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Worldwide, non-small cell lung cancer (NSCLC) has the highest morbidity and mortality of
all malignancies. The lack of responsiveness to checkpoint inhibitors is a central problem
in the modern era of cancer immunotherapy, with the rapid development of immune
checkpoint inhibitors (ICls) in recent years. The human switch/sucrose nonfermentable
(SWI/SNF) chromatin-remodeling complex has been reported to be recurrently mutated in
patients with cancer, and those with SWI/SNF mutations have been reported to be
sensitive to ICls. Six reported cohorts, a total of 3416 patients, were used to analyze the
mutation status of ARID1A, ARID1B, ARID2 and SMARCA4 in patients with NSCLC and
the effect of mutations on prognosis after ICls. Finally, a nomogram was established to
guide the clinical use of ICIs. The results show that patients with NSCLC who have
ARID1A, ARID1B, and ARID2 mutations of the SWI/SNF complex were more likely to
benefit from ICI therapy.

Keywords: non-small cell lung cancer, immunotherapy, SWI/SNF complex, PD-1/PD-L1 inhibitors, anti-PD1/PD-L1

INTRODUCTION

Lung cancer has the highest morbidity and mortality of all malignancies worldwide, with 80% - 85%
of histological types diagnosed as non-small cell lung cancer (NSCLC). According to cancer
statistics, worldwide, 9.6 million cancer deaths occurred in 2018, of which lung cancer showed the
highest incidence and mortality (1). Recently, advances in understanding the complex relationship
between tumor cells and the immune response have resulted in a paradigm shift in cancer
immunology, and new and more effective approaches to cancer immunotherapy. Immune
checkpoint inhibitors (ICIs), such as programmed cell death 1/programmed death ligand 1 (PD-
1/PD-L1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) blockade, enable the adaptive
immune response to recognize and kill tumor cells, revolutionizing the standard of care for several
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cancers, including NSCLC. Several clinical trials have shown that
ICI therapy is effective for first- and second-line treatments of
advanced NSCLC, consolidated treatment of locally advanced
NSCLC, and neoadjuvant treatment of early NSCLC. However,
despite the promising efficacy of immunotherapy in NSCLC, the
success of ICIs is currently limited to a small subset of patients,
with the overall response rate to anti-PD-1 or PD-L1 therapy
only 20%- 30% (2, 3). Thus, strategies are needed to identify the
most suitable candidates for ICIs. To date, several clinical
predictors of the ICI response in NSCLC have been identified
(e.g., mutational and neoantigen loads, and PDL-1 expression),
with PD-L1 expression being used in clinical practice to select
patients for therapy. However, the quantitative detection of PD-
L1 as a prediction index requires antibodies and staining
platforms, which contribute to differences in the accuracy of
PD-L1 levels, which may affect the predictive value. Moreover,
clinical trials have shown that second-line treatment with anti-
PD-1 or anti-PD-L1 antibodies may even be effective in patients
with no PD-L1 expression on their tumor or immune cells (4),
whereas patients with high PD-L1 expression sometimes fail to
respond to anti-PD-1/PD-L1 therapy (5). The tumor mutation
burden (TMB) (6), the total number of mutations per megabase
in the coding regions of tumor cells, and neoantigen load, which
indicate the neoantigens produced by tumor cells to active T cells,
are other predictors of therapeutic efficacy. Some researchers have
found that a high TMB and neoantigen load are associated with an
improved response to ICI treatment (6-8), whereas others found
no significant difference (9-11). Therefore, the establishment of
new predictors to identify suitable candidates for immunotherapy
is a central challenge in the modern era of cancer immunotherapy.

