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Donor organ shortage still remains a serious obstacle for the access of wait-list patients to
kidney transplantation, the best treatment for End-Stage Kidney Disease (ESKD). To
expand the number of transplants, the use of lower quality organs from older ECD or DCD
donors has become an established routine but at the price of increased incidence of
Primary Non-Function, Delay Graft Function and lower-long term graft survival. In the last
years, several improvements have been made in the field of renal transplantation from
surgical procedure to preservation strategies. To improve renal outcomes, research has
focused on development of innovative and dynamic preservation techniques, in order to
assess graft function and promote regeneration by pharmacological intervention before
transplantation. This review provides an overview of the current knowledge of these new
preservation strategies by machine perfusions and pharmacological interventions at
different timing possibilities: in the organ donor, ex-vivo during perfusion machine
reconditioning or after implementation in the recipient. We will report therapies as anti-
oxidant and anti-inflammatory agents, senolytics agents, complement inhibitors, HDL,
siRNA and H2S supplementation. Renal delivery of pharmacologic agents during
preservation state provides a window of opportunity to treat the organ in an isolated
manner and a crucial route of administration. Even if few studies have been reported of
transplantation after ex-vivo drugs administration, targeting the biological pathway
associated to kidney failure (i.e. oxidative stress, complement system, fibrosis) might be
a promising therapeutic strategy to improve the quality of various donor organs and
expand organ availability.
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INTRODUCTION

Kidney transplantation represents the best treatment for patient
with End-Stage Kidney Disease (ESKD) (1). Renal transplantation
is widely recognized as the most optimal long-term treatment
option in terms of mortality, life quality, and cost when
compared to haemodialysis. However, the growing disparity
between the number of organ donors and the demand for kidney
transplantation has become a great drawback for the nephrology
community. At the time of writing, in Europe more than 11000
individuals are registered in kidney waiting list (https://statistics.
eurotransplant.org), with a median wait-time for first transplant of
3.6 years. In renal transplant candidates, annual mortality ranges
from 5 to 10% worldwide, with sharp increase in the older
population (>50 years) (2). Specifically, almost 50% of patients
older than 60 years of age who are renal transplant candidates in the
United States die before receiving a renal graft (3). The severe organ
shortage has prompted the acceptance of strategies to increase the
pool of donors. One emerging approach is the expansion to include
more marginal organs, as occurred for the utilization of kidneys
after circulatory death (DCD) and expanded criteria donors (ECD)
(4, 5). However, the use of ECD and DCD kidneys still requires a
huge price to pay related to increased incidence of primary non-
function (PNF), delayed graft function (DGF) and reduced long-
term graft survival (Figure 1). To improve renal outcomes, research
has focused on development of preservation techniques, in order to
treat kidneys, assess their quality and function, promote recovery
and repair by therapeutic intervention before transplantation. In the
last decade, exciting advancements have been made in the
development of dynamic technologies of preservation that imply
the circulation of a perfusate either at hypothermic (4-10°C),
subnormothermic (20-25°C) or normothermic (37°C)
temperatures (6–9). Multiple devices and systems have been
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developed, become commercially available, CE marked and
are routinely used in different centres. Machine perfusion can
represent a bridge between the donor and recipient and may
provide a platform for direct, non-systemic drug treatment of
the kidney.

This review focuses on the recent understanding of molecular
mechanisms and factors responsible of renal Ischemia/
reperfusion injury, strategies of interventions and advances in
the application of innovative therapies to improve kidney quality
during perfusion.
FROM MARGINAL KIDNEYS TO ECD AND
DCD CLASSIFICATION

In living donation (LD), organs are recovered from healthy
individuals and rapidly transplanted within a coordinated
surgical environment, resulting in a short ischaemia time and
long-term graft survival. Brain Death donors (DBD) are often
associated with several complications (i.e. related to catecholamine
and cytokine storm), moreover this transplantation is characterized
by longer cold ischaemia times than for LD procedure (10)
(Figure 1). However, both living donors and DBD (Donation
after Brain Death) can be included in the wide classification of
Standard criteria donors (SCD). By contrast, organs from DCD
and ECD donors are exposed to huge physiological and
haemodynamic changes, including substantially longer warm
ischaemia, due to cessation of cardiac activity, but also to
hormone dysregulation, pro-inflammatory responses, oxidative
stress and increased complement activation. Additionally,
chronic pre-existing comorbidities are often associated with
immune activation while the donor is still alive.
FIGURE 1 | Representation of different ischemia types exposure of organs retrieved from Living Donor (LD), DBD, DCD and ECD. Organ retrieved by DCD and
ECD, or DCD+ECD donors are subjected to longer warm ischemia time due to cardiocirculatory arrest, whereas in DBD surgical preparation and perfusion with cold
preservation solution is initiated immediately after cerebral death. DCD, donation after circulatory death; DBD, donation after brain death; ECD, Expanded criteria
donors; WIT, warm ischemia time; CIT, cold ischemia time; SCD, Standard Criteria Donors.
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The term ECD was introduced for the first time in 1997 by
Kauffman et al. and completely substituted the broad definition
of marginal kidneys (11, 12). Nowadays, ECD organ are defined
by deceased donors aged 60 years or older or aged 50–59 years
with at least two of the three following criteria: cerebrovascular
cause of death, terminal serum creatinine higher than 1.5mg/dl
or history of hypertension (11, 13). In 2019, in Europe, 30% of
potential donors are ECD and a similar percentage of these
kidneys are discarded annually. It’s well recognized that kidneys
from ECD correlated with approximately 2-fold increased risk of
DGF, acute rejection, and graft loss (14, 15) (Figure 1).

