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Calcium oxalate (CaOx) crystal formation, aggregation and growth is a common cause of
kidney stone disease and nephrocalcinosis-related chronic kidney disease (CKD).
Genetically modified mouse strains are frequently used as an experimental tool in this
context but observed phenotypes may also relate to the genetic background or intestinal
microbiota. We hypothesized that the genetic background or intestinal microbiota of mice
determine CaOx crystal deposition and thus the outcome of nephrocalcinosis. Indeed,
Casp1-/-, Cybb-/- or Casp1-/-/Cybb-/- knockout mice on a 129/C57BL/6J (B6J)
background that were fed an oxalate-rich diet for 14 days did neither encounter
intrarenal CaOx crystal deposits nor nephrocalcinosis-related CKD. To test our
assumption, we fed C57BL/6N (B6N), 129, B6J and Balb/c mice an oxalate-rich diet
for 14 days. Only B6N mice displayed CaOx crystal deposits and developed CKD
associated with tubular injury, inflammation and interstitial fibrosis. Intrarenal mRNA
expression profiling of 64 known nephrocalcinosis-related genes revealed that healthy
B6N mice had lower mRNA levels of uromodulin (Umod) compared to the other three
strains. Feeding an oxalate-rich diet caused an increase in uromodulin protein expression
and CaOx crystal deposition in the kidney as well as in urinary uromodulin excretion in B6N
mice but not 129, B6J and Balb/c mice. However, backcrossing 129 mice on a B6N
background resulted in a gradual increase in CaOx crystal deposits from F2 to F7, of
which all B6N/129 mice from the 7th generation developed CaOx-related nephropathy
similar to B6N mice. Co-housing experiments tested for a putative role of the intestinal
microbiota but B6N co-housed with 129 mice or B6N/129 (3rd and 6th generation) mice
did not affect nephrocalcinosis. In summary, genetic background but not the intestinal
microbiome account for strain-specific crystal formation and, the levels of uromodulin
secretion may contribute to this phenomenon. Our results imply that only littermate
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controls of the identical genetic background strain are appropriate when performing
knockout mouse studies in this context, while co-housing is optional.
Keywords: calcium oxalate, nephrocalcinosis, microbiota, mouse strains, uromodulin, kidney stone disease
INTRODUCTION

Calcium oxalate crystals is the main constituent of most kidney
stones and account for approximately 75% of crystal-related
kidney damage and eventually kidney failure (1). Hyperoxaluria-
related CaOx stones form when the urine becomes excessively
supersaturated due to the intake of oxalate-rich food, leading to
crystal formation, growth, aggregation and retention in the renal
tubular lumen (2). This process is independent of urinary pH (3)
but affected by the composition of minerals or proteins, such as
calcium, phosphate, magnesium, citrate, uromodulin,
nephrocalcin, osteopontin, calgranulin and macroglobulin (4).
Risk factors, such as oxalate-rich diet, obesity, diabetes,
hypertension and metabolic syndrome, have been linked to
contribute to CaOx stone formation (5). Such CaOx crystals
can cause an inflammatory response associated with the release
of pro-inflammatory mediators, cell death and leukocyte
infiltration, which further contribute to tubular atrophy and
interstitial fibrosis, leading to progressive nephrocalcinosis (6).
A better understanding of the mechanisms involved in CaOx
stones formation to predict and facilitate the development of
more-effective drugs are of great need for preventing and treating
this disease.

Epidemiological studies reveal that genetic factors play a
pivotal role in kidney stone formation (7, 8). To study the
pathogenesis of different types of kidney stones or crystal-
induced chronic kidney disease (9, 10), mice are most
commonly used as experimental models. Although studies
using genetically modified mouse strains indicate an
association of certain genes with CaOx crystal formation (11–
13), the role of the genetic predisposition remains poorly defined.
Moreover, experimentally induced hyperoxaluria may not always
lead to CaOx crystal formation (4). Inbred mouse strains,
especially C57BL/6 mice including the B6N and B6J substrains
are often used to study the pathogenesis of diseases despite the
genetic variants that can cause phenotypic differences (14).

Genetically modified mice are usually generated using
germline transmission competent embryonic stem (ES) cell
lines derived from the 129 mouse strain (15, 16). 129 ES cell
lines are easy to handle in culture and remain competent to
repopulate the mouse germline. However, 129 chimeric mouse
strains do not breed well and can possess anatomical and
behavioral abnormalities (17). For phenotypic studies, 129
chimeric mice are backcrossed repeatedly to a particular strain,
often C57BL/6, whereby the genomic signature of the congenic
mice (129/B6) depends on the number of backcrosses.
Backcrossing for more than 10 generations is desirable to
increase the genetic homogeneity (18) but to decrease the
impact of passenger mutations that affect phenotypes (16),
genetic matters critical for the validation and reproducibility of
experimental studies (19).
org 2
Clinical evidence suggests a strong association between the
intestinal microbiota and kidney stone disease (20). These
studies found that the intestinal microbiome of patients
suffering from kidney stones is less diverse than in individuals
without a history of stones (21, 22), and that certain bacteria
including Oxalobacter spp., which degrade oxalate, were less
abundant in the stool of adults with kidney stones (23, 24). Such
imbalances in the microbiota contribute to epithelial barrier
dysfunction and alterations in the immune response (25). In
addition, the frequent use of antibiotics may modify the
intestinal microbiome; thus, increasing the risk for stone
formation in children and young adults (26, 27).

