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Background: Studies have revealed important roles for IL-17A in the development of
acute lung injury (ALI) following sepsis. However, the mechanism underlying the
regulation of lung IL-17A remains to be fully addressed. Recent studies suggested
the effect of neuromedin U (NMU) on immune cell activation and the role of group 2
innate lymphoid cells (ILC2s) in the modulation of IL-17A production. We aimed to gain
in-depth insight into the mechanism underlying sepsis-induced lung IL-17A production,
particularly, the role of NMU in mediating neuronal regulation of ILC2s and IL-17A-
producing gd T cells activation in sepsis.

Methods: Wild type mice were subjected to cecal ligation and puncture (CLP) to induce
sepsis with or without intraperitoneal injection of NMU. The levels of ILC2s, gd T cells, IL-
17A, NMU and NMU receptor 1 (NMUR1) in the lung were then measured. In order to
determine the role of NMU signaling in ILC2 activation and the role of ILC2-released IL-9 in
ILC2-gd T cell interaction, ILC2s were sorted, and the genes of nmur1 and il9 in the ILC2s
were knocked down using CRISPR/Cas9. The genetically manipulated ILC2s were then
co-cultured with lung gd T cells, and the levels of IL-17A from co-culture systems were
measured.

Results: In septic mice, the levels of NMU, IL-17A, ILC2s, and IL-17A-producing gd T cells
in the lung are significantly increased, and the expression of NMUR1 in ILC2s is increased
as well. Exogenous NMU further augments these increases. The main source of IL-17A in
response to CLP is gd T cells, and lung nmur1 is specifically expressed in ILC2s. In vitro
co-culture of ILC2s and gd T cells leads to increased number of gd T cells and higher
production of IL-17A from gd T cells, and these alterations are further augmented by septic
treatment and exogenous NMU. Genetic knockdown of nmur1 or il9 in ILC2s attenuated
the upregulation of gd T cells and IL-17A production.

Conclusion: In sepsis, NMU acting through NMUR1 in lung ILC2s initiates the ILC2
activation, which, in turn, promote IL-17A-producing gd T cell expansion and secretion of
org April 2021 | Volume 12 | Article 6706761
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IL-17A. ILC2-derived IL-9 plays an important role in mediating gd T cell expansion and IL-
17A production. This study explores a new mechanism underlying neuronal regulation of
innate immunity in sepsis.
Keywords: group 2 innate lymphoid cells, neuromedin U, sepsis, gd T cells, IL-17A
INTRODUCTION

Sepsis is the result of the excessive and dysregulated
inflammatory response of the body to infection, which often
leads to tissue injury, multiple organ dysfunction syndrome
(MODS), and death (1). Sepsis-induced mortality is closely
associated with secondary acute lung injury (ALI) (2, 3).

Emerging data have shown that IL-17A is an important
predictor and therapeutic target in sepsis and secondary ALI.
Circulating levels of IL-17A are elevated in human and
experimental sepsis (4–6). The study has shown in cecal
ligation and puncture (CLP)-induced sepsis mouse model that
IL-17A or IL-17A receptor deficiency significantly increased the
mortality, which correlated with reduced neutrophil recruitment
and more severe bacteremia (7, 8). A study has also shown that
early-activated Vg4d T cells are the major resource of IL-17A
during sepsis and the secretion of IL-17A decreased the mortality
of septic mice (9). Furthermore, a recent study using the mouse
CLP model demonstrated that IL-17A promoted IgA
production, which coupled with a higher survival rate (10).
Several types of cells are found to secrete IL-17A including
CD4+ T helper 17 (Th17) cell, CD8+ (Tc17) cell, natural killer
T (NKT) cell, gd T cell, group 3 innate lymphoid cell (ILC3), and
“natural” Th17 cell (11, 12). However, in-depth insights into the
mechanism underlying the regulation of IL-17A production and
secretion in sepsis remains to be fully addressed.

Group 2 innate lymphoid cells (ILC2s) are a special
population of cytokine-stimulated and cytokine-producing
lymphocytes that exist in mucosal tissues. ILC2s importantly
bridge innate and adaptive immunities. Our previous report
showed that ILC2s protect lung endothelial cells from
pyroptosis in the mouse sepsis model (13). Studies have also
found that both ST2+ natural ILC2 (nILC2) and ST2-

inflammatory ILC2 (iILC2) can produce IL-17A (14–17).
However, it remains unclear whether lung ILC2s secrete IL-
17A or regulate other cells to secret IL-17A in a setting of sepsis.

It has been reported that the nervous system plays dual roles,
either stimulating or suppressing, in the regulation of ILC2
activation in different settings (18–21). For example, studies
showed that neuropeptide neuromedin U (NMU) regulates
ILC2 activation in asthma and the helminth infection model
(18, 19, 22). These findings led us to ask how NMU regulates
lung ILC2s in a setting of sepsis and what are the subsequent
outcomes in the progression of ALI following sepsis.