Regarding the classification of donation after circulatory
death (DCD) donors, also referred to as nonheart-beating
donors (NHBD) or death after cardiac death donors, it was
regulated by the First International Workshop in Maastricht.
First of all, DCD donation takes place after declaration of death
based on cardiorespiratory criteria in contrast to DBD that
required neurological criteria (16–18). In addition, while in
DBD organs are perfused until the moment of preservation,
with almost absent first warm ischemia time, organs from DCD
donors underwent warm ischemia between circulatory arrest and
the start of organ perfusion (Figure 1). Four categories of DCD
donors have been classified, distinguished in two main type:
uncontrolled (uDCD), referred to patients with unexpected
cardiac arrest with unsuccessful resuscitation and controlled
DCD (cDCD), in which the moment of the arrest of life-
sustaining therapy can be planned, and therefore with known
length of warm ischemia time. Today, DCD donors are mainly
referred to category III-controlled DCD donors. In the last fifteen
years, country that registered the highest DCD activity were
United Kingdom, Spain, Russia, the Netherlands, Belgium and
France (19). As expected, graft from cDCD donors showed better
post‐transplant outcomes that patients who received kidneys
from uDCD donors. Despite initial controversial ethical and legal
discussion, DCD is becoming progressively established and
performed in Europe, contributing to increase the pull of
organs available and giving adequate graft outcomes. What
should be clear, is that simple cold storage, the actual gold
standard of organ preservation, is not sufficient to optimally
preserve organs from DCD donors. New organ preservation
methods to better protect and recondition DCD organs are thus
being developed including normothermic regional perfusion
(NRP) to resuscitate abdominal organs in situ prior to cold
flushing or ex-vivo machine perfusion preservation after organ
procurement (20, 21).
FROM BRAIN DEATH TO RENAL
ISCHEMIA REPERFUSION: MOLECULAR
MECHANISMS OF GRAFT DAMAGE
BRAIN DEATH, COLD ISCHEMIA TIME
AND DONOR CHARACTERISTICS

Several mechanisms and risk factors have been proposed to
contribute to IRI in kidney transplantation (22) (Figure 2).
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Although IRI may also occur in kidney transplantation from
living donors, this condition is more severe in organs from
deceased donors. Compared to graft biopsy of living donors,
specimens of DBD were characterized by an increased
transcriptional activation of complement components, acute-
phase proteins and chemokines (23). Hruba et al. confirmed
these findings in recipients with graft biopsy performed early after
transplantation comparing organs from SCD and ECD. Authors
showed upregulation of transcripts related to inflammation,
wounding and defence responses, complement and coagulation
and cytokine–cytokine receptor interaction pathways (24). Brain
death is usually associated with a hyperactivation of the
sympathetic system in order to maintain an adequate cerebral
perfusion: moreover, cytokines and growth factors released by
brain injury may induce renal ischemia (25). In addition,
hypotensive episodes occurring during hospitalization requiring
the use of vasoconstrictor agents may further contribute to kidney
hypoperfusion. Prolonged cold ischemia time (CIT) severely
affects oxygen and nutrients supply to tissues and may induce
and aggravate IRI; after graft removal, a kidney is stored in cold
solution to preserve the viability of its cells, but this process
cannot completely prevent cellular injury (26). There is a
progressive detrimental effect of CIT on transplant outcome,
with 90% survival at 1 year for organs transplanted within 20
hours and a lower percentage for organs transplanted at > 30
hours (relative risk 1.9). In a UK study, protracted CIT was
associated with poor kidney graft survival in recipients of DCD
kidneys. On the other hand, higher donor age correlated with
earlier graft failure for both DCD and DBD donor kidneys (27).
Whereas the impact of CIT on early post-transplant period is well
defined, the link with long-term graft survival is controversial.
Notably, in recipients of ECD organs included in the Scientific
Registry of Transplant Recipients, overall graft loss was not
significantly different between recipients with higher CIT and
paired donor recipients with lower CIT (28). Finally, in a study
including 3829 adult recipients of a first heart-beating deceased-
donor kidney transplantation, Debout et al. showed a
proportional relationship between each additional hour of CIT
and the risk of graft failure, as it was higher when CIT was longer
than 36h (8% vs 4% when CIT was less than 16h at 1 year, 36% vs
20% at 10 years) (29), suggesting the importance of minimizing
CIT to improve short- and long-term outcomes of
kidney transplantation.
Complement System in Renal
Transplantation: Strategies of Inhibition
in the Donor and During Preservation
The activation of immune system plays a central role in all
transplantation phases (10, 14, 30, 31).

The stepwise process of transplantation consists of consecutive
events that can affect the graft, including brain or cardiac death in
deceased donors, unavoidable ischemia/reperfusion injury,
preservation procedure, post-transplantation rejection and
other non-immunological insults such as drug toxicity, diabetes
or hypertension (10). During all these stages, various immune
July 2021 | Volume 12 | Article 673562
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responses can potentially induce graft injury and contribute to
premature loss of kidney function. Particularly, early innate
immune response appeared more detrimental than major
histocompatibility complex, as emerged by improved outcomes
from HLA- unmatched living donor transplantation compared to
HLA- matched deceased donor transplantation (10, 32).

Complement has a critical role in immunological and
inflammatory processes before, during and after transplantation.
Indeed, complement can exacerbate graft damage, leading to early
fibrosis and a premature aging, thus resulting in a gradual
deterioration of function (33–36).

Briefly, complement can be activated by three pathway: the
classical pathway (CP), lectin pathway (LP), and the alternative
pathway (AP) (37–39). The CP is initiated by C1q binding to
antigen-antibody complexes, thereby inducing a cascade via C2
and C4 cleavage, leading to the production of CP C3 convertase
(C4b2b). In the LP, mannose-binding lectin (MBL) ficolins or
collectin-11, bind to their MBL-associated serine proteases
(MASP) and similarly to CP, activate C4b2b convertase. The
AP is activated by hydrolysis of C3 to C3(H2O). Factor B is
recruited and cleaved by factor D to form the AP C3 convertase
(C3bBb). The factor properdin, the only positive regulator of
complement system, can stabilize the C3bBb convertase. The C3
Frontiers in Immunology | www.frontiersin.org 4
convertases formed by the different pathways are responsible for
a low-grade cleavage of C3, thereby forming C3b. C3b mediates
opsonization or binds to the C3 convertase to form the C5
convertase. The C5-convertases cleave C5 into C5a and C5b,
then this became the substrate for following attachment of C6,
C7, C8, and C9, leading to membrane attack complex (MAC)
generation. The MAC complex induces the formation pores in
the membrane of pathogens and damaged self-cells, thus
promoting cell lysis. Finally, complement promotes a systemic
inflammation by release of C3a and C5a anaphylotoxins, able to
induce neutrophils chemotaxis (Figure 2).