In this study, we investigated whether the genetic background
of mice affects CaOx crystal deposition in the kidneys and
consequently the outcomes of CaOx-related nephrocalcinosis
in four different inbred mouse strains and whether co-housing
for alignment of the intestinal microbiome might contribute to
these physiological processes.
MATERIALS AND METHODS

Animal Studies
Seven or eight-week old common inbred C57BL/6N (B6N),
C57BL/6J (B6J), 129/Sv (129) and Balb/c mouse strains (male)
were purchased from Charles River Laboratories (Sulzfeld,
Germany). Casp1-/-, Cybb-/- and Casp1/Cybb-/- mice (generated in
129-derived ES cells) on a B6J background (28). For backcrossing
studies, 129/B6N mice were generated by breeding 129 mice with
B6N mice for up to 7 generations (F2, F3, F5, F6 and F7). Black
male mice were used for experiments. For co-housing experiments,
3 week-old male B6N mice were co-housed with 3 week-old male
129 inbred and 129/B6N F3 or F6 mice for 4 weeks prior to
induction of kidney disease, a tool to standardize the intestinal
microbiota in animals (29, 30). Mice were housed in groups of five
in filter top cages under a 12-hour light/dark cycle environment
with unlimited access to food and water. Cages, nest lets, food, and
water were sterilized by autoclaving before use. Group size
calculation for the primary endpoint was based on numeric
assumptions derived from our previous experience with this
animal model (31–34). Oxalate-rich diet was prepared by adding
sodium oxalate (50 mmol/g) to a calcium-free diet or calcium-free
diet without sodium oxalate (control diet, both from Ssniff, Soest,
Germany) (31–33). Mice were placed either on an oxalate-rich diet
or control diet for 14 days. Plasma and urine samples were
collected on day 0 and before sacrifice on day 14, and stored at
-20°C until analysis. Kidneys were harvested after sacrifice. One
kidney was kept in 4% formalin to be embedded in paraffin for
histology analysis and the second kidney placed in RNAlater
solution (Qiagen, Hilden, Germany) at -80°C for qPCR analyses.
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Primary End Point
Pizzolato staining
Kidney sections of 2 mm were used for immunostaining. To
visualize CaOx crystals, kidney sections were stained by Pizzolato
and the percentage (%) area of crystal deposits in the kidney
quantified using ImageJ software (35, 36). An observer blinded to
the experimental condition performed all assessments.

Secondary Analyses
Assessment of Plasma BUN and Creatinine
Plasma blood urea nitrogen (BUN) and creatinine (both from
DiaSys, Holzheim, Germany) levels were measured using
commercially available kits as per manufacturer’s protocol.

Assessment of Kidney Histology
The expression of crystal adhesion molecules CD44 and annexin
II were identified by immunostaining for CD44 and annexin II
(both from Abcam, Inc., Cambridge, MA). Quantification of
immunostaining (% area) was done using ImageJ software. For
assessment of kidney injury and interstitial fibrosis, we stained 2-
µm thick kidney sections with periodic acid-Schiff (PAS) reagent
and silver stain, respectively. Kidney injury was scored by
assessing the percentage of necrotic tubules, dilation and casts
(33). Kidney sections were stained for Tamm-Horsfall protein
(THP) to illustrate uromodulin protein expression. All
assessments were performed by an observer blinded to the
experimental conditions.

Measurement of Urinary pH, Oxalate, Calcium and
Uromodulin
Fresh urine pH was measured using a pH meter (SenTix,
Germany). Afterward, urine samples were acidified to
determine urinary oxalic acid concentrations using a
colorimetric enzymatic assay (Oxalate assay kit, Libios) in 96-
well plates according to the manufacturer’s instructions. Urine
calcium concentrations were assessed using the calcium
colorimetric assay kit (Sigma-Aldrich, Fell, Germany) and
urine uromodulin levels using the mouse uromodulin ELISA
kit (MyBioSource, Germany).

RNA Preparation and Real-Time Quantitative–PCR
Total RNA was isolated and purified from murine kidneys using
a Qiagen RNA extraction kit (D̈sseldorf, Germany) according to
the manufacturer’s instructions. RNA quality was assessed using
agarose gels before being transcribed into cDNA using reverse
transcriptase (Superscript II, Invitrogen, Carlsbad, CA). Real-
time RT-PCR was performed using SYBR Green PCRmaster mix
and analyzed with a Light Cycler 480 (Roche, Germany). All gene
expression values (ct values) were normalized using 18s rRNA as
a housekeeping gene. All primers used for amplification were
purchased fromMetabion (Martinsried, Germany) and are listed
in Supplementary Table S1.