In this study, using a mouse sepsis model induced by CLP, we
show that NMU acting through NMUR1 on lung ILC2s initiates
the ILC2 activation, which, in turn, promotes IL-17A-producing
gd T cell expansion and IL-17A secretion. ILC2-derived IL-9
plays an important role in mediating gd T cell expansion and
org 2
IL-17A production. This study explores a new mechanism
underlying neuronal regulation of innate immunity in sepsis.
METHODS

Mice
Male C57BL/6J wild-type mice were purchased from Jackson
Laboratories (Bar Harbor, ME). Mice were bred and maintained
under specific pathogen-free condition at the Animal Facility of
the University of Pittsburgh School of Medicine, VA Pittsburgh
Healthcare System, and the Children’s Hospital, Zhejiang
University School of Medicine. All mice used in the
experiments were 8 weeks old. All mice were performed in
compliance with the guidelines of the Institutional Animal
Care and Use Committee of the University of Pittsburgh, VA
Pittsburgh Healthcare System, and the Children’s Hospital,
Zhejiang University School of Medicine, respectively.

CLP Model and Survival Analysis
Sepsis was induced by CLP procedure as described previously
(23). In short, mice were deeply anesthetized with an
intraperitoneal injection of xylazine (5 mg/kg) and ketamine
(50 mg/kg). A midline incision (1 cm) on the abdomen was
performed to allow exteriorization of the cecum. To obtain a
moderate CLP, the cecum was ligated 0.8 cm from the apex with
4-0 silk suture and punctured once with a 22-gauge needle in the
ligated segment. To induce a severe CLP, the cecum was ligated
1.2 cm from the apex and punctured twice with an 18-gauge
needle. A droplet of cecal contents was then slowly squeezed out
of the puncture holes. Then the cecum was placed back into the
abdomen. The incision was then sutured in two layers. Sham
surgery was identical to CLP without puncture and ligation. Mice
were fluid resuscitated immediately after surgery (1 ml/mouse
sterile saline, subcutaneously). At the specified time point, mice
were sacrificed, and lung tissue samples were obtained under
sterile condition. Whole blood was collected by cardiac puncture
and spun down, and samples were stored at -80°C for
further analysis.

In the survival analysis, the survival of animals (5 mice per
group) was monitored each 3 hours for 72 consecutive hours
after CLP surgery. To relieve pain, mice with signs of imminent
death were overdosed with xylazine/ketamine. The survival rate
was evaluated, followed by plotting the survival curve.

Treatment of Mice
In some in vivo experiments, mice were injected intraperitoneally
(i.p.) with 0.2 µg/g B.W. of NMU-23 peptide (Phoenix
Pharmaceuticals, USA) at 6h before and after CLP or with a
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single dose of NMU-23 peptide (1 µg/g B.W.) at 6h before CLP.
At 24h after CLP, lungs were harvested for further analysis.
Control mice were treated with PBS.

Cell Isolation
Cell isolation from lung tissue was performed as described
previously (24). Briefly, lungs were perfused with 5 ml cold
PBS with 2% heparin through right ventricle of the heart, and
then filled with 1 ml HBSS with Liberase ™ (100 mg/ml final
concentration) (Roche, USA) and digested in 4 ml HBSS
digestion medium for 45 min at 37°C with vortexing every
15 min. The resultant samples were mashed by 70-mm cell
strainers, washed with Dulbecco’s modified Eagle media
[DMEM; supplemented with 10% fetal bovine serum (FBS)
and 1% penicillin/streptomycin (Thermo Fisher Scientific,
Pittsburgh, PA, USA)], and treated with RBC Lysis Buffer
(eBioscience ™) to lyse red blood cells. Cell suspensions were
used for subsequent flow cytometry staining.

Western Blot
Western blot was performed using standard methods. In short,
protein (30 mg) was electropharesed through 12% SDS
polyacrylamide gels and transferred to PVDF membranes (Bio-
Rad, USA). The membranes were incubated with primary
antibodies at 4°C overnight, followed by secondary antibodies
tagged with HRP (Thermo Fisher Scientific, USA) at room
temperature for 1 hour. The signals were detected using ECL
Kit (Pierce Biotech, Rockford, Illinois, USA). A GAPDH
antibody was used as a control for whole-cell lysates.

Flow Cytometry
For flow cytometry analysis, anti-mouse CD16/CD32 antibody
(eBioscience, USA) was added to samples at a 1:200 dilution for
20 minutes at 4°C to block nonspecific binding to Fc receptors
before cell staining.

LIVE/DEAD Fixable Aqua Dead Cell Stain Kit (eBioscience),
Fixable Viability Dye eFluor™ 780 (eBioscience) or 7AAD
viability dye (eBioscience) were used to exclude dead cells.
Lung cell suspensions were stained with anti-CD45 (30-F11),
anti-CD3ϵ (17A2), anti-CD4 (RM4-5), anti-CD5 (53-7.3), anti-
CD8a (53-6.7), anti-CD11b (M1/70), anti-CD11c (N418), anti-
CD19 (eBio1D3), anti-NK1.1 (PK136), anti-TER119 (TER-119),
anti-FceR1a (MAR-1), anti-TCRb (H57-597), anti-TCRgd (GL-
3), anti-Gr1 (RB6-8C5), anti-Thy1.2 (CD90.2; 53-2.1), anti-
CD25 (eBio7D4), anti-CD127 (IL-7Ra; A7R34), anti-IL-17A
(eBio17B7) from eBioscience; anti-KLRG1 (2F1), anti-Sca1
(D7) from BD Biosciences, anti-T1/ST2 (DJ8) from MD
Biosciences. Lineage was composed by CD3ϵ, CD4, CD5,
CD8a, CD11b, CD11c, CD19, NK1.1, TER119, FceR1a, TCRb,
TCR gd and Gr1; Cell populations were defined as: ILC2s,
CD45+Lineage−Thy1.2+T1/ST2+CD127+CD25+KLRG1+Sca1+;
gd T cells, CD45+CD3ϵ+TCR gd+CD4-TCR b-.