The human switch/sucrose nonfermentable (SWI/SNF)
chromatin-remodeling complex is encoded by multi-gene
families recurrently mutated in cancer. Previous studies have
shown that tumors, such as renal clear cell carcinoma, harboring
SWI/SNF mutations are sensitive to ICIs. Meanwhile, mutations
in SWI/SNF complex genes, such as SMARCA4, ARIDIA,

ARIDIB, and ARID2, affect the clinical outcomes of ICI
treatments in patients with NSCLC. However, studies on the
role of mutations of the SWI/SNF complex in ICI therapy for
patients with NSCLC are lacking

In this study, publicly available profiles were collected and
integrated, and a comprehensive analysis was performed to
investigate the role of SWI/SNF complex gene mutations in the
prognosis of patients with NSCLC treated with anti-PD-1/PD-
L1 ICIs.

METHODS

Data Sources

Whole-exome sequencing (WES) data of 1144 NSCLC cases
from The Cancer Genome Atlas (TCGA) cohort (12) was
obtained through cBioPortal (http://www.cbioportal.org/). The
RNA-seq data of 515 LUAD and 501 LUSC were downloaded
from the TCGA (https://portal.gdc.cancer.gov/). Five available
clinical cohorts with 2272 patients who underwent ICI therapy at
the Memorial Sloan Kettering Cancer Center (MSKCC) (9, 13-
16) were included in this study. Detailed information for each
cohort is shown in Table 1. Neoantigen data were obtained using
a tumor immunograph network (https://tcia.at/home) (17).
Tumor-infiltrating lymphocytes based on RNA-sequencing
(seq) data were obtained from TIMER (http://timer.comp-
genomics.org/) (18).

Assessment of the TMB

Mutation profiles were assessed by WES in Hellmann (14),
Naiyer (16), and TCGA cohorts and by next-generation
sequencing in Zehir (13), Rizvi (15), and Samstein (9) cohorts.
The TMB is the number of gene synonymous variants per
million base-pairs detected in tumor tissue. The TMB was
defined as the number of non-silent somatic mutation counts

TABLE 1 | Baseline data of 3416 patients with non-small cell lung cancer.

Characteristic TCGA Cohort Zehir Cohort Samstein Cohort Hellmann Cohort Rizvi Cohort Naiyer Cohort
n=1144 n=1567 n=355 n=75 n=240 n=35
Gender Male 673 (59%) 681 (43%) 166 (48%) 37 (49%) 118 (49%) 6 (46%)
Female 468 (41%) 886 (57%) 178 (562%) 38 (51%) 122 (51%) 9 (564%)
Age >60 695 (71%) NA 246 (72%) 47 (63%) 156 (65%) 9 (54%)
<=60 253 (26%) NA 98 (28%) 8 (37%) 86 (35%) 6 (46%)
Smoking Ever 976 (85%) 972 (62%) NA 60 (80%) 197 (80%) 0 (86%)
status Never 111 (10%) 334 (21%) NA 15 (20%) 47 (20%) (14%)
Unknown 57 (56%) 261 (17%) NA 0 0 0
Histology AD 660 (58%) 1268 (81%) 268 (78%) Non-SCC:59 (79%) 186 (78%) 30 (86%)
SCC 484 (42%) 163 (10%) 44 (13%) 16 (21%) 34 (14%) 4 (11%)
Others 136 (9%) 30 (9%) 0 20 (8%) 1 (3%)
Treatment PD1/ NA NA 324 (91%) 0 206 (86%) 35 (100%)
type PDL1
CTLA4 NA NA 0 0 0 0
Combo NA NA 20 (6%) 75 (100%) 34 (14%) 0
PDL1 PDL1 0 NA NA 70 (93%) 86 (36%) 30 (86%)
CD274 1015 (89%) NA NA 0 0 0
Neoantigen 1053 (92%) NA NA 5 (100%) NA NA
NA, Not Available.
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in coding regions. A TMB-low population was defined as
patients with <10 mut/MB (9).