Complement activation can occur already in waitlisted patients
for kidney transplantation particularly during hemodialysis and
attributed the contact of systemic complement to biomaterial
surfaces inside the circuit tubing and filter membranes (40, 41).
Moreover, complement activation in transplant candidates could
be the consequence of complement related disease as IgA
nephropathy (IgAN), C3 glomerulopathy, membranoproliferative
glomerulonephritis type I, atypical haemolytic uraemic syndrome
(aHUS) (10, 34, 42, 43).

As demonstrated in human preclinical studies the type of
organ affects the role of complement activation. Deceased
donors, particularly DCD and DBD donors, have higher level
FIGURE 2 | Molecular mechanisms of renal IRI. During ischemia, the lack of oxygen and substrates led to inhibition of oxidative phosphorylation, thereby to ATP
depletion. From a side this led to an anaerobic lactic acid-associated glycolysis, with pH decrease and lysosome lytic enzyme release. From the other, the blockade
of pump Na/K activated proteases and phospholipases, leading to increased Ca++ level. Furthermore, ATP produced in aerobic tissues is lysed into AMP,
adenosine, inosine and hypoxanthine. Hypoxanthine is metabolized by xanthine oxidase in ischemic tissues, in a reaction that uses molecular oxygen (O2) and
release toxic ROS as intermediate products. During reperfusion, DAMP released by ischemic damaged kidney cells are recognized by PRR as TLR on immune cells
but also on endothelial cells leading to increased gene expression of pro-inflammatory cytokines that recruited and activated leucocytes. These cells released more
cytokines, in an amplification loop culminating into ROS release by macrophages and neutrophils, interstitial infiltrates and kidney damage. Ischemic damaged cells
can activate complement system (by Collectin-11, MBL) that result in anaphylotoxins C3a and C5a generation and MAC-mediated cell injury. These acute processes
have been linked to early renal fibrosis development by the process of EndMT, EMT and PMT (Endothelial to mesenchymal transition, Epithelial to mesenchymal
transition and Pericytes to mesenchymal transition). TLR, Toll Like receptor; MAC, membrane associated complex; DAMP, Damage-associated molecular patterns;
PRR, Pattern Recognition Receptors; ROS, reactive oxygen species.
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of complement activation as assessed by increased level of C3d,
C4d, C5a, Bb or soluble C5b-9 (14, 44–46). Moreover, grafts
from DCD donors were more prone to develop acute rejection in
the recipient (46, 47).

Brain death exacerbates the detrimental effects of complement
activation, and experimental complement inhibition by CR2-
Crry in a mouse cardiac transplant model significantly reduced
myocardial injury and prolonged graft survival (48).

Furthermore, as demonstrated by Burk et al., multiple trauma
occurring in the donor results in a severe “complementopathy”,
characterized by immediate activation, consumption, and
dysfunction of the complement cascade, that may have
consequences in transplantation perspective (49). In addition,
also the C3 allotype of the donor (i.e C3S and C3F) has been
associated to renal graft survival. Damman et al. demonstrated
the protective role of C3F allotype in a cohort of DCD donors
that was associated to better outcome in the recipient (50).

After organ procurement, the detrimental role of complement
in renal IRI has been extensively investigated by experimental
studies using C3–, C5–, and C6–deficient murine model
(51–54), pre-clinical porcine studies (55, 56) and clinical trials
(57–59).

An emerging therapeutic strategy to arrest upstream
complement activation is C1-esterase-inhibitor (C1- INH), an
endogenous serine protease inhibitor of classical- and lectin
pathway (60, 61). Pre-clinical studies with C1-INH in the
deceased donor showed promising results.

In a rat model of brain death, high-dose C1-INH treatment
significantly improved renal function and reduced local and
systemic inflammation, as assessed by lower serum creatinine
level, decreased pro-inflammatory gene expression and serum
IL-6 respectively (14, 62).

To evaluate the effect of C1-INH (CINRYZE) as a donor pre-
treatment strategy to decrease systemic inflammation and
decrease the incidence of DGF in ECD, is currently the aim of
phase I, randomized trial (NCT02435732) that is expected to be
completed in May 2022. A similar study is ongoing in non-
human primate model (Fernandez L. The Role of Complement
Inhibition in Expanded Criteria Kidney Transplantation http://
grantome.com/grant/NIH/R01- AI110617-03 #5R01AI110617-
03) (63). The effect of intraoperative administration of C1-INH
(Berinert) to prevent DGF was evaluated by Jordan et al. in 105
recipients of DCD kidneys (61). Even though, C1-INH treatment
did not reach the primary end-point on DGF incidence, were
found important reductions in need for dialysis and
improvements in long-term allograft. Recently, the trial has
been updated in the long-term outcome definition, showing
that Berinert treatment is associated with a lower incidence of
graft failure (64).

In a pig model of renal IRI injury, the treatment with C1-INH
conferred protection not only blocking C4d, factor B, C5b-9
deposition but also reducing infiltrating cells, significantly
modulating early fibrosis by limiting number of myofibroblasts
through endothelial-to-mesenchymal (EndMT), pericytes-to-
myofibroblasts (PMT) transitions (56, 65, 66) leading to a
reduction of chronic graft fibrosis also after 3 months from
Frontiers in Immunology | www.frontiersin.org 5
transplantation (55). Strikingly, C1-INH modulated the
occurrence of premature renal aging of the graft (35, 67, 68).

In the context of renal transplantation, no data are available
regarding the supplementation of C1-INH in perfusion
solutions. In a porcine extracorporeal liver reperfusion,
Bergamaschini et al. that supplemented C1-INH in the
perfusate after 8 h of cold ischaemia. The major findings were
a reduced C3 activation both at plasma and local level, a drop of
total serum haemolytic activity, with lower degree of
inflammatory cell infiltration and tissue damage (69).

These results suggest that adding C1-INH to the preservation
solution may be useful tool to selectively shut down early
complement activation, thereby limiting tissue injury during
the reperfusion, without completely “extinguish” the recipient
immune system.

Next to the use of complement inhibitors in the donor, other
studies evaluated the effect of complement blocking during
dynamic perfusion treatment.

sCR1 can inhibit classical and alternative pathways by
binding C3b and C4b and resulting in C3 and C5 convertase
blockade (58, 70). In a recent model of renal IRI and in a study of
an ex-vivo normothermic perfusion, Hameed AM et al. tested
the administration of combination of sCR1 plus aCD47Ab,
a blocking monoclonal antibody able to ameliorates
thrombospondin (TSP)-1 mediated IRI signaling, including
inhibition of nitric oxide and promotion of oxidative stress
(71). Their main conclusion was that aCD47Ab was shown to
be most protective as established also by NMP treatment of a
porcine DCD model.