Gene Expression Analysis
We analyzed gene expression patterns in the liver and kidney of
healthy B6N, B6J and 129mice. Published datasets of liver samples
Frontiers in Immunology | www.frontiersin.org 3
from healthy B6N, 129 and B6J mice were used for gene
expression analysis (GSE43106) (37). CEL file >normalization
was performed with the Robust Multichip Average method
using RMAExpress (Version 1.0.5) and the mouse Entrez‐Gene
custom CDF annotation from Brain Array version 20 (http://
brainarray.mbni.med.umich.edu/Brainarray/Database/
CustomCDF/CDF_download.asp). To identify differentially
expressed genes, the SAM (Significance Analysis of Microarrays)
method (38) was applied using the bioconductor package Sam.r. A
q-value below 5% was considered to be statistically significant.
1211 genes in the BN6 vs 129 comparison and 5 genes in the B6N
vs B6J comparison were significantly regulated (fold change cut-off
of ≥2 or ≤0.5, q-value <5%). Of those liver genes we selected 229
liver genes with a fold change cut-off of ≥3 or ≤0.3 and q-value
<5% for further analysis and found 21 genes (20 B6N vs 129 and 1
B6N vs B6J) highly expressed and 26 genes (24 B6N vs 129 and 2
B6N vs B6J) intermediately expressed in the kidney of healthy
mice according to the NCBI gene database (https://www.ncbi.nlm.
nih.gov/gene). Using RT-PCR, we found 15 genes that were
differentially expressed in healthy kidneys between B6N vs 129
mice and B6N vs B6J mice.

Calcium Oxalate Crystal Formation In Vitro
The formation of CaOx crystals in vitro has previously been
described in more detail (35, 39). Briefly, urine from healthy
B6N, 129, B6J and Balb/c mice was pre-incubated with or
without 100 ml of a Na2C2O4 solution (oxalate, 0.1 mM, pH
7.3) for 1 hour at room temperature prior to incubation with
100 ml CaCl2 solution (0.1 mM, pH 7.3) for 5 minutes. CaOx
crystals alone and urine alone served as controls. The formation
of CaOx crystals was quantified by size (forward scatter versus
sideward scatter) using the flow cytometer BD FACSCalibur
(Becton Dickinson, NJ, USA).

Statistical Analyses
Statistical analyses were performed using GraphPad Prism 7
(CA, USA). Data were normally distributed and compared by
one-way analysis of variance (ANOVA) with Tukey’s post-test
for three or more groups, or by two-way ANOVA with
Bonferroni’s comparison post-hoc test when comparing two
parameters with multiple groups. Data are presented as mean
values ± standard deviation (SD). Differences were considered
significant if p<0.05; no significant differences (ns) are indicated
accordingly. Group sizes are indicated in each corresponding
figure legend.
RESULTS

Knockout Mice on a 129/B6J Background
Do Not Develop CaOx-Related
Nephrocalcinosis
To address the potential contribution of caspase 1 and NADPH
oxidase 2 during nephrocalcinosis, we fed 129/B6J mice deficient
in Casp1, Cybb and Casp1/Cybb an oxalate-rich diet, a previously
April 2021 | Volume 12 | Article 673423
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characterized mouse model of CaOx crystal-induced
nephropathy (31). Feeding wild-type (WT) B6N mice an
oxalate-rich diet triggered CaOx crystal formation in the
medulla and cortex on day 14, as indicted by the Pizzolato
staining of kidney sections, while CaOx crystal deposits were
absent in Casp1-/-, Cybb-/- and Casp1/Cybb-/- (129/B6J) mice
(Figure 1A). The deposition of CaOx crystals resulted in an
impaired kidney function in WT B6N mice, as indicated by
significantly elevated plasma BUN and creatinine levels as
compared to the control diet (Figures 1B, C). This was in line
with more CaOx crystal-induced tubular injury and interstitial
fibrosis in WT B6N mice but not in the three knockout mouse
strains following oxalate feeding, as illustrated by PAS (Figure
1D) and silver stain (Supplementary Figure S1). However,
feeding an oxalate-rich diet did not lead to tubular injury,
interstitial fibrosis and increased plasma BUN and creatinine
levels in the three knockout mouse strains as compared to
oxalate-fed B6N mice (Figures 1B–D, Supplementary
Figure S1).

The adhesion of CaOx crystals on the surface of tubular
epithelial cells is an important process in nephrocalcinosis (40).
To look at potential changes of oxalate crystal-related adhesion
molecules, we stained kidney sections with CD44 and Annexin II
and found that the expression of CD44 and Annexin II increased
in B6N mice on oxalate-rich diet after 14 days, whereas low
expression of both adhesion molecules was observed in tubular
cells in Casp1-/-, Cybb-/- and Casp1/Cybb-/- mice (Figures 1E, F).
Thus, the data indicate that unlike WT mice on a B6N
background, Casp1-/-, Cybb-/- and Casp1/Cybb-/- mice on a
129/B6J background lack CaOx crystal deposition and
related nephrocalcinosis.