For intracellular cytokine protein analysis ex vivo, cells were
stimulated using the Cell Stimulation Cocktail (eBioscience),
containing PMA/Ionomycin/Brefeldin‐A/monensin, for
Frontiers in Immunology | www.frontiersin.org 3
4 hours at 37°C before staining. Intracellular staining was
performed using IC fixation/permeabilization kit (eBioscience).

Flow cytometry analysis and cell sorting were performed
using LSR Fortessa, FACS Aria flow cytometers (BD
Biosciences) and Cytek Aurora (Cytek Biosciences). The
percentage of ILC2s is gated in live CD45+Lineage− cells. Data
analysis was done using FlowJo software (Tristar).

Sorting and In Vitro Culture of Lung ILC2s
and gd T Cells
For flow cytometric sorting, Lin-CD45+CD90.2+ST2+ ILC2s were
sorted from the lungs of naive mice by FACSAria (BD
Biosciences) or Beckman MoFlo Astrios EQ (Beckman Coulter
Life Sciences, Indianapolis, IN, USA). The average purity of
ILC2s is > 98%. In vitro culture of ILC2s was conducted as
previously described (25). Sorted ILC2s were routinely grown in
DMEM glutaMAX (Gibco) supplemented with 10% FBS,
100 U/ml penicillin, 100 mg/ml streptomycin, 1% hepes,
sodium pyruvate, glutamine at 37°C. Lung ILC2s were plated
in 96-well round-bottom plates with two densities (1.5 × 104 or
3.0 × 104 cells/well) in 10 ng/ml rmIL-2 (Biolegend, San Diego,
CA, USA), 20 ng/ml rmIL-7 (Biolegend) and 20 ng/ml rmIL-33
(Biolegend) for 6 days. Before use, ILC2s were gently washed
twice to remove residual rmIL-2, rmIL-7, and rmIL-33.

Lung gd T cells were collected after flushing the lungs with
5 ml cold PBS through right ventricle to remove circulating cells.
Fresh gd T cells were enriched from lung by negative and positive
selection using the TCRg/d+ T cell isolation Kit (Miltenyi Biotec,
Gladbach Bergische, Germany), then CD45+CD3ϵ+TCR gd+ gd T
cells were sorted by FACSAria (BD Biosciences) or Beckman
MoFlo Astrios EQ (Beckman Coulter Life Sciences, Indianapolis,
IN, USA). The average purity of gd T cells is > 98%. In vitro
culture of gd T cells was conducted as previously described (26).
Sorted gd T cells were routinely grown in DMEM glutaMAX
(Gibco) supplemented with 10% FBS, 100 U/ml penicillin, 100
mg/ml streptomycin, 1% hepes, sodium pyruvate, glutamine at
37°C. Lung gd T cells were plated in 96-well round-bottom plates
with a density of 5.0 × 103 cells/well, in 100 ng/ml rmIL-1b
(Biolegend, San Diego, CA, USA) and 100 ng/ml rmIL-23
(Biolegend) to polarize IL-17A-producing gd T cells (26–28).

For direct co-culture assays, sorted lung ILC2s were cultured
with rmIL-2, rmIL-7 and rmIL-33 for 6 days to obtain mature
ILC2s, then sorted lung gd T cells were added to the each ILC2
well, in DMEM glutaMAX (Gibco) supplemented with 10% FBS,
100 U/ml penicillin, 100 mg/ml streptomycin, 1% hepes, sodium
pyruvate, glutamine at 37°C. To maintain ILC2 survival, rmIL-7
(20 ng/ml) was included in all assays with ILC2s as well as
controls, including when co-culturing with gd T cells. ILC2s and
gd T cells were co-cultured for 48 hours before the next tests if
not otherwise specified.

The following substances were added to cultures as indicated:
NMU (1 or 10 mg/ml, Phoenix Pharmaceuticals), rmIL-1b (100
ng/ml; Biolegend), rmIL-23 (100 ng/ml; Biolegend), LPS (1 mg/
ml; Sigma-Aldrich) plus TNF-a (20 ng/ml; Biolegend) were
added to mimic sepsis stimulation (13).
April 2021 | Volume 12 | Article 670676
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Quantitative Real-Time PCR
Total RNA from sorted cells or tissues were extracted by RNeasy
Plus Mini Kit (Qiagen, Germantown, MD, USA) or Trizol
method (Thermo Fisher Scientific, Pittsburgh, PA, USA) and
stored at -80°C for further analysis. Total RNA concentration
was measured using a Nanodrop One spectrophotometer
(Thermo Fisher Scientific, Pittsburgh, PA, USA). Total RNA
was reverse transcribed using the High Capacity cDNA Reverse
Transcription kit (Thermo Fisher Scientific, Pittsburgh, PA,
USA) according to the protocol.