Another compound derived from sCR1, the APT070, also
known as Mirococept was tested in preservation solutions (14,
72). In an interesting study, after perfusion with Mirococept, rat
donor kidneys were exposed to 16 h of cold storage (73), then
kidneys were transplanted into syngeneic recipients. Compared
to control-cold stored renal allografts, APT070 perfused renal
grafts had more than 2 fold higher survival rates.

The clinical translation of these rodents’ analysis recently led
to a multicentre randomized controlled trial, in which
Mirococept is administered ex vivo to deceased donor kidneys.
The trial, called EMPIRIKAL, aims to evaluate the efficacy of
Mirococept in reducing the incidence of DGF in renal
transplants from deceased donors (74, 75) and provided
evidences on safety and feasibility of this new drug.

Although these preliminary data warrant further validation,
these observations suggest that complement-targeted regulation
before, during and after organ retrieval could modulate aberrant
inflammation, regulating the IRI cytokine storm thus limiting
renal damage and improving the outcome of transplantation.
OXIDATIVE STRESS AND
MITOCHONDRIAL DYSFUNCTION
IN I/R INJURY

The extent of renal dysfunction and loss of parenchymal integrity
within transplanted organ is influenced by both I/R injury and
July 2021 | Volume 12 | Article 673562
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mitochondrial dysfunction that are the main triggers of oxidative
stress (76). During transplant surgical procedure, both clamping
and section of renal artery for organ explant in the donor and
later arterial anastomosis in the recipient might determine the
start of a form of AKI recognized as DGF (77, 78).

In ischemic condition, the drop in blood flow is sudden and
the anaerobic metabolism prevails due to a severe decrease of
oxygen in all compartments of renal parenchyma (78–80). This
anaerobic metabolism is not able to meet the increasing energy
demands of aerobic tissue and low oxygen concentrations impair
mitochondrial oxidative phosphorylation, reducing ATP
production (81). In order to compensate the decrease of ATP
level and maintain cellular energy-dependent processes, the
lactate-dependent ATP production is activated but this
mechanism generates intracellular acidosis that alters
intracellular pH and contributes to cellular dysfunction and
damage (81, 82) (Figure 2).

ATP depletion reduces the activity of the Na+/K+ATPases,
promoting an increase of Na and water influx that induce edema
and alteration of intracellular electrolytes homeostasis (83). This
disequilibrium stops the activity of Na/Ca+2 antiporter
membrane protein to pump Ca2+ out of the cell, causing an
intracellular Ca+2 overload (76, 83, 84). Intracellular Ca2+ levels
are further augmented by the inhibition of Ca2+ reuptake into the
endoplasmic reticulum due to the ATP depletion. Since the
activation of lactate-dependent ATP pathway causes lowering
of pH, the Na+/H+ antiporter membrane protein pumps protons
out of the cells in an attempt to correct the intracellular pH
(82, 84).

All these processes contribute to increase intracellular Ca2+

levels that consequently enhance the activation of calcium
dependent proteases such as calpains that exert their
detrimental function during the reperfusion phase when pH
was normalized (85).

The increased intracellular levels of Na and Ca2+ trigger
mitochondria to internalize Ca+2 in their matrix. This
accumulation modifies cytochrome c activity and enhance
Reactive Oxygen Species (ROS) generation (86). In addition, Ca2+

accumulation sensitize and predispose mitochondrial transition
pore (mPTP) opening in the reperfusion phase (86) (Figure 2).

During hypoxic condition, the activity of antioxidant
enzymes, such as superoxide dismutase (SOD), catalase (CAT)
and glutathione peroxidase (GSH-Px) is strongly impaired
causing an exacerbated production of ROS when blood
circulation is restored (87).

Therefore, the reestablishing of blood supply in reperfusion
phase enhances several mechanisms that are more detrimental
for renal parenchyma and include the burst of ROS, calcium
overload, opening of the MPT pore, endothelial dysfunction and
activation of coagulation and inflammatory response (88, 89).

The ROS burst and mPTP opening cause an influx of water
and solute that enhances mitochondrial swelling and the
disruption of the outer membrane with the release of
cytochrome C in the cytosol (90). The presence of cytochrome
C in the cytosol induces the activation of pro-apoptotic caspase-3
which drives cells to apoptosis (90).
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In addition, ROS induce direct damage to cellular
macromolecules such as proteins, lipids and DNA, which
consequently enhance cells to activate death mechanisms (90).
Several evidences suggest that NADPH oxidase plays a central
role in mediating oxidative stress and DNA damage and might
contribute to progressive renal damage in this setting (91).

Considering the differences of oxygenation among several
regions of renal parenchyma, it is obviously that the response of
each cell depends on their location within the kidney (92). As
well known, the renal outer cortex has high oxygen reserve and
renal tubular epithelial cells could resist very well to hypoxic
damage if the ischemic period is not too long. Differently tubular
cells located in inner medulla are more susceptible to oxygen
decrease, since they have an elevate consumption of ATP due to
their involvement in reabsorption function. Papillary cells are
located in hypoxic region of renal parenchyma and they have an
anaerobic metabolism and could resist to reduced oxygen
delivery (92).

The principal consequences of I/R injury are associated to
profound alterations of renal epithelial cells that include brush
border loss, cytoskeletal changes and rapid loss of surface
markers and peculiar transport properties that enhance death
mechanisms (93). All these functional and structural changes
induce epithelial cell desquamation and the appearance of
cellular debris aggregates in the tubular lumen (93). Recently,
emerging evidences underline that oxidative stress may promote
epigenetic modifications of DNA inducing the acquirement of a
senescent phenotype that could be the priming of chronic renal
damage (68, 94).

Endothelial cells are also involved in this context and are the
first target of I/R injury (95, 96). These cells loss their peculiar
functions and acquired dysfunctional phenotype increasing renal
damage. They are not only the target of this injury, but they are
also the principal key players in the pathogenesis of renal damage
(97). Recently, our group demonstrated in a swine model of I/R
injury, that these cells survived and became myofibroblasts
participating in early renal fibrosis (65). Along vascular
compartment, pericytes seemed to be involved in the
pathophysiology of renal IRI increasing inflammatory cells
infiltration and participating in fibrotic process (66). Therefore,
all the cells respond to I/R injury as described above and
influenced graft outcomes.