B6N but Not B6J, 129 or Balb/c Mice
Develop CaOx Crystal-Related
Nephropathy
One possible reason for the absence of CaOx crystal in the
Casp1-/-, Cybb-/- and Casp1/Cybb-/- mice might be their genetic
129/B6J background rather than the specific gene deficiency.
To investigate a potential contribution of the genetic background
on CaOx crystal deposition and related nephrocalcinosis,
four common inbred mouse strains B6N, B6J, 129 and Balb/c
received an oxalate-rich diet for 14 days. Feeding B6N mice
an oxalate-rich diet increased the percentage of Pizzolato area in
kidney sections from B6N mice but not in 129, B6J and Balb/c
mice (Figure 2A). While CaOx crystal deposition deteriorated
the kidney function in B6N mice, as indicated by an increase in
plasma BUN and creatinine levels (Figures 2B, C), no changes
were observed in 129, B6J and Balb/c mice between both diets,
indicating that those mice remained healthy due to the lack of
CaOx crystal deposition. These findings are consistent with more
tubular injury (Figure 2D), increased intrarenal mRNA
expression levels of kidney injury marker (KIM-1) (Figure 2E)
and inflammatory markers Il6 and Tnfa (Figure 2F) as well
as more interstitial fibrosis, as indicated by silver stain and
mRNA expression levels of the fibrosis markers Fibronectin 1
and Col1a-1 (Supplementary Figures S2A, B) in B6N mice but
not the other strains.
Frontiers in Immunology | www.frontiersin.org 4
Next, we assessed urinary mineral concentrations of oxalic
acid and calcium in the inbred mouse strains to rule out that
differences in kidney oxalate excretion might be responsible for
the observed discrepancy in CaOx crystal deposition. Urinary
analysis revealed that feeding inbred mouse strains an oxalate-
rich but calcium-free diet significantly increased the
concentrations of oxalic acid (Figure 2G) but decreased that of
urine calcium (Figure 2H) as well as urine pH (Figure 2I),
suggesting that all four inbred mouse strains developed
hyperoxaluria but only B6N mice presented with CaOx crystal
deposits, an effect independent of the urine pH. Taken together,
CaOx crystal-induced nephropathy in mice is sensitive to the
genetic background with fundamental differences even between
B6J and B6N.

Increased Tubule Adhesion Molecule
Expression in Oxalate-Fed B6N but Not
B6J, 129 and Balb/c Mice
To test whether tubule adhesion molecules (41, 42) that are
required for the attachment of CaOx crystals to the tubular
epithelial cell membrane, might be responsible for the inhibited
CaOx crystal formation in B6J, 129 and Balb/c mice, we placed
all four common inbred mouse strains on an oxalate-rich diet for
14 days and performed RT-PCR and immunohistochemistry
staining of the kidneys. Intrarenal mRNA expression levels of
CD44 and Annexin II were lower in B6J, 129 and Balb/c mice as
compared to B6Nmice (Figure 3A). This was consistent with the
immunostaining of kidney sections illustrating that CD44 and
annexin II were highly expressed in B6Nmice with CaOx crystal-
induced nephropathy as compared to B6N mice on control
diet (Figures 3B, C). However, oxalate feeding did not induce
CD44 and annexin II expression in B6J, 129 and Balb/c mice
(Figures 3B, C), suggesting that the different kidney oxalate
handling and related CaOx crystal deposition depends on inbred
mouse strains.

Genetic Profiling Identifies Uromodulin as
Determinant for CaOx Crystal-Induced
Nephropathy
To investigate the genetic differences between the common
inbred mouse strains, we first compared liver and kidney gene
expression data between B6N versus 129 healthy mice as well as
B6N versus B6J healthy mice. Open access liver microarray data
(37) revealed that a total of 1211 genes (fold change cut-off ≥2
or ≤0.5) were differentially expressed in the liver between B6N
and 129 mice, while only 5 genes between B6N and B6J mice
(Supplementary Figure S3A). From 229 liver genes (fold change
cut-off ≥3 or ≤0.3), we found 21 genes to be highly expressed in
the mouse kidney and 26 genes with an intermediate expression
according to the NCBI gene expression database, of which 20
and/or 24 genes were different in B6N mice as compared to 129
mice, while only 1 and/or 2 genes between B6N and B6J mice
(Supplementary Figure S3B). Of the 21 highly expressed genes
in the kidney, we selected 15 genes that are described in the
literature to be associated with metabolism, transmembrane
transport of small molecules and detoxification of reactive
April 2021 | Volume 12 | Article 673423
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FIGURE 1 | Knockout mice on a 129/B6J background do not develop CaOx-related nephrocalcinosis. C57BL/6N WT (B6N) and Casp1-, Cybb-, Casp1/Cybb-
deficient (129/B6J background) mice were either fed a control diet or an oxalate-rich diet for 14 days. (A) Pizzolato staining to identify CaOx crystal deposits in kidney
sections of all four mouse strains. (B, C) Plasma BUN (B) and plasma creatinine (C) levels were measured using colorimetric assays. (D) PAS stain illustrates tubular
injury. Original magnification x200. (E, F) Immunostaining of the adhesion molecules CD44 (E) and annexin II (F) in kidney sections. Original magnification ×25. Data are
mean ± SD from 4 to 5 mice per group. ***p < 0.001; ns, not significant by two-way ANOVA.
Frontiers in Immunology | www.frontiersin.org April 2021 | Volume 12 | Article 6734235
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FIGURE 2 | B6N but not B6J, 129 and Balb/c mice develop CaOx-related nephrocalcinosis. B6N, 129, B6J and Balb/c mice were either placed on a control diet or
an oxalate-rich diet for 14 days. (A) Pizzolato staining to identify CaOx crystals and quantification (% area) of kidney sections. Original magnification ×25.
(B, C) Plasma BUN (B) and plasma creatinine (C) levels were measured using colorimetric assays. (D) Images of PAS stained kidney sections and quantification of
tubular injury score. Original magnification x200. (E, F) Gene expression of KIM-1 (E) as well as Il6 and Tnfa (F) in kidney tissue determined by RT-PCR. (G–I) Urine
was collected and the concentrations of oxalic acid (G) and calcium (H) as well as the urine pH (I) determined. Data are mean ± SD from 5 mice per group.
*p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant.
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FIGURE 3 | Increased urinary uromodulin excretion in B6N mice due to CaOx crystal deposition. (A–E) B6N, 129, B6J and Balb/c mice were either placed on a
control diet or an oxalate-rich diet for 14 days. (A) Intrarenal mRNA expression of CD44 and Annexin II determined by RT-PCR. (B, C) Immunostaining for CD44 and
annexin II in kidney sections (B) and quantification of the percent (%) area (C). Original magnification ×25. (D) Intrarenal mRNA expression of Umod in kidney tissues
by RT-PCR. (E) Uromodulin concentration in urine measured by ELISA. Data are mean ± SD from 5 mice in each group. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not
significant. (F–H) CaOx crystallization assays in vitro. Urine from healthy B6N, 129, B6J and Balb/c mice was pre-incubated with or without 100 µl of a Na2C2O4