Quantitative PCR was conducted in triplicate on a CFX
Connect Real-Time PCR Detection System (Bio-Rad, Hercules,
CA, USA) with TaqMan Gene Expression Master Mix (Applied
Biosystems) using the following TaqMan Gene Expression
Assays (Applied Biosystems): Nmu (Mm00479868_m1); Nmur1
( Mm 0 0 5 1 5 8 8 5 _ m 1 ) ; I l 5 ( Mm 0 0 4 3 9 6 4 6 _ m 1 ) ;
I l 9 (Mm00434305_m1) ; I l 13 (Mm00434204_m1) ;
Il17a (Mm00439618_m1).

Gene expression was normalized as n-fold difference to the gene
Hprt1 (Mm00446968_m1) and S18 (Mm03928990_g1) for mouse
according to the cycling threshold. Calculation of mRNA levels was
performed with the CFX Manager Software version 3.1 (Bio-Rad).

Lung Homogenate Assays
For lung homogenate, the whole lung was snap frozen on dry ice
homogenized in RIPA buffer (Sigma-Aldrich) containing 0.01%
protease and phosphatase inhibitor cocktail (Thermo Scientific).
The cell debris and tissue were removed by centrifugation at
19,000 g for 30 min at 4°C. The supernatant was collected for
analysis of IL-17A (R&D System) by ELISA according to the
manufacturer’s instructions.

Cytokine Measurements
Blood samples were collected, and plasma was obtained by
centrifugation at 5,000 g for 20 min at 4°C. For determination of
mouse IL-1b, IL-9, IL-17A and IL-23, Quantikine ELISA Kits from
R&D Systems were used according to manufacturers’ instructions.

Gene Knockdown by CRISPR/Cas9
Technology
For CRISPR/Cas9-mediated gene knockdown, the following
synthetic guide RNA (sgRNA) sequences were used: 5’-
CGATATGCTGGTGCTCCTGG-3’ (targeting nmur1); 5’-
GTGAGCGGACAGCTGTGTCA-3 ’ ( t a rge t ing I l 5 ) ;
5’-ATTGTACCACACCGTGCTAC-3’ (targeting Il9); 5’-
CTTCGATTTTGGTATCGGGG-3’ (targeting Il13); 5’-
AAUGUGAGAUCAGAGUAAU-3’ (non-target control)
(ThermoFisher Scientific, USA). Ex vivo–expanded ILC2s were
transfected with nmur1/Il5/Il9/Il13 CRISPR/Cas9 plasmid or its
non-target control (NTC) in accordance with the manufacturer’s
instructions. Transfected cells were cultured for 2 days before
next step.

Statistical Analysis
Statistical analyses were done using GraphPad Prism 7.00
software (GraphPad Software, Inc., La Jolla, CA, USA).
Frontiers in Immunology | www.frontiersin.org 4
Survival differences were assessed using the Kaplan-Meier
analysis followed by a log-rank test. Student’s t test or
ANOVA was used in all other experiments. Data were
expressed as mean ± SEM. A P value < 0.05 was considered
statistically significant, and significance is presented as * P < 0.05,
** P < 0.01, *** P < 0.001, or **** P < 0.0001.
RESULTS

Sepsis Induces IL-17A-Producing gd T Cell
Expansion and IL-17A Expression in the
Lungs
Sepsis induced significant increases in plasma IL-17A levels, lung
tissue Il17a mRNA expression, and IL-17A protein
concentration (Figures 1A–C), which were consistent with the
previous observations (29). Noteworthy, sepsis also induced a
markedly increase in the percentage of lung IL-17A-producing
cells (Figures 1D, E).

Our previous study has shown that sepsis induces ILC2
expansion in the lungs (13). However, it was unknown
whether ILC2s secrete IL-17A during sepsis, although it has
been reported that in allergic conditions ST2+ nILC2s secrete IL-
17A (17). We found that IL-17A-producing ILC2s were
significantly upregulated in the lungs following the CLP
procedure (Figures 1F, G). However, importantly, IL-17A-
producing ILC2s only occupy 1~2% of total IL-17A-producing
cells (Figure 1H).

Since multiple cell types, including lineage- ILCs, CD4+ T
helper 17 (Th17) cells, CD8+ (Tc17) cells, and gd T cells can
produce and secret IL-17A (30), we then assessed the relative
contribution of these cells to the elevated lung IL-17A in sepsis.
Using the flow cytometry gating strategy, we found the gd T cell
lineage, but not lineage- ILCs, CD4+ T cells, and CD8+ T cells, are
the major source of IL-17A (Figures 1D, H). This finding
underscores the important role of gd T cells in producing IL-
17A in the lung in sepsis. We also found that the percentage and
numbers of lung gd T cells were significantly higher in the CLP
group than that in the sham group (Figures 1I–K). Collectively,
these findings suggest an important role for lung gd T cells in
producing and secretion of IL-17A in sepsis.