Several studies underline the correlation between I/R injury,
oxidative stress and graft outcomes (98, 99). Indeed, La Manna
G. et al. observed in a cohort of thirty patients that transplant
recipients with a significant decrease in IL-6 plasma levels and
DNA oxidation and fragmentation had a better recovery of renal
function at 6 months after transplantation (100). Moreover, the
measurement of cytokine levels confirmed that low levels of
oxidative stress correlate to better outcome in kidney
allografts (100).

New several polymorphisms in genes involved in oxidative
stress have been associated with DGF, allowing better
understanding of DGF pathophysiology and suggesting a possible
explanation of the different outcomes between individuals in post-
transplant course (101, 102). Azmandian J. et al. demonstrated that
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donors and recipients’ Glutathione S-transferases (GSTs)
polymorphism was associated with increased serum creatinine,
high levels of lipid peroxidation and increased risk of DGF (101). In
accordance, a recent study highlighted the association between
recipients’ subunit of NAD(P)H-oxidase polymorphism and DGF
occurrence (102).

Given the strong link between oxidative stress, especially in
cadaveric donors and poor transplantation outcomes, several
studies have investigated the use of antioxidant therapy in kidney
transplantation (103). Long C et al. examined the effects of
Oleanolic acid (OA) preconditioning in a rat model of I/R
injury (104). OA is a natural compound, with known
antioxidant, anti−inflammatory, and anti−apoptotic properties.
In this experimental study, the authors demonstrated that animal
pre-treated with OA for 15 days presented better recovery of
renal function and reduced pro-inflammatory cytokines
(104) (Table 1).

Similarly, another study evaluated the effects of an
antioxidant compound, leutoline, a flavonoid obtained from
plants, and demonstrated its renal protective effect in the same
context (105).

Other interesting studies have been focused on the effects of
non-polyphenolic substances, such as atorvastatin (ATOR) and
N-acetylcysteine (NAC) in reducing oxidative stress and renal
damage in a murine model of I/R injury (106). Cusamano G.
et al. showed that the use of statin as ATOR, alone or in
combination with NAC could better counteract the detrimental
effects of oxidative stress damage and assure better outcome in
renal recipients (106). The effects of NAC in preventing IR injury
has been well documented in other experimental settings such as
lung transplantation models (124, 125). Despite experience in the
use of antioxidant compound in pre-clinical studies, few works
demonstrated their effectiveness in clinical setting. Danilovic A.
et al. investigated the effects of NAC in deceased donor
transplant (123). They observed an attenuation of oxidative
damage and early recovery of renal function in recipients who
received NAC orally from day 0 to 7 postoperatively (123).
Moreover, a metanalysis of six randomized controlled trials
provided evidence of the effectiveness of NAC against contrast-
related nephropathy (126) (Table 1).

Emerging studies evaluated the possibility to administrate
antioxidant enzymes (AOEs), such as catalase and SOD and
antioxidant compounds through carriers that protected both
enzymes and compounds from inactivation and deterioration
and improved intracellular delivery. Indeed, application of
vascular immune targeting AOEs to specific endothelial epitopes
has been proven to be an effective donor preconditioning method
in lung transplantation model (127). Preissler G. et al. observed
that the infusion of the antioxidant enzyme catalase, conjugated
with a platelet/endothelial cell adhesion molecule-1 (PECAM-1)
antibody to nanosized particles, before cardiac arrest, induced a
decrease of endothelial dysfunction, lipid peroxidation, alveolar
leakage, and edema formation in transplanted pigs (128).
Therefore, the preconditioning approach with antioxidant
agents might be a promising strategy to improve outcome in
transplantation using organs from donors after cardiac death
Frontiers in Immunology | www.frontiersin.org 7
(127, 128). Likewise, vascular immunotargeting of catalase to
lung endothelial cells via anti-angiotensin-converting enzyme
antibodies attenuated oxidative damage in a rat model of lung
I/R injury (127) (Table 1).

Finally, the use of liposomes as artificial vesicles for
encapsulation and delivery of antioxidant compounds, such
NAC and curcumin has been shown to protect respectively
lung, liver and kidneys in rodent models (127).

Conclusively, the antioxidant therapies are promising
approaches to protect graft before I/R injury. Given that
ischemic-induced injury reaches the major detrimental effects
in cold preservation period, several strategies including machine
perfusion and supplemented preservation solutions with anti-
oxidant compounds have been introduced to ameliorate
transplant outcome.
STRATEGIES OF INTERVENTION

