV3-
23 and IGHJ4 for the heavy and the IGLV3-25 and IGLJ2 for the
light chain. Vernier residues, responsible for the correct orientation
of the CDRs, namely residue 47, 49, 67, 75, 76, and 78 for the VH,
and residue 46, 66, 69, and 71 for theVLwere partly randomized by
degenerated codons to either encode the human or the chicken
amino acid at this position. The library was generated by fusion of
oligonucleotides encoding the humanized VH and VL variants by
PCR and subsequent subcloning into YSD vectors by Golden Gate
as described before (103, 104). The Golden Gate reactions yielded
bidirectional display plasmids encoding one humanized VH and
VL domain. By transformation into EBY100 S. cerevisiae cells
conducting electroporation, a library was generated, that could be
Frontiers in Immunology | www.frontiersin.org 12
screened for humanized variants exhibiting Vernier residues
combination, allowing or the isolation of antibodies with parental
biophysical properties (55).

Nano DSF, Size Exclusion
Chromatography and Hydrophobic
Interaction Chromatography
Thermal stabi l i ty by NanoDSF and Size Exclusion
Chromatography was performed as described (53). For bi- and
trispecific constructs, the SEC protocol was modified utilizing a
100 mM HEPES pH 6.8, 200 mM arginine buffer. For HIC, a
20 mM Tris pH 7.4, 1.5 M ammonium sulfate buffer A and a 20
mM Tris pH 7.4 buffer B were utilized with a gradient (0-100%
buffer B) from 2.5 min to 37.5 min. The flow was 0.9 mL/min and
a TSKgel Butyl-NPR column was used.

Cell-Based PD-L1 Blockage Reporter
Assay
For the cell-based checkpoint inhibitor assay, the Promega PD-1/
PD-L1 Blockade Bioassays (J1250) was used, following the
manufacturer’s instructions. A 2.5-fold dilution series of the
antibodies of interest was applied. Testing concentrations
were 3.35 pM – 12.8 nM for hICI2-3 and durvalumab, or
52.4 pM – 200 nM for the trispecific construct. The bispecific
construct was used at a concentration of 200 nM. The assay was
performed for six hours at 37°C and 5% CO2. Luciferase activity
was plotted against the logarithmic antibody concentration.
A variable slope four-parameter fit was utilized to fit the
resulting curves. The assay was repeated three times, yielding
comparable results.

Antibody-Dependent Cell-Mediated
Cytotoxicity Reporter Assay
A431 target cells were cultivated as described previously (54).
The ADCC assay was performed utilizing the Promega ADCC
Reporter Bioassay Kit (G7010) following the manufacturer’s
instructions. The day before the assay, 12.500 A431 cells
were seeded in a tissue culture-treated 96-well plate. A four-
fold dilution series of the antibodies of interest was tested
(0.2 nM – 13.3 nM for the bivalent hdFEB4-1-4 with a wildtype
IgG1 Fc and the bispecific construct and 833 pM – 12.7 fM for the
trispecific construct). One-armed hdFEB4-1-4, one-armed
hNKE14-8, and hICI2-3 were tested at 53.3 nM. The assay was
performed for six hours at 37°C and 5% CO2. Luciferase activity
was plotted against the logarithmic antibody concentration. A
variable slope four-parameter fit was utilized to fit the resulting
curves. The assay was repeated three times, resulting in comparable
results each time.
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