solution (oxalate, 0.1 mM, pH 7.3) for 1 hour at room temperature and then incubated with 100 µl CaCl2 buffer (0.1 mM, pH 7.3) for 5 minutes. Representative
images of gating strategy to identify CaOx crystal formation in the presence or absence of mouse urine (F, G) and quantification of CaOx crystals by size (H, forward
scatter vs. sideward scatter) using flow cytometry analysis. Data are mean ± SD from 3 mice per group. ***p < 0.001; ns indicates not significant.
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oxygen species pathways for further RT-PCR analysis. Intrarenal
mRNA expression levels of certain enzymes such as sorbitol
dehydrogenase (Sord), ornithine decarboxylase (Odc1) and heat
shock protein 8 (Hsp8) were higher expressed in B6N and B6J
mice as compared to 129 and Balb/c mice (Supplementary
Figure S3C). The data demonstrate the genetic variations
between the four common inbred mouse strains.

The pathophysiology underlying kidney stone formation is
complex. Evidence points toward a genetic predisposition (43) for
CaOx crystal formation and related nephrocalcinosis in human
and mice (43–46). To test whether the observed differences in
CaOx crystal deposition in vivo might be linked to kidney stone-
related genes, we screened the literature for known
nephrocalcinosis-related genes and performed RT-PCR of
healthy kidneys from all four inbred mouse strains. As
illustrated in the heat map in Supplementary Figure S3D, the
mRNA expression levels of uromodulin (Umod) and sodium-
dependent phosphate transport protein 2A (Slc34a1) were highly
expressed, while others genes including organic cation
transporter-2 (Slc22a2), 3-hydroxyisobutyrate dehydrogenase
(Hibadh), sodium-chloride symporter (Slc12a3), aquaporin 1
(Aqp1), carbonic anhydrase II (Car2), ATP-binding cassette
super-family G member (Abcg2) and urate transporter
(Slc22a12) were lower expressed in healthy kidneys of all four
inbred mouse strains. Looking at the mRNA expression levels in
more detail, we found that NAD(P) transhydrogenase (Nnt), a
previously described gene involved in nephrocalcinosis (5), to be
absent in B6J mice but not in 129, B6N and Balb/c mice
(Supplementary Figure S4A). In addition, healthy B6N mice
had significantly lower Umod and oculocerebrorenal syndrome
protein (Ocrl) mRNA expression levels in kidneys compared to the
other three strains (Figure 3D and Supplementary Figure S4B).

Previous reports have shown that urinary proteins including
uromodulin, also known as Tamm-Horsfall protein (THP), can
affect CaOx crystal formation (47). We found that the intrarenal
Umod mRNA expression levels were lower in B6N mice
compared to the other strains upon feeding a control diet
(Figure 3D), while no difference was observed in the urine
concentration of uromodulin (Figure 3E). When feeding all
strains an oxalate-rich diet, the intrarenal Umod mRNA
expression levels did not change as compared to the control
diet (Figure 3D). However, we observed a significant increase in
the urine concentration of uromodulin in oxalate-fed B6N mice
but not in the other strains as compared to control diet (Figure
3E). This was consistent with an increased THP/uromodulin
positivity in kidney sections from B6N but not 129 mice after
applying an oxalate-rich diet (Supplementary Figure S4C). We
also noted that THP/uromodulin was highly expressed in healthy
tubuli, while absent in areas where CaOx crystals (Pizzolato
stain) were detected in kidney sections from oxalate-fed B6N
mice (Supplementary Figure S4D).