Messenger RNA Expression Profiling
Analysis of Imnmune-Related Signatures
Tumor immune microenvironment-related signatures, including
chemokines, chemokine receptors, immunostimulators, and
immunoinhibitors, were compared. Associations between SW1/
SNF complex gene mutations and relevant immune-related
genes were analyzed in 1016 patients from the TCGA cohort,
for whom both RNA-seq and DNA-seq data were available. The
list of immune genes was mainly based on published articles that
summarized genes related to immunotherapy. The list of 63
immune genes is provided in Supplementary Table 1.

Construction of an Integrated Prognostic
Classifier Model

As shown in Supplementary Table 2, univariate Cox regression
analysis was used to screen for factors significantly associated with
progression-free survival (PFS). Smoking history, treatment type
(anti-PD-1/PD-L1 or anti-CTLA4), PD-L1 immunohistochemistry
(IHC) score, TMB, SWI/SNF mutation status, and epidermal
growth factor receptor (EGFR) mutation status were included for
further analysis of the Rizvi cohort. A multivariate Cox regression
analysis model was constructed using elected factors and “rms”,
“foreign”, “survival”, “tidyverse”, and “survivalROC” packages of R.
A calibration curve of the nomogram was made for internal
verification. The risk score was calculated according to its
regression coefficient, and patients were divided into low- and
high-risk score groups according to the cutoff value. The Naiyer
cohort was used as an external validation cohort to validate

the model.

Statistical Analyses

Statistical analyses were performed using R version 3.6.2. The
packages: “ggplot2”, “rms”, “foreign”, “survivalROC”, and
“survival” were used for statistical and graphics analyses, and
the packages “survival” and “survminer” were used for survival
analysis. Pearson’s correlation coefficient was used to analyze the

correlation between two continuous variables. An independent
sample f-test was used to compare two groups of samples. The
Wilcoxon test was used to compare multiple groups of samples,
and the log-rank test was used to compare two or more survival
curves. P < 0.05 was considered statistically significant. The
Benjamin & Hochberg method was used to adjust the P value.

RESULTS

Demographic and Clinical Characteristics
of the Study Cohorts

Basic information of the six cohorts is shown in Table 1. A total
of 3416 patients, 1711 females and 1691 males, were included in
this study. The study participants comprised 2412 patients with
adenocarcinoma and 745 patients with squamous carcinoma;
2235 patients were smokers and 512 were non-smokers, and the
median age was 61 years. Table 1 shows the demographic and
clinical characteristics of the study cohorts.

SWI/SNF Complex Genes Were Frequently
Mutated in Patients With NSCLC

Of the 3416 NSCLC patients, approximately 25% had at least one
SWI/SNF complex gene mutation; of these, 9% harbored
SMARCA4 mutations, 8% harbored ARIDIA mutations, 5%
harbored ARID2 mutations, and 4% harbored ARIDIB
mutations. Figure 1 shows detailed mutations for each gene.

Additionally, SWI/SNF complex gene mutations rarely
occurred simultaneously with V-Ki-ras2 Kirsten ratsarcoma
viral oncogene homolog (KRAS) and EGFR mutations
(Supplementary Figure 1).

The association between mutations of SWI/SNF complex genes
with demographic and clinical factors, such as sex, age, smoking
status, histology, and distant metastasis, was analyzed. Mutations
in SWI/SNF complex genes were found to be significantly frequent
in smokers, indicating that tobacco exposure may significantly
impact mutations in the SWI/SNF complex. Additionally,
ARIDIA and ARID2 mutations were more frequently found in
males, SMARCA4 was more frequently mutated in patients with

SMARCD1 0.8% || | |

Genetic Alteration

lung cancer.

¥ Truncating Mutation (putative driver) ¥ Truncating Mutation (unknown significance) | Fusion I Amplification I Deep Deletion

sWISNF  25% BRI —

SMARCA4 9% || |H | I —

ARIDIA 8% [l | | = | — I m I—

ARID2 5% "\ l ||| I (e 1w — T [] —

ARIDIB 4% [0 | { | = i " -— I I —
SMARCB1 14% [l | | o L | =

¥ Inframe Mutation (unknown significance) ¥ Missense Mutation (putative driver) & Missense Mutation (unknown significance)

No alterations

FIGURE 1 | SWI/SNF complex genes were frequently mutated in patients with NSCLC. SWI/SNF, human switch/sucrose nonfermentable; NSCLC, non-small cell
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mutations formed the co-mutation group.