Sepsis Promotes NMU Expressions in
the Lung and NMUR1 Expression in
Lung ILC2s
NMU-NMUR1 signaling has been reported to play an important
role in the regulation of inflammation in asthma and helminth
infection models (19, 22). To determine the role of NMU-
NMUR1 signaling in sepsis-induced inflammation, we
measured the expression of NMU in the lungs and NMUR1
expression in ILC2s following CLP. The results show that sepsis
markedly increased the expressions of nmu mRNA by ~2.4-fold
and NMU protein by ~2.1-fold in the lungs (Figures 2A, B). We
then collected ILC2s by flow sorting and treated the ILC2s with
LPS + TNF-a to mimic a septic condition in vitro. We found that
April 2021 | Volume 12 | Article 670676
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FIGURE 1 | Sepsis induces IL-17A-producing gd T cell expansion and IL-17A expression in the lungs. Wild type (WT, C57BL/6J) mice were subjected to cecal
ligation and puncture (CLP) to induce sepsis or sham surgery, plasma and lung tissue were then collected at different time points as indicated. (A) ELISA analysis of
plasma IL-17A from CLP or sham mice (n = 4). (B) Real-time PCR detection of lung Il17a mRNA from mice at 24h after CLP or sham surgery (n = 4). Data were
normalized by S18. (C) ELISA analysis of IL-17A protein in lung homogenates from CLP or sham mice (n = 4). Data were normalized by protein concentrations. (D)
Representative flow cytometry plots for IL-17A expression within lung live CD45+ populations at 24h after CLP or sham surgery. The relative contribution of different
cells (Lineage-ILCs, CD4+ T cells, CD8+ T cells, and gd T cells) to lung IL-17A+ cells was determined. (E) The percentages of the IL-17A+ cell population within lung
live CD45+ populations at 24h after CLP or sham surgery (n = 5). (F) Representative flow cytometry plots for ILC2 population within lung live CD45+Lineage-

populations and IL-17A+ ILC2 population within ILC2 population at 24h after CLP or sham surgery. (G) The percentages of IL-17A+ ILC2 population within lung ILC2
population at 24h after CLP or sham surgery (n = 6). (H) Representative flow cytometry plots for ILC2 population within lung live CD45+IL-17A+ populations at 24h
after CLP or sham surgery. (I–K) Representative flow cytometry plots (I), percentages (J), and numbers (K) of gd T cells within lung live CD45+ populations at 24h
after CLP or sham surgery (n = 3). All data are mean ± SEM, with symbols representing the values of individual mice. *P < 0.05, **P < 0.01, ***P < 0.001, or
****P < 0.0001, n.s., not significant. One-way ANOVA in (A, C); two-tailed Student’s t-test in (B, E, G, J, K).
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nmur1 mRNA expression in the ILC2s treated with LPS + TNF-
a is significantly increased as compared to that in the PBS treated
(control) group (Figure 2C).

Previous studies have shown that lung nmur1 is selectively
expressed in ILC2s (22, 31). To determine this is also true in
sepsis, we isolated lung cells from CLP mice, then categorized the
cells into three populations, including ILC2s, gd T cells, and
other cells, using flow sorting, followed by measurement of
nmur1 expression in these three populations using real-time
qPCR. The results showed that nmur1 was specifically expressed
by ILC2s, but not by gd T cells and other cells (Figure 2D) (22,
31). These findings suggest that ILC2s are the major cell
population to respond to the increased NMU expression in the
lungs in sepsis.

NMU Promotes Lung IL-17A-Producing gd
T Cell Expansion
Based on the data shown above, we hypothesized that NMU
might act through ILC2s to upregulate lung IL-17A-producing
gd T cells. To test this hypothesis, we intraperitoneally injected
(i.p.) recombinant NMU into the CLP mice at 6 h before and 6 h
after the CLP procedure (Figure 3A). We found that NMU
significantly reduced the mortality of septic mice (Figure 3A).
Furthermore, exogenous NMU increased the percentage of
ILC2s (Figures 3B, C), IL-17A-producing cells (Figures 3D,
E), and gd T cells (Figures 3F, G) in the lungs of septic mice;
Frontiers in Immunology | www.frontiersin.org 6
whereas NMU administration did not alter the percentage of IL-
17A+ ILC2s (Supplemental Figures A, B). Given that nmur1 is
specifically expressed by ILC2s but not by gd T cells, the
increased gd T cells in response to NMU is mediated
through ILC2s.

ILC2s Mediate NMU-Induced Increase in
Lung gd T Cells
To determine the role of ILC2s in mediating NMU-induced
upregulation of lung gd T cells, we applied an in vitro ILC2s and
gd T cells coculture system. IL-17A was undetectable in the
culture supernatant of the ILC2 alone group after NMU
treatment (Supplemental Figure C). However, coculture of
ILC2s and gd T cells with the treatment of NMU resulted in
significant increases in the number and percentage of gd T cells
(Figures 4A–C) and supernatant IL-17A concentrations (Figure
4D). NMU failed to induce gd T cell expansion and IL-17A
release in gd T cell alone group (Figures 4A–D). More
importantly, the supernatant IL-17A concentrations were
further elevated in the ILC2-gd T cell coculture group treated
with NMU and LPS + TNF-a (Figure 4D).