To investigate the contribution of urinary constituents on
CaOx crystal formation, we performed CaOx crystal formation
experiments in vitro in the presence or absence of mouse urine
and determined the percentage of formed CaOx crystals using
flow cytometry (Figures 3F, G). Flow cytometry revealed that
urine from B6N mice did not prevent CaOx crystal formation, as
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indicated by a similar percentage of CaOx crystals in the CaOx
group without urine (Figure 3H). However, in the presence of
urine from 129, B6J and Balb/c mice, CaOx crystals were
significantly less able to form as compared to urine from B6N
mice (Figure 3H), suggesting that urinary factors in 129, B6J and
Balb/c mice prevents CaOx crystallization but not in B6N mice.
Taken together, urinary factors can alter CaOx crystallization
depending on the genetic background of mice and uromodulin
excretion increases due to enhanced CaOx crystal deposition and
renal clearance in B6N mice.

Backcrossing of 129 Mice on a B6N
Background Drives CaOx Crystal-Induced
Nephropathy
To dissect the interplay between the backcrossing of mice on a
B6N background and the phenotypic development upon oxalate
feeding, we generated 129/B6N mice by crossbreeding 129 mice
with B6Nmice for up to seven generations and placed them either
on a control or oxalate-rich diet for 14 days (Figure 4A). We
found that backcrossing 129 mice on a B6N background for two,
five and seven generations (F2, F5 and F7) resulted occasionally in
CaOx crystal deposition, although not in all 129/B6N mice from
generation two and five, while all 129/B6N F7 mice showed CaOx
crystal deposits similar to B6N mice (Figures 4B, C). CaOx
crystal formation in 129/B6N mice was associated with a gradual
increase in plasma BUN and creatinine levels (Figure 4D) due to
tubular injury, as indicated by PAS stain (Supplementary Figures
S5A, B) and intrarenal mRNA expression levels of KIM-1 (Figure
4E), inflammation (Figure 4F) and interstitial fibrosis
(Supplementary Figures S5C, D) after applying an oxalate-
rich diet, although not significant from F2 to F5. All backcross
generations of mice developed hyperoxaluria, as indicated by
increased urinary oxalic acid and decreased urine calcium
concentrations (Figure 4G). Consistent with these findings, we
observed an upregulation of the mRNA expression levels of the
adhesion molecules CD44 and Annexin II, as a result of CaOx
crystal deposition (Figure 5A). Further analysis showed that the
intrarenal mRNA expression levels of Umod but not Ocrl
gradually decreased in the healthy kidneys of 129/B6N F2, F5
and F7 mice, in which 129/B6N F7 mice reached similar levels to
that observed in B6N mice (Figure 5B and Supplemental Figure
S6). Immunohistochemistry staining of kidney sections illustrated
increased THP expression in all 129/B6N mice from generation
F7 as compared to the 2nd (F2) and 5th (F5) generations after
applying an oxalate-rich diet (Figure 5C). Thus, backcrossing of
129 mice for a minimum of 7 generations on a B6N background
leads to CaOx crystal deposition and subsequent CaOx crystal-
induced nephropathy, suggesting that the genetic background is
important for mice to develop phenotypic alterations.

Co-Housing Does Not Influence CaOx
Crystal Deposition in 129 Mice on a B6N
Background
Previous studies reported a link between the intestinal
microbiota with urinary oxalate excretion and CaOx crystal
deposition in the context of hyperoxaluria (48). Therefore, we
asked the question does the microbiome after co-housing
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FIGURE 4 | Backcrossing of 129 mice on a B6N background drives CaOx crystal-induced nephropathy. (A) Schematic diagram indicates the regime of generating
129/B6N mice by breeding 129 with B6N mice for up to 7 generations (F2, F5 and F7). Afterward, 129/B6N F2, F5 and F7 mice were either fed a control diet or an
oxalate-rich diet for 14 days. (B, C) Pizzolato staining to identify CaOx crystal deposits in kidney sections (B) and the quantification (C). Original magnification ×25.
(D) Plasma BUN and creatinine levels were measured using colorimetric assays. (E, F) Intrarenal mRNA expression levels of KIM-1 (E) as well as Il6 and Tnfa (F)
determined by RT-PCR. (G) Urinary concentrations of oxalic acid and calcium. Data are mean ± SD from 5 to 8 mice per group. *p < 0.05; **p < 0.01; ***p < 0.001;
ns, not significant.
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contribute to CaOx crystal deposition in the kidneys? To answer
this, 129 mice as well as 129/B6N F3 and F6 mice were co-housed
with B6N mice for four weeks to allow adaptation of the
microbiota (29) prior to oxalate feeding for 14 days (Figure
6A). We found that co-housing 129 and 129/B6N F3 mice with
B6Nmice did not trigger CaOx crystal deposition (Figures 6B, C).
Only 129/B6N F6 mice co-housed with B6N mice presented with
CaOx crystal deposits and subsequent nephrocalcinosis, as
Frontiers in Immunology | www.frontiersin.org 10
indicated by more tubular injury (Figures 6D, E) and
interstitial fibrosis (Supplementary Figure S7) as well as
increased plasma BUN and creatinine levels only in B6N mice
but not in 129 mice after oxalate feeding (Figure 6F). On the other
hand, backcrossed 129/B6N F6 mice showed similar tubular
injury score, fibrosis and plasma BUN and creatinine levels as
compared to B6N, whereas 129/B6N F3 mice did not (Figures
6D–F, Supplementary Figure S7). However, all mouse strains
A