Donor Strategies
Donor Pre-Treatment
Therapeutic management of donors can have a crucial impact on
recipient’ outcomes reducing the effects of IRI during the early
post-transplant phase (22). The main goals of donor
management are the maintenance of an adequate volemia, the
optimization of cardiac output and blood pressure in order to
ensure adequate perfusion pressure and blood flow avoiding the
use of a significant amount of vasoactive drugs (22). In a recent
retrospective study, including 214 consecutive recipients from
122 brain-dead donors, meeting optimal donor management
goals (DMGs) at donor neurological death is associated with a
lower risk for DGF, independent of the use of machine perfusion
and donor quality (129). In this scenario, donor pre-treatments
have been investigated in several experimental and clinical
studies with the goal of prevention and early treatment of
organ injury during IRI, while only few studies analyzed their
impact on graft survival (130). Donor pre-treatments are usually
classified in physical (including hypothermia and remote
ischemic preconditioning) or pharmacological approaches
(including dopamine and steroids). Mild hypothermia has been
demonstrated to significantly reduce the rate of DGF among
recipients: in a randomized clinical trial including 394 donors
randomized to mild hypothermia (34-35°C) or normothermia
(36.5 to 37.5°C), DGF occurred in 79 recipients (28%) in the
hypothermia group and in 112 recipients (39%) in the
normothermia group (OR 0.62, 95%CI 0.43 to 0.92, p=0.02)
(131). More recently, Schunuelle et al. have investigated the
impact of spontaneous donor hypothermia (defined as a core
body temperature less than 36°C 4-20 hours before organ
retrieval) on DGF and 5-year graft survival: although donor
hypothermia reduce di risk for DGF, a significant advantage in
terms of graft survival was not described (HR 0.83, 95%CI 0.54 to
1.27, p=0.39) (132). Remote ischemic preconditioning (RIPC)
has been used as a strategy to reduce acute kidney injury in the
setting of cardiac surgery; while promising data suggested a
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potential benefit of RIC in animal kidney transplantation models,
a few clinical trials have investigated the use of RIC in human
kidney transplantation with controversial results. In a murine
model, ischemic preconditioning (15 min of warm ischemia
followed by 10 min of reperfusion) has been shown to protect
from both warm and cold ischemia, increasing the local
production of nitric oxide (133). In a small RCT where RIPC
was performed using a pneumatic tourniquet place on both
thighs for 10 minutes at the time of organ retrieval, no
significant differences in eGFR or serum creatinine were
described, while an increase in pro-inflammatory cytokines has
been reported (134). More recently, Bang et al. investigated
whether RIPC performed in living kidney donors using a
blood pressure cuff placed on upper arm (3 cycles of inflation
to 200mmHg for 5 minutes followed by deflation of the cuff for 5
minutes) could improve kidney function and outcomes in both
donors and recipients; serum creatinine levels for donors at
discharge was significantly lower in donors who received RIPC,
while no significant difference in serum creatinine, eGFR, risk for
DGF, acute rejection and graft failure between the recipients of
the two groups (135). Several pharmacological donor pre-
treatments have been recently investigated in this setting. A
randomized trial that randomized 264 deceased heart-beating
donors in 60 European Centers to receive pre-treatment with
low-dose dopamine (4mug/kg/min) reported a lower incidence
of dialysis requirement in the first week after transplantation in
recipients of a dopamine-treated graft (136). However, a
secondary analysis of this trial investigating the impact of
dopamine infusion on long-term outcomes did not show
significant advantages in 5-years graft survival, suggesting that
a longer dopamine infusion time may instead improve clinical
outcomes (132). In a multicenter randomized controlled trial,
306 deceased donors were randomized to receive corticosteroids
(1000 mg of methylprednisolone) or placebo prior to organ
procurement: the rate of biopsy-proved rejection at 3 months
as well as 5-year graft survival did not significantly differ between
the pre-treated and placebo groups, suggesting that this
approach did not impact on long-term clinical outcomes (137).
Ex Vivo Perfusion Strategies
Hypothermic Machine Perfusion
A great deal of research is still needed to optimize the techniques
of organ transport and storage for maintaining and improving
transplant outcomes. The widely used methods for hypothermic
storage of deceased-donor renal grafts include static cold storage
(SCS) and hypothermic machine perfusion (HMP) (138, 139).

SCS (SCS) is a process by which the preservation solution is
infused into the organ and then stored statically at hypothermic
temperatures; currently represents the most widely used method
due to its greater availability, nevertheless HMP is to prefer for
long period of kidney preservation (139, 140). The main difference
between the two methods consists in the fact that HMP allows to
continuously perfuse the organ with cold preservation solution
probably assuring reduced I/R injury and better graft outcome
(139, 140). Thus, it is relevant to determine which method is more
effective in terms of post-transplant results.
Frontiers in Immunology | www.frontiersin.org 10
First of all, it is necessary to consider the principal
pathological mechanisms involved in DGF, as ischemic
damage and inflammation and the benefits that static cold
storage or hypothermic machine perfusion could reach to
preserve transplant renal parenchyma (140). Preclinical studies
showed great effects of cold pulsatile perfusion vs static storage
due to amelioration of endothelial function and reduced
pathological lesions within renal parenchyma (139).

Unfortunately, few randomized clinical trials investigated the
different effects between machine perfusion and cold storage in
deceased donor kidney transplantation (139). In a systematic
review Bathini V. et al. analyzed nine clinical studies, comparing
pulsatile perfusion and static storage, not discriminating between
donation after cardiac death (DCD) and donation from a
neurologically deceased donor (DBD) (141). The authors
observed significant results in terms of decreased incidence of
DGF in transplanted kidneys from DCD (141). They did not
register positive effects in 1-year graft survival, comparing all
these studies (141). Accordingly, O’Callaghan JM. et al.
demonstrated that cold pulsatile perfusion decreased the
occurrence of DGF, and no significant effects were observed in
graft survival and primary no function (PNF) (142). Jiao B. et al.
compared renal outcomes in patients receiving expanded criteria
(ECD) kidneys after HMP or cold static storage in a metanalysis
and they observed that HMP was associated to decreased
incidence of DGF and graft survival (143). Recently, Peng P.
et al. analyzed only randomized clinical trials that compared the
two preservation methods, bypassing some confounding factors
that characterized precedent metanalysis studies (144). They
concluded that HMP significantly reduced DGF occurrence in
both DCD and DBD and could increase graft survival after 3
years from transplantation (144). No significant results were
obtained in terms of PNF, survival rate at 1 year, loss of graft and
hospitalization (144).

Recently, several studies highlighted the role of metabolic
activity for the assessment of graft quality and augmented
incidence of graft survival. Interestingly, Guy AJ. et al.
analyzed, through NMR spectroscopy, the metabolic profile of
DGF and immediate graft function (IGF) kidneys and they
observed differences in glucose concentrations after 45min and
4 hours post-perfusion (145). Interestingly, higher levels of
glucose were found in IGF kidneys compared to those in DGF
group, suggesting that the intake of glucose is necessary to
maintain metabolic competence attenuating renal damage after
I/R injury (145). Moreover, they found elevated levels of
aminoacidic in perfusate of DGF organs, indicating the
occurrence of tubular damage (145).

Hypothermic Oxygenated Machine Perfusion (HOPE)
Despite oxygen consumption is significantly decreased in
hypothermic condition (at 4–10°C), there is still an important
cellular metabolism. The technique of HOPE (Hypothermic
Oxygenated Machine Perfusion) has been recently recognized
as a powerful tool in preservation technologies for the
additional value to oxygenate perfusate at a partial pressure of
60–100 kPa (146–148). In rodent and pig models, pre-treatment
of ischemic grafts with HOPE appeared able to counteract
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endothelial dysfunction, macrophage activation and improved
mitochondrial metabolic pathways (149–153). Furthermore,
preliminary clinical experience as well as retrospective studies
started to compare incidence in DGF and other renal function
parameters in HOPE treated graft versus conventional SCS
kidneys (147, 154).