To further establish the role of ILC2s in regulating gd T cell
expansion and IL-17A producing, we cocultured gd T cells (5.0 ×
103 cells) with different numbers of ILC2s (1.5 × 104 and 3.0 ×
104 cells/well). After 48-hour coculture, the final numbers of gd T
cells in the group co-cultured with 3.0 × 104 ILC2s/well were
A B

C D

FIGURE 2 | Sepsis promotes NMU expression in the lung and NMUR1 expression in lung ILC2s. (A, B) Real-time PCR (A) and western blot (B) detection of lung
NMU expression from CLP or sham mice at 24h (n = 3). (C) Real-time PCR detection of nmur1 mRNA in sorted ILC2s under the treatment of LPS + TNF-a for 24h
(n = 6). (D) Real-time PCR detection of nmur1 mRNA in three cell populations sorted from lung at 24h after CLP surgery (n = 3). All data are mean ± SEM, with
symbols representing the values of individual mice. *P < 0.05, ****P < 0.0001, u.d., undetected. One-way ANOVA in (D); two-tailed Student’s t-test in (A–C).
Densitometry of western blotting bands was quantified by ImageJ software (gray-scale band analysis) of three independent experiments, non-parametric Mann-
Whitney U test.
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FIGURE 3 | NMU promotes lung IL-17A-producing gd T cell expansion. (A) Survival study of mice monitored for 72h after CLP or sham surgery. Mice received PBS
or NMU (0.2 µg/g) at 6h before and after CLP (n = 5). (B, C) (B) Representative flow cytometry plots for ILC2 population within lung live CD45+Lineage- populations;
(C) The percentages of ILC2s within lung live CD45+ populations at 24h after CLP or sham surgery. Mice received a single dose of NMU (1 µg/g) at 6h before CLP
(n = 6). (D, E) Representative flow cytometry plots (D) and percentages (E) of the IL-17A+ cell population within lung live CD45+ populations at 24h after CLP or
sham surgery. Mice received a single dose of NMU (1 µg/g) at 6h before CLP (n = 4). (F, G) Representative flow cytometry plots (F) and percentages (G) of gd T cell
population within lung live CD45+ populations at 24h after CLP or sham surgery. Mice received a single dose of NMU (1 µg/g) at 6h before CLP (n = 4). All data are
mean ± SEM, with symbols representing the values of individual mice. *P < 0.05, **P < 0.01, ***P < 0.001. Kaplan–Meier analysis in (A) One-way ANOVA in (C) two-
tailed Student’s t-test in (E, G).
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~3.2-fold higher than that in the group cocultured with 1.5 × 104

ILC2s/well (Figure 4E); and the supernatant IL-17A concentrations
of 3.0 × 104 ILC2s/well group were also significantly higher than
that of 1.5 × 104 ILC2s/well group (Figure 4F). In addition, we
treated the cocultures with different NMU concentrations (1 mg/ml
and 10 mg/ml) but fixed the number of ILC2s (1.5 × 104 cells/well).
We found that higher NMU concentration (10 mg/ml)
induced higher numbers of gd T cells and higher IL-17A levels as
compared to the group treated with lower NMU concentration
(1 mg/ml) (Figures 4G, H). These results further suggested that
ILC2s mediate NMU-induced gd T cell expansion and IL-
17A production.

To confirm the role of NMUR1 in ILC2s in transducing NMU
signaling, we knocked down nmur1 in ILC2s using the CRISPR/
Cas9 approach, which was confirmed by RT-PCR, as shown in
Figure 4I. Knockdown of nmur1 significantly attenuated gd T
cell expansion in response to NMU in the co-culture system
(Figures 4J–L), and decreased IL-17A production (Figure 4M).
IL-9 Mediates ILC2 Regulation of gd T Cell
Expansion and IL-17A Production
Next, we wanted to identify the possible mediators that mediate
the ILC2 regulation of gd T cells in the co-culture system.
Previous studies have shown that IL-1b and IL-23 can polarize
gd T cells to produce IL-17A (26–28, 32). Thus, we measured the
supernatant levels of IL-1b and IL-23 and found that the
concentrations of both cytokines were not changed in all
groups of ILC2 cultures (Supplemental Figures D, E).

Our previous studies have shown that ILC2-derived IL-9
serves as an important mediator in the interaction between
ILC2s and lung endothelial cells (13). Reports also showed that
NMU can induce ILC2s to secrete IL-9 (18, 22), and IL-9/IL-9R
signaling regulates gd T-cell activation (33). In our current
coculture experiments of ILC2 with gd T cells, we observed a
significant increase in supernatant IL-9 in response to treatment
with NMU and LPS + TNF-a (Figure 5A). We further found
that in cocultures of nmur1 knockdown ILC2s with gd T cells,
supernatant IL-9 levels were remarkably lower than that in
cocultures of WT ILC2 with gd T cells (Figure 5B). In order to
further determine the role of IL-9 in mediating gd T cell
activation, we knocked down IL-9 in ILC2s using a CRISPR/
Cas9 approach. The efficiency of Il9 knockdown was confirmed
by detecting culture supernatant IL-9 using ELISA (Figure 5C).
Coculture of Il9 knockdown ILC2s with gd T cells resulted in
lower gd T cell expansion (Figures 5D–F) and lower levels of
supernatant IL-17A (Figure 5G).

To determine if other ILC2-derived cytokines are also
involved in mediating the interaction between ILC2s and gd T
cells, we knocked-down IL-5 and IL-13 in ILC2s using the
CRISPR/Cas9 method, respectively. We found that the
knockdown of IL-5 and IL-13 in ILC2s did not affect gd T cell
expansion and IL-17A production in the co-culture system (data
not shown).