C

B

FIGURE 5 | Uromodulin as indicator of the backcross generation in mice. 129/B6N mice were generated by breeding 129 with B6N mice for up to 7 generations
(F2, F5 and F7). 129/B6N F2, F5 and F7 mice were either placed on a control diet or oxalate-rich diet for 14 days. (A) Intrarenal mRNA expression of CD44 and
Annexin II from mice on both diets determined by RT-PCR. (B) Intrarenal mRNA expression levels of Umod from mice on control diet by RT-PCR. (C) THP staining
of kidney sections from all three generations of 129/B6N mice on day 14. Data are mean ± SD from 5 to 8 mice per group. *p < 0.05; **p < 0.01; ***p < 0.001;
****p < 0.0001. ns, not significant.
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FIGURE 6 | Co-housing does not influence CaOx crystal deposition in 129 mice on a B6N background. (A) Schematic diagram of experiment setup. Three week-
old B6N mice were co-housed either with 129 mice or B6N/129 F3 and F6 mice for 4 weeks, and then placed on a control diet or oxalate-rich diet for 14 days.
(B, C) Pizzolato staining to identify CaOx crystal deposits in kidney sections (B) and quantification of % area (C). Original magnification ×25. (D, E) PAS stain
illustrates tubular injury (D) with quantification (E). Original magnification x200. (F) Plasma BUN and creatinine levels were measured by colorimetric assays.
(G) Urinary concentrations of oxalic acid and calcium. Data are mean ± SD from 2 to 5 mice per group. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant.
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developed hyperoxaluria independent of co-housing and the
genetic background, as indicated by increased urine oxalic acid
and decreased urine calcium concentrations in all mice (Figure
6G). Taken together, only backcrossing to the optimal B6N
background (genetics) but not co-housing (intestinal
microbiome) determines CaOx crystal deposition and related
nephrocalcinosis in mice.
DISCUSSION

We had hypothesized that the genetic background of mice and
the intestinal microbiome after co-housing would affect CaOx
crystal deposition in the kidneys and consequently the outcomes
of CaOx-related nephrocalcinosis in four common inbred mouse
strains. Indeed, only B6N mice but not 129, B6J and Balb/c mice
developed nephrocalcinosis caused by the deposition of CaOx
crystals. Backcrossing 129 mice with B6N for up to seven
generations restored CaOx crystal deposition and induced
nephrocalcinosis, a process associated with uromodulin levels.
Thus, genetic variations across mouse strains independent of co-
housing may account for phenotypic differences observed in
mouse models of CaOx crystal-induced nephropathy.

Targeted mutation in mice is a powerful tool for functional
analysis of genes. However, genetic variations in mice that are
linked to the origin of ES cells (mostly derived from 129 mice),
the number of backcrosses (e.g. 7-10 generations) of genetically
modified mice with inbred mouse strains such as the C57BL/6
substrains B6N or B6J, as well as the breeding strategies across
generations might influence the phenotypic outcomes (49). For
example, B6J mice are more susceptible to lipopolysaccharide-
and tumor necrosis factor a-induced lethal shock as compared to
B6N/B6J mice (16). In tumor development, the lymphoma
formation in Pten-deficient mice depends on C57BL/6
background, but not Balb/c background (50). When studying
the role of JNK2 in Acetaminophen and Concanavalin A liver
injury, mispairing C57BL/6 strains of genetically engineered
mice and wild-type controls can lead to confounding results
(51). In a mouse model of nephrocalcinosis, we observed that
only B6N but not Casp1-, Cybb- and Casp1/Cybb-deficient mice
developed CaOx crystal-induced nephropathy. One explanation
for the lack of CaOx crystal deposition is that these genetically
modified mice were generated in 129- or D3-derived ES cells (52,
53) and not backcrossed for more than 7 generations on a B6N
background. Therefore, it is impossible to conclude on a role of
caspase-1 and Cybb in CaOx crystal-induced nephropathy.
Possible technical alternatives to overcome this issue could be
to use multiplex genome engineering technologies such as
CRISPR/Cas systems (54–56) or cre ES cell lines derived from
B6N or B6J mice (16), which will enable researchers to use
genetically modified mice with a defined genetic background and
thus, to circumvent problems associated with phenotypic
interference and misinterpretation of functional data.