In patients with NSCLC and low PD-L1 scores (<50), the
mPFS of patients with any SWI/SNF complex mutation was
superior to that of WT patients treated with ICIs (8.3 vs. 3.7
months; P = 0.001; HR = 0.420; 95% CI = 0.246-0.717;
Supplementary Figure 3B).

In the Zehir, Samstein, Rizvi, and Hellmann cohorts, the TMB
of patients with ARIDIA, ARID1B, and ARID2 mutations of the
SWI/SNF complex mutation group was significantly higher than
that of the WT group (P < 0.001; Figure 3A, left). Similarly, in the
TCGA cohort, the TMB of patients with ARIDIA, ARIDIB, and
ARID2 gene mutations was significantly higher than that of the
WT group (P < 0.001; Figure 3A, right).
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FIGURE 2 | Human switch/sucrose nonfermentable (SWI/SNF) complex mutations were associated with better outcomes for patients with NSCLC treated with PD-
1/PD-L1 inhibitors. (A, B) Survival curves of progression-free survival (PFS) for the Hellmann, Rizvi, and Naiyer (HRN) cohort, and of overall survival (OS) for the
Samstein cohort according to ARID1A, ARID1B, and ARID2 mutations in patients with non-small cell lung cancer (NSCLC). Patients with at least one mutation in one
of the three genes were part of the human switch/sucrose nonfermentable (SWI/SNF) complex mutation group, and the remaining patients were part of the wild-type
(WT) group. (C, D) PFS curve for the Rizvi cohort and OS for the Samstein cohort according to ARID1A, ARID1B, and ARID2 mutations in NSCLC patients. Patients
with no mutations in any of the three genes formed the WT group, patients with one mutation were part of the one-mutation group, and patients with two or more

In TMB-high (>10) patients with NSCLC, the mPFS of
patients with any SWI/SNF complex mutation was superior to
that of WT patients (8.3 vs. 3.8 months; P = 0.058; HR = 0.618;
95% CI = 0.374-1.022; Figure 3C). In TMB-high patients with
NSCLC in the Samstein cohort, the mOS of patients with any
SWI/SNF complex mutation was significantly superior to that of
WT patients (36 vs. 12 months; P = 0.028; HR = 0.536; 95% CI =
0.302-0.954; Figure 3D). There was no significant difference
between any SWI/SNF mutation and WT subgroups in the mPFS
or mOS of TMB-low patients with NSCLC in the two cohorts
(Supplementary Figures 3C, D). Moreover, in the non-ICIs
treated NSCLC population, the mutations of the SWI/SNF
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FIGURE 3 | High TMB and neoantigen load of patients with SWI/SNF mutations. (A) Analysis of tumor mutation burden (TMB) values in five independent Memorial
Sloan Kettering Cancer Center (MSKCC) cohorts, including the Zehir, Samstein, Rizvi, Naiyer, and Hellmann cohorts (left), and The Cancer Genome Atlas (TCGA)
cohort (right). (B) Analysis of neoantigen load in Hellmann (left) and TCGA (right) cohorts. (C, D) Progression-free survival (PFS) curves of patients with non-small cell
lung cancer (NSCLC) in the TMB-high group of the Hellmann, Rizvi, and Naiyer (HRN) (C) and Samstein (D) cohorts based on ARID1A, ARID1B, and ARID2
mutations. SWI/SNF, human switch/sucrose nonfermentable. (E) Overall survival (OS) curves of patients with non-small cell lung cancer (NSCLC) in the Zehir cohort

based on the human switch/sucrose nonfermentable (SWI/SNF) mutation status.

complex did not have a better survival benefit (Figure 3E).
Therefore, SWI/SNF is a prognostic indicator and a true
predictor independent on PD-L1 and TMB.