Collectively, the data demonstrate an important role for IL-9
in mediating ILC2 regulation of gd T cell expansion, activation,
and subsequent production of IL-17A.
Frontiers in Immunology | www.frontiersin.org 8
DISCUSSION

Emerging data suggested the important role of IL-17A in the
regulation of inflammation (4–6, 34–36). Although most of the
reports have shown that IL-17A plays a beneficial role in
improving inflammation (7–10, 35, 36), several studies
demonstrated detrimental effects of IL-17A in the development
of inflammation (37–40). This ambiguity in the current
literature, coupled with the fact that studies on the mechanism
of regulation of IL-17A production in sepsis-induced lung injury
are lacking, highlights the need for further elucidating how is
lung IL-17A regulated and what is the role for IL-17A in the
development of ALI and systemic inflammation following sepsis.
In this study, we demonstrate that sepsis-induced NMU acting
through NMUR1 on lung ILC2s initiates the ILC2 activation,
which, in turn, promotes IL-17A-producing gd T cell expansion
and secretion of IL-17A. ILC2-derived IL-9 plays an important
role in mediating gd T cell expansion and IL-17A production.

ILC2s play an important role in bridging innate and adaptive
immunities and are functionally similar to polarized Th2 cells
(41). ILC2s serve as a potent player in maintaining mucosal
homeostasis and host defense against infection in the septic lung
(41–43). Regulation of ILC2 activation is multifaceted (44).
Recently, the neuronal regulation of ILC2s has been reported
(41). Various neuropeptides such as substance P, VIP, CGRP,
NMU, and NMB were found to modulate ILC2s. Yet, the
mechanism underlying neuronal regulation of ILC2s in sepsis
remains unclear. NMU is mainly released by cholinergic sensory
neurons originating from the dorsal root ganglion (DRG), but
not parasympathetic neurons in the vagal ganglion (41, 45).
NMU is also occasionally secreted by some antigen-presenting
cells, including monocytes, B cells, and dendritic cells (46). Thus,
it is suggested to play an important role in the regulation of
adaptive and innate immunity. Recent studies reported that
NMU from lamina propria plays a regulatory role in mice type
2 innate immunity through binding to the Nmur1, which is
selectively enriched in ILC2s, and NMU-expressing neurons are
close vicinity to ILC2s in the lungs (18, 19, 22). In a mice model
of worm infection in the lungs and intestine, stimulation of
ILC2s with NMU led to strong and immediate production of
tissue protection and innate inflammatory cytokines in an
NMUR1-dependent manner, thereby alleviating worm burden
(18). The report also showed that NMU-activated ILC2s increase
the number of lung eosinophils and mast cells, thus alleviating
antihelminth responses (18, 19, 22). In this study, we discovered
that the lung expression of NMU is elevated during sepsis, and
NMU receptor NMUR1 is selectively expressed in the lung
ILC2s. This finding suggests an important role for ILC2s as an
executive cell population to mediate NMU-regulated
downstream events in the lung during sepsis. Indeed, we found
in our current study that NMU-induced gd T cell expansion,
activation, and IL-17A production requires ILC2s in the
coculture system, and numr1 deletion in ILC2s disabled NMU-
induced gd T cell activation.

Unlike conventional ab T cells, gd T cells are special T cells
that exhibit distinctive antigen recognition patterns different
from those of ab T cells and have different functional subsets,
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FIGURE 4 | ILC2s mediate NMU-indued increase in lung gd T cells. (A–D) Representative flow cytometry plots (A), numbers (B), percentages (C) of gd T cell
population, and ELISA analysis (D) of supernatant IL-17A in different groups. ILC2s and gd T cells were co-cultured for 48h with or without NMU (10 mg/ml). IL-1b
(100 ng/ml) and IL-23 (100 ng/ml) were added to polarize IL-17A-producing gd T cells, LPS (1 mg/ml) plus TNF-a (20 ng/ml) were added to mimic sepsis stimulation
(n = 4). (E, F) Numbers (E) of gd T cell population and ELISA analysis (F) of supernatant IL-17A in groups co-cultured with different numbers of ILC2s. ILC2s and gd
T cells were co-cultured for 48 hours with NMU (10 mg/ml) (n = 4). (G, H) Representative flow cytometry plots (G) of gd T cell population and ELISA analysis (H) of
supernatant IL-17A in co-culture group with different concentrations of NMU (1 or 10 mg/ml). ILC2s and gd T cells were co-cultured for 48h (n = 4). (I) Real-time PCR
detection of nmur1 mRNA in ILC2s after nmur1 sgRNA transfection using CRISPR/Cas9 approach for 48h (n = 3). (J–M) Representative flow cytometry plots (J),
numbers (K), percentages (L) of gd T cell population, and ELISA analysis (M) of supernatant IL-17A in control and nmur1 knockdown groups. ILC2s and gd T cells
were co-cultured for 48h (n = 4). All data are mean ± SEM, with symbols representing the values of individual mice. *P < 0.05, **P < 0.01, ***P < 0.001, n.s., not
significant. One-way ANOVA in (B–D); two-tailed Student’s t-test in (E, F, H, I, K–M).
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defined by the several usages of Vd and Vg gene repertoire (47,
48). Antigen processing is not required for gd T cells to recognize
an infection, since gd T cells can quickly react to various antigens
via innate surface receptors (49–52) and secret high levels of IL-
17A and IFN-g, both are signature cytokines of gd T cells (53–
57). gd T cells are a major innate source of IL-17A in the mouse
and occupy mostly barrier surfaces, such as the skin and mucosa,
as well as secondary lymphoid organs (58, 59). gd T cells play
critical roles in the regulation of inflammation in mouse sepsis
Frontiers in Immunology | www.frontiersin.org 10
model (36, 60–64). The accumulation of gd T cells in the lungs of
CLP mice associates beneficial outcomes of septic mice (60, 61).
The protective functions of gd T cells during experimental sepsis
have been attributed to the production of IL-17A, which
improves bacterial clearance and triggers neutrophil
recruitment (36, 65–67).