The mechanism of CaOx crystallization involves a
combination of processes, including urine supersaturation of
stone-forming salts, such as calcium and oxalate (35, 39, 57). Our
data imply that low calcium and high oxalate levels are indicators
Frontiers in Immunology | www.frontiersin.org 12
for the development of hyperoxaluria in all four inbred mouse
strains after feeding an oxalate-rich diet. Although, oxalate
feeding induced an acidic urine pH in all four inbred mouse
strains, only B6N showed CaOx crystal deposits in the kidney but
not 129, B6J and Balb/c mice, suggesting that the urine pH may
not be involved in CaOx crystal formation. This is consistent
with reports indicating that CaOx supersaturation occurs
independent of urine pH (3), while in other types of kidney
stone disease, an acidic urine pH seems to be necessary for the
formation of e.g. uric acid crystals, which in turn causes chronic
uric acid crystal nephropathy (9).

Genetic variations play a critical role in CaOx crystal
formation. For example, Masayuki et al. reported in a model of
acute CaOx nephropathy that B6J mice have more kidney CaOx
crystal deposition than B6N mice when administered with
glyoxylate daily for 12 days (5). The authors suggest that the
absence of the Nnt protein is associated with CaOx crystal
formation in B6J mice. However, in our study, B6J mice
lacking Nnt expression failed to develop chronic CaOx crystal
nephropathy, while B6N mice with high Nnt expression did. On
the other hand, 129 and Balb/c mice with high Nnt gene
expression similar to B6N mice mostly failed to develop CaOx
crystal formation, suggesting that Nnt might not be involved in
CaOx crystal formation and that the background of genetically
modified mice plays a critical role on the functional phenotype in
the disease setting. Although we screened for known genes
associated with nephrocalcinosis in mice and humans (43–46),
functional studies are needed to identify specific genes that either
prevent or promote CaOx crystallization in vivo.

Uromodulin is the most abundant urinary protein in healthy
humans. This extracellular matrix-type protein is produced and
excreted by epithelial cells lining the thick ascending limb of the
loop of Henle (58). Important roles for uromodulin include
protection against urinary tract infections by binding to type 1-
fimbriated uropathogenic E. coli (59, 60) and reduction of kidney
stone formation by binding CaOx crystals (47, 61). We found
significantly elevated urinary protein levels of uromodulin in B6N
mice compared with the other strains upon oxalate feeding, while
the kidney mRNA expression levels remained unchanged. CaOx-
related nephropathy in the face of increased urine uromodulin
appears paradox. However, similar results were reported in a
mouse model of unilateral ureteral obstruction-induced kidney
injury without crystal formation, where kidney and urinary
uromodulin protein levels increased but not kidney Umod
mRNA levels (62). This might be due to intrarenal uromodulin
protein retention upon kidney injury because 1) uromodulin is
continuously produced and excreted by the kidney, and can form
disulfide bond-rich tertiary structures with the tendency to
polymerize, and 2) the remaining unaffected tubular epithelial
cells produce large amounts of uromodulin, while injured tubular
epithelial cells cannot anymore, leading to increased urinary
uromodulin excretion. Further studies are needed to verify this
in uromodulin knockout mice and humans.

The mammalian intestines harbor a complex and variable
microbial ecosystem, which is strongly associated with the health
status and well-being. Prior investigations in animals as well as
clinical data have demonstrated that certain components of the
April 2021 | Volume 12 | Article 673423
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intestinal microbiota are a strong determinant of kidney stone
disease (48, 63–66). For example, certain bacterial strains,
including Oxalobacter spp., Bifidobacterium spp. and
Lactobacillus spp., can degrade oxalate (66, 67). Moreover,
intestinal bacteria might not only alter oxalate metabolism but
also increase oxalate secretion from intestinal epithelia (68, 69).
Numerous studies have reported various bacterial strains and
specific variations in bacteria taxa among different inbred mouse
lines (70–73). Co-housing of different mouse strains can partially
shape the intestinal bacterial consortia in the fecal pellet (29), in
which bacterial communities became more similar but retained
strain specificity (72). Our findings show that co-housing has no
effect on CaOx crystal deposition in a mouse model of
nephrocalcinosis, a process potentially linked to the genetic
background of mice. To minimize or address the influence of
the microbiota in preclinical genotype-phenotype studies, co-
housing animals followed by inter-crossing to generate F2
littermates could be used as a standard tool to assure
adaptation of the microbiome of the animals of different
treatment groups (29). However, we cannot exclude that co-
housing of backcrossed inbred mice with B6N mice may have
shifted the microbiota composition.

In summary, our findings suggest that all inbred mouse
strains develop hyperoxaluria but exhibit differences in both
CaOx crystallization and kidney injury following administration
of an oxalate-rich diet. Genetic variations among mouse strains
might be responsible in part for strain-specific CaOx crystal
formation and that urinary factors such as uromodulin can act as
a determinant of CaOx-related nephropathy in common inbred
mouse strains. Thus, researchers using knockout mice of
differing genetic backgrounds should be aware that any
variation in CaOx crystal formation and associated kidney
immune response might lead to misinterpretations of data
among studies. In particular, phenotype differences between
knockout and WT mice can only be attributed to the targeted
gene when using littermates of the identical genetic background.
In contrast, co- or separate housing does not seem to be a
relevant confounder in mice.
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