The relationship between neoantigen load and SWI/SNF
complex mutations was also explored. It was found that patients
with any SWI/SNF complex gene mutation had elevated neoantigen
loads (P = 0.003; Figure 3B).

Decreased Activated Dendritic Cells and
Monocyte Infiltration, and Altered Immune
Microenvironment, in NSCLC Patients
With ARID1A, ARID1B, or ARID2 Mutation
To investigate correlations between the infiltration of immune
cells and SWI/SNF complex gene mutations, 22 immune cell
types were analyzed using expression data from the TCGA
dataset. The immune infiltration levels of monocytes, myeloid
dendritic cell activated, and T-cell CD4" memory resting cells
were decreased in patients with an ARIDIA, ARIDIB, or ARID2
mutation. However, macrophage M1 and T-cell follicular helper
cell levels were increased in patients with an ARIDIA, ARIDIB,
or ARID2 mutation (Figures 4A, B).

The expression levels of chemokines, chemokine receptors,
immunoinhibitors, and immunostimulators were also analyzed
to further explore whether SWI/SNF complex mutations affect
the expression of immune-related cytokines (Supplementary
Table 1). Patients with SWI/SNF complex gene mutations
were found to have lower expression levels of the following
gene clusters: chemokines (CCL17, CXCL17, and CXCL16;
Figure 4C), chemokine receptors (CXCR2, CXCR1, and CCR2;
Figure 4C), immunoinhibitors (BTLA, CD244, HAVCR2, and
LGALS9; Figure 4D), and immunostimulators (NT5E and
TMIGD?2; Figure 4D).

Construction of an Integrated Prognostic
Classifier Model for Predicting the Efficacy
of ICI Therapy

Univariate analysis showed that PD-L1 score, TMB, SWI/SNF
mutation status, smoking history, EGFR mutation status and
treatment type, were statistically significant in predicting PFS in
the Rizvi cohort. A nomogram was then developed to predict 6-
and 12-month PFS using the above six factors in the Rizvi cohort
(Figure 5A). Receiver operating characteristic (ROC) analysis
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indicated good accuracy of this model (area under the curve
[AUC] of 6-month survival, 0.779; AUC of 12-month survival,
0.854; Figure 5B); the calibration curve also suggested an
acceptable accuracy (Figure 5D). The PFS survival curve
showed that the low-risk group had a better mPFS than the
high-risk group (6.6 vs. 2.5; P < 0.001; HR = 2.847; 95% CI =
1.761-4.691; Figure 5C). Furthermore, the Naiyer cohort was
used as an external validation cohort to verify the prognostic
value of this immune signature. The ROC curve suggested that
this immune signature was highly consistent with the ideal
model (AUC of 6-month survival, 0.824; AUC of 12-month
survival, 0.901; Figure 5E). The PFES survival curve showed that
the low-risk group also had a better mPFS than the high-risk
group (14.5 vs. 3.3; P = 0.0015; HR = 3.442; 95% CI = 1.288-
9.197; Figure 5F).

DISCUSSION

The lack of responsiveness to checkpoint inhibitors is a central
problem in the modern era of cancer immunotherapy. At
present, a PD-L1 score measured by IHC is the standard
predictive biomarker for anti-PD-1/PD-L1 ICI therapy.

However, clinical trials have shown the deficiency of this
biomarker as a predictor of such therapy (2, 3).