ILC2s and gd T cells share several similarities. gd T cells are also
considered as a bridge linking innate and adaptive immune systems.
A recent study showed that tissue-resident lung ILC2s have TCRg
A B

C
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D

FIGURE 5 | IL-9 mediates ILC2 regulation of gd T cell expansion and IL-17A production. (A) ELISA analysis of supernatant IL-9 in different groups (n = 3). ILC2s and
gd T cells were co-cultured for 48h with or without NMU (10 mg/ml). (B) ELISA analysis of supernatant IL-9 in groups after nmur1 sgRNA transfection using CRISPR/
Cas9 approach for 48h and then co-cultured with gd T cells for 48h (n = 4). (C) ELISA analysis of supernatant IL-9 in groups after Il9 sgRNA transfection using
CRISPR/Cas9 approach for 48h (n = 4). (D–G) Representative flow cytometry plots (D), numbers (E), percentages (F) of gd T cell population, and ELISA analysis
(G) of supernatant IL-17A in control and Il9 knockdown groups. ILC2s and gd T cells were co-cultured for 48h (n = 4). All data are mean ± SEM, with symbols
representing the values of individual mice. *P < 0.05, **P < 0.01, ***P < 0.001. One-way ANOVA in (A); two-tailed Student’s t-test in (B, C, E, F, G).
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gene rearrangements similar to gd T cells under steady-state
conditions. Rearranged TCRg gene in ILC2s is nonfunctional and
aberrant, and thus, it is suggested that ILC2s may arise from failed
gd T cell development (68). Given the similarities between ILC2s
and gd T cells in the immune system, we aimed to gain an insight
into the interaction between ILC2s and gd T cells, particularly,
pertaining to the precise regulation of lung IL-17A production in
sepsis, as the source of IL-17A is controversial. The data from the
current study showed that ILC2s can secret IL-17A. However, IL-
17A-producing ILC2s only occupy ~2% of total IL-17A-producing
cells. ILC2s are not the major source of IL-17A in the lung in sepsis.
Our results then showed that ILC2s increase the number of IL-17A-
producing gd T cells, which associate with increased IL-17A
secretion. These ILC2s-induced increases can be further
exacerbated by NMU and LPS + TNF-a septic treatment. These
results establish a determinate role for ILC2s in upregulation of gd T
cell expansion and production of IL-17A in the lung in sepsis.

Recently, IL-9 has been reported to be involved, either
beneficially or deleteriously, in the pathogenesis of some diseases
related to inflammation (69, 70). ILC2 is the main source of IL-9 in
mouse lung tissue in physiological or inflammatory circumstances
(71). Our data showed that the knockdown of Il9 in ILC2s decreases
the number of IL-17A-producing gd T cells, which associates with
decreased IL-17A secretion, in response to NUM and LPS + TNF-a.
These findings strongly suggest a role for IL-9 inmediating the ILC2
regulation of IL-17A-producing gd T cell expansion and secretion of
IL-17A.

In summary, this study shows that NMU acting through
NMUR1 on lung ILC2s initiates the ILC2 activation, which, in
turn, promotes IL-17A-producing gd T cell expansion and IL-
17A secretion. ILC2-derived IL-9 plays an important role in
mediating gd T cell expansion and IL-17A production. This
study explores a new mechanism underlying neuronal regulation
of innate immunity in sepsis.
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Supplementary Figure | (A) Representative flow cytometry plots for IL-
17A+ILC2 population within lung live CD45+Lineage-CD90.2+ populations at 24h
after CLP. (B) The percentages of IL-17A+ ILC2 population within lung ILC2
population at 24h after CLP (n = 6). (C) ELISA analysis of supernatant IL-17A in ILC2
alone group. ILC2s were treated with NMU (10 µg/ml) (n = 3). (D, E) ELISA analysis
of supernatant IL-1b (D) and IL-23 (E) in different groups. ILC2s and gd T cells were
co-cultured for 48h with or without NMU (10 mg/ml). IL-1b (100 ng/ml) and IL-23
(100 ng/ml) were added to polarize IL-17A-producing gd T cells, LPS (1 mg/ml) plus
TNF-a (20 ng/ml) were added to mimic sepsis stimulation (n = 3). All data are mean ±
SEM. n.s., not significant, u.d., undetected. One-way ANOVA in (D, E); two-tailed
Student’s t-test in (B).
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