Recently, Ravaioli M et al. performed the first Italian clinical
trial to test the effects of HOPE in kidney and liver transplant of
extended criteria donors after brain death (155). In this study the
authors demonstrated the importance of mitochondrial function
also in renal cells (155). Therefore, the use of oxygenated
perfusion demonstrated a strong decrease of ROS production
and renal impairment. Moreover, they also found that NGAL
measurements in renal perfusate correlates with better transplant
outcome (155). Thus, these data underline the importance to
perform hypothermic oxygenated perfusion in the early phase
after graft retrieval, to restore mitochondrial function, reducing
waste products and ROS release and organ damage. Similarly, in
a prospective case-matched pilot study, Meister FA. et al.
demonstrated the safety and feasibility of HOPE in human
ECD grafts, finding a decrease in renal resistance as central
predictor of allograft function (147). However, no significant
differences were assessed in DGF incidence.

Other research groups, in particular the team of Zurigo,
demonstrated the crucial role of hypothermic oxygenated
perfusion (HOPE) to improve graft quality before organ
implantation (156). Initially, Dutkowski P et al. performed
experimental studies in various animal models (149, 157–161);
they showed less reperfusion damage in rat livers of DCD that
underwent HOPE for 10 hours due to a metabolic reloading
(158, 162). In large animal models, they also observed that pigs
transplanted with untreated DCD grafts developed severe
metabolic disorder as acidosis, systemic shock and clear
histological signs of liver impairment (159). In contrast, an
intervention of 1 hour HOPE successfully prevented these
events and transplanted pigs showed normal levels of lactate
and recovery of liver function with bile production after 2 hours
from implantation (159). In addition, mitochondrial function
and liver ATP content was preserved, assuring less injury during
the reperfusion phase.

On basis of experimental research, they performed the first
worldwide clinical application in grafts obtained from DCD
donors (156). The strength of this approach is associated with
the preservation of mitochondrial function indicating mitigation of
I/R injury and the assessment of a new biomarker, flavin, that
provides a fast prediction of liver graft function (156, 163). Flavin is
a marker of mitochondrial complex I injury released from the first
electron transferring mitochondrial protein during oxygenated
perfusion (163). Recent studies in ischemic brain mitochondria
demonstrated that the binding site of flavin in mitochondrial
complex 1 determined the production of superoxide anions in
normothermic conditions and the release of flavin itself (164).
Dutkowski’s group showed that ischemic livers released great
amount of flavin, that was easily detectable in perfusate due to
its natural fluorescent properties (163). Thus, flavin is considered a
higher useful biomarker of impaired metabolism and ATP-
Frontiers in Immunology | www.frontiersin.org 11
breakdown, allowing to discriminate better organs for
transplantation and reduce risks for recipients (163).

Collectively, these studies have shown the potential of cold
pulsatile oxygenated perfusion method to avoid the detrimental
effects belonged to I/R injury reducing the incidence of DGF.
Despite the decrease in the rates of DGF, the long-terms effects of
HMP in recipient’s outcome are not evident and recent literature
underlined significant results with the use of normothermic
machine perfusion (NMP).

Normothermic Machine Perfusion
The preservation of renal graft at a normothermic temperature
offer a great repertoire of advantages. The possibility to replicate
a physiological environment at a normal (37°C) or subnormal
(20-25°C) body temperature can restore cellular metabolism.
This result can be reached by an inflow of human blood at 37°C,
that offer a substrate for ATP production.

ATP restoration, has been considered the main strength of
NMP treatment (140, 165, 166).

Cold stored kidneys are characterized by a reduction in the
expression of oxidative phosphorylation and glycolysis genes
indicating a reduced capacity to generate metabolic substrates in
anaerobic conditions (20, 167).

On the contrary, after NMP treatment these pathway were re-
activated, indicating a recovered metabolic activity (8, 11, 168).

The central potential of NMP is the opportunity to assess renal
function through the measurement of multiple perfusion and
biochemical parameters during preservation (i.e renal resistance,
urine production), to evaluate cell viability of the graft (by rising
levels of lactate, aspartate aminotransferase and ATP) before than
transplantation. Secondly, by keeping physiological function,
these strategies may prevent deterioration of the organ (169). In
addition, compared to HMP approach, NMP platform is optimal
for the direct administration of therapies to target IRI or acute
rejection by allowing constitutive cellular interactions, binding
active compounds to target sites and keeping drugs
pharmacokinetic at body temperature. The possibility to create
a window for testing and functionally improve the graft can be
summarized in the 4Rs of machine perfusion: Resuscitation,
Repair, Rejuvenation, Regeneration (170).

Perfusate Composition
The NMP treatment required a well-studied combination of
perfusate components that are crucial to ensure the adequate
transport of oxygen and nutrients to keep cellular integrity and
vascular processes during perfusion. Regarding the oxygen
carrier, it that can be natural such as blood or an artificial-
based medium.

In order to mimic the physiologic renal IRI, pre-clinical ex
vivo perfusion experiments have been carried out with whole
blood. However, in the human clinical setting an NMP perfusate
could never be composed of whole blood (171). Firstly, human
whole blood is not easily available. Secondly, the plasma and
buffy coat components are rich of antibodies, coagulation
mediators, leukocytes and thrombocytes. On other words,
blood-derived solutions are lesser used for their tendency to
haemolysis, platelet activation and long-term decreased
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efficiency of oxygen-carrying capacity of erythrocytes.
Furthermore, after warm ischemia time, the reperfusion period
is profoundly characterized by cytokine storm, complement and
coagulation activation (Figure 2) in which leucocytes,
endothelial cells and platelets play a detrimental role.
Leucocyte infiltrate into the renal parenchyma leading to
microvascular and glomerular congestion. The ROS released by
activated macrophages further amplify renal damage, activate
complement system that sustained injury response. During
reperfusion, platelets led to thrombus formation, reducing flow
rate and mediating also vasoconstriction and inflammatory
processes (4, 14, 168, 172).

Based on these observations, solutions with packed red blood
cell in the absence of leucocytes and platelets have been
preferentially developed and were found to moderate
infiltration, inflammatory response by improving circulation
and renal function (140).