In this study, SWI/SNF complex genes were frequently mutated in
patients with NSCLC. Furthermore, patients with NSCLC treated
with PD-1/PD-L1/CTLA-4 inhibitors and having ARIDIA, ARIDIB,
or ARID2 mutations of the SWI/SNF complex showed better
outcomes in comparison to those without such mutations. The
mOS of patients with at least one of these mutations was 22
months compared to 10 months for the WT group (P = 0.0089;
HR = 0.604; 95% CI = 0.408-0.894; Figure 2B), whereas the mPFS of
patients with at least one of these mutations was 6.2 vs 3.8 months for
the WT group (P = 0.0069; HR = 0.638; 95% CI = 0.459-0.887;
Figure 2A). Additionally, cumulative mutations of the SWI/SNF
complex were beneficial to the efficacy of ICI therapy. The mPFS for
the co-mutation group was 8.3 months compared to 3.8 months for
the WT group (Figure 2C). Moreover, in the non-ICls-treated
NSCLC population, the mutations of the SWI/SNF complex did
not have a better survival benefit (Figure 3E). This indicates that the
SWI/SNF complex mutation has a survival benefit for NSCLC
patients treated with ICIs. Furthermore, a comprehensive
predictive classifier model was built to evaluate the efficacy of ICI
therapy according to SWI/SNF mutation status and clinical factors,
such as smoking history, treatment type, PD-L1 score, and TMB.
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ROC curves for 6 and 12 months were drawn. AUCs were calculated
as 0.779 and 0.854 for the test cohort, and 0.824 and 0.901 for the
validation cohort, respectively. The risk score was calculated
according to the regression coefficient. The low-risk group showed
better mPFS (2.5 vs. 6.6; P < 0.001; HR = 2.847;95% CI = 1.761-4.691
for the Rizvi cohort; Figure 5D and 3.3 vs. 14.5; P = 0.0015; HR =
3.442;95% CI = 1.288-9.197 for the Naiyer cohort; Figure 5F). These
results revealed the roles of ARID1A, ARID1B, and ARID2 mutations
in predicting the outcome for patients with NSCLC treated with IClIs.
These findings indicated that a comprehensive model, including
SWI/SNF complex mutation status and other clinical factors, will
guide the use of immunotherapy and provide a reference for
individualized immunotherapy against NSCLC.

The central function of the SWI/SNF complex is the coordinated
regulation of gene expression programs by remodeling chromatin
structure and regulating transcription by remodeling nucleosome
occupancy at critical DNA elements. To investigate whether
mutations of the SWI/SNF complex can influence the expression of
PD-L1, scores for PD-L1 were compared between datasets from Rizvi
and Hellmann cohorts, in which PD-L1 scores were available from
IHC assays. PD-L1 mRNA expression levels were also compared to
the TCGA dataset, in which PD-L1 RNA-sequencing data were
available. Higher PD-L1 scores were observed in the ARIDAIB
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FIGURE 5 | Construction of an integrated prognostic classifier model. (A) Nomogram based on programmed death ligand 1 (PD-L1) score, tumor mutation burden
(TMB), human switch/sucrose nonfermentable (SWI/SNF) mutation status, smoking history, epidermal growth factor receptor (EGFR) mutation status, and treatment
type of the Rizvi cohort. (B) Receiver operating characteristic (ROC) curves for predicting progression-free survival (PFS) of the nomogram in the Rizvi cohort.
(C) Callibration plot of the nomogram for the probability of PFS at 6 (left) and 12 (right) months in the Rizvi cohort. (D) Survival curve of PFS with the nomogram in the
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curve analysis. (E) ROC curves for predicting PFS of the nomogram in the Naiyer cohort. (F) Survival curve of PFS with the nomogram according to the risk score in
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mutation group and lower PD-L1 scores were observed in the
SMARCA4 mutation group, with no significant difference in
mRNA expression in the TCGA cohort. Further investigation will
help reveal whether the SWI/SNF complex is involved in the
regulation of PD-L1 and thus whether it plays a role in mediating
immune escape in the context of lung cancer.

In this study, ARIDIA, ARIDIB, and ARID2 gene mutations of
the SWI/SNF complex were associated with increased TMB and
neoantigen load. TMB, the total number of mutations per megabase
in the coding regions of tumor cells, reflects the instability of tumor
cells (8, 19). Because the activation of adaptive immunity requires
antigen recognition, increased antigen recognition indicates a
greater immune response. A high TMB may indicate that more
neoantigens can be produced by tumor cells to activate T cells
suppressed by immune checkpoint molecules. As increased TMB is
associated with increased neoantigen load, this is usually associated
with greater immunogenicity and a stronger immune response (19).
Furthermore, our study also revealed that although a difference
between any SWI/SNF mutation and WT subgroups was not
apparent in terms of mPFS or mOS in TMB-low patients with
NSCLC, in TMB-high patients, the mPFS or mOS of patients with
ARIDIA, ARIDIB, or ARID2 mutations was superior to those of
WT patients (8.3 vs. 3.8 months; P = 0.058; HR = 0.618; 95% CI =
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0.374-1.022 for PES; and 36 vs. 12 months; P = 0.028; HR = 0.536;
95% CI = 0.302-0.954 for OS). These results indicated that, in TMB-
high patients, ARIDIA, ARIDIB, and ARID2 mutations indeed
enhanced the immune response to PD-1/PD-L1 blockade.
Additionally, the mPFS of PD-L1-low patients with at least one of
these mutations was 8.3 months compared to 3.7 months for the
WT group (P = 0.001; HR = 0.420; 95% CI = 0.246-0.7170;
Supplementary Figure 3C). The mOS of TMB-high patients with
at least one of these mutations was 36 months compared to 12
months for the WT group (P = 0.028; HR = 0.536; 95% CI = 0.302-
0.954; Figure 3D).

These results also indicated that the immune microenvironment
was altered in NSCLC patients who had ARIDIA, ARIDIB, or
ARID2 mutations. Compared with patients of the WT group,
patients with mutations showed decreased the percentage of M1
macrophages, T helper cells, resting memory CD4+ T cells,
monocytes and activated dendritic cells. In previous reports, the
increased infiltration of M1 macrophages and follicular T helper
cells is related to the better prognosis of lung cancer (20, 21).
Meanwhile, the activation of resting memory CD4+ T cells has been
reported to contribute to the progression and development of lung
adenocarcinoma (22). Monocytes have also been reported as
immunosuppressive cells in small cell lung cancer (23). Presently,
there is still a lack of research on the relationship between the above
cell infiltration and SWI/SNF complex. Moreover, the expression of
chemokines (CCL17, CXCL17, and CXCL16), chemokine receptors
(CXCR2, CXCR1, and CCR2), immunoinhibitors (BTLA, CD244,
HAVCR2, and LGALS9), and immunostimulators (NT5E and
TMIGD2) was reduced (Figure 4C, D). Cytokines play an
important role in the differentiation, maturation, and migration of
various immune cells (24, 25). CCL17, CXCR2, LGALS9 and NT5E
recruits regulatory T cells into tumors as a mechanism of anti-
tumor immune impairment (26-29). CXCL17 induces immature
myeloid dendritic cells to infiltrate human pancreatic cancer,
thereby promoting the immune response (30, 31). CXCL16 also
plays an important role in enhancing the immune function of breast
cancer by attracting T cell infiltration (32). Meanwhile, monocytes
recruited by CCR2 will increase the number of lung metastases in
breast cancer (33). BTLA and HAVCR2 mediate the inhibition of
human tumor specific CD8 + T cells (28, 34), and CD244 mediates
the dysfunction of natural killer cells (35). The relationship between
these genes and the SWI/SNF complex is still unknown. Activated
T-cell recruitment to tumor sites is necessary to mediate tumor cell
killing (33). The efficacy of anti-PD-1 immunotherapy can be
predicted according to the degree of immune cell infiltration, as
determined by chemokines and entry through tumor blood vessels
(33, 36). Therefore, further investigation of the roles of the SWI/SNF
complex and the immune microenvironment will help us
understand the mechanism of PD-1/PD-L1 blockade.
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