In completely artificial solutions, Brasile et al. set an acellular
normothermic solution based on a perfluorocarbon (PFC), an
inert compound that have the high capacity to dissolve oxygen
enriched with energic substrates such as culture-like medium
containing amino acids, lipids and sugars (166, 173).

From the initial generation of PFC solutions, other
compositions have been developed with improved stability,
even if still correlated with substantial manufacturing and
costs (174).

Other artificial haemoglobin-based oxygen carriers have also
been developed as Lifor, an artificial preservation medium
containing a nonprotein oxygen carrier and AQIX-RS-I that
resembles physiological ionic concentrations, osmolarity
and ion conductivity, to maintain the cell membrane and
enzymatic processes.

Finally, Hemarina- M101 is an extracellular haemoglobin
derived from a marine invertebrate formulated into an oxygen
carrier called Hemoxycarrier used in cold storage solutions to
deliver oxygen (174).

Beside oxygen carrier, a NMP solution should also contain a
colloid and a balanced electrolyte composition (175).

In the blood vessels, albumin represents the central
component that keep a normal colloid osmotic pressure (176)
and at glomerular level is essential to maintain a physiological
ultrafiltration rate.

Several NMP solutions for kidney preservation are enriched
with albumin. Other additives include glucose, insulin,
aminoacids, bicarbonate for the pH, antibiotics to prevent
bacterial infection and mannitol to maintain eritrocytes viability.

However, despite encouraging results, today we have a limited
understanding of the precise formulation of an NMP solution.
There is no an ideal perfusate and the composition appear to be
strictly dependent from duration of NMP, type of graft damage
(DCD, ECD) and need for regeneration and repair as well as
recipient characteristics.

NMP Treatments
An increasing number of clinical and experimental studies
provided evidence on the superiority of kidney preservation of
a short treatment of NMP compared to a longer SCS (177–179).
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A series of seminal studies showed that a 60‐minute period of
NMP after SCS made it possible to transplant a DCD kidney with
greatly improved immediate graft function compared with SCS
alone (180, 181).

The molecular mechanisms of NMP induced protection are
still poorly investigated. In a pig model, Stone et al, demonstrated
that 6h of NMP induced a pro-inflammatory cytokines storm as
assessed by increased IL-6, IFN-g, and CXCL-8 that was able to
induce the mobilization of donor-derived leukocyte, then their
removal prior to kidney transplantation (150). Similar results
were also found in other porcine studies from Hosgood SA et al.
who demonstrated that kidneys undergoing a short period of
NMP had increased expression of heat shock protein 70 and IL-6
together with improved metabolic function and less tubular
injury compared with static cold-stored kidneys (182). From
the other side, these pro-inflammatory pathways were also
downregulated during cold storage, including TNFa activation
via NF-kB and reactive oxygen species pathways. These results
could appear confounding in the perspective of a protective and
beneficial effect of NMP compared to SCS. However, it’s well
accepted that these early, pro-inflammatory processes help to
condition the kidney in preparation for reperfusion and that cold
storage merely represents a transitory hold on these pathways.
Therefore, following reperfusion in the recipient, similar changes
in inflammatory gene expression as observed in NMP are
expected. As demonstrated by Hameed AM et al, by
performing transcriptomic analysis of NMP in three kidneys
undergoing NMP, authors found the induction of immune
response-related genes during NMP, including IL1B, CXCL2,
and TNF. However, a short NMP treatment of 1h after cold
ischemia was able to activate protective stress responses,
promoted cell survival and graft recovery (169). Similar results
were provided by other groups that evaluated the release of
cytokines, chemokines and donor leukocytes from the interstitial
compartment of the kidney into the perfusate during NMP as a
source of inflammation. The combination of filters into the
circuit could reduce cytokines to shut down IRI associated
inflammatory state.

Ferdinand JR et al. (183) by whole kidney transcriptome
analysis compared the effect of NMP with that of cold storage by
using pairs of human kidneys obtained from the same donor.
Firstly, authors confirmed that cold storage led to a
comprehensive reduction in gene expression of inflammatory
and metabolic signalling such as oxidative phosphorylation. By
contrary, during NMP, there was marked increase of oxidative
phosphorylation genes, and not surprisingly, also of immune and
inflammatory pathway genes. Retrospectively, considering that
NMP-treated grafts were transplanted, authors found that higher
inflammatory gene expression occurred in organs with extended
DGF and that the use of a hemoadsorber significantly modulated
the expression of a DGF-associated gene signature.

Despite the development of different devices, the basic aspects
of NMP procedure is the same with four common components:
an oxygenator, a blood reservoir, a pump for renal artery inflow
and a heat exchanger.

However, at present there is no consensus of an ideal protocol
of reperfusion. NMP can be realized by a hugeness of approaches
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ranging from duration of reperfusion, pressure, continuous or
pulsatile flow, temperature, partial pressure of oxygen, sequence
with cold static storage and type of perfusion solutions (184). As
a consequence, the clinical applications of NMP are strongly
influenced by the parameters applied in the centre. Furthermore,
the NMP experience in clinical setting is sparse, with only several
case reports (185).

The first group to translate the preclinical experience into
clinical reality was Hosgood et al. by transplanting a 62-year-old
ECD kidney into a 55-years old recipient. Kidney was subjected
to 11 h of SCS, then perfused with a red cell-based solution at
33.9°C for 35min, then transplanted. Despite a short delay in
recovering the graft function, patient remained dialysis free with
a serum creatinine level of 132 mmol/L at 3 months post-
transplantation. In contrast, in the recipient of the contralateral
kidney the DGF occurrence was observed (186). Moreover, in
another study, eighteen kidneys from ECD were subjected to a
period of NMP by plasma free red-cell based solution at a mean
temperature of 34.6°C. Authors compared outcome of these
kidneys to a control group of ECD kidneys subjected to
conventional SCS. Strikingly, also in this cohort, incidence of
DGF was substantially decreased in the NMP group (5.6 vs.
36.2%), even if no differences were observed in patient survival at
12 months or acute rejection incidence (177).

To date, performed clinical studies have assessed short‐term
durations of perfusion (1‐2 hours), with the aim to restore
cellular metabolism and counteract immune inflammation
before reperfusion in the recipient. Brasile et al. described
successful 48h perfusion of isolated canine and human
kidneys. More recently, Weissenbacher et al. was able to
maintain the quality of discarded kidneys from DBD and DCD
donors for up to 24 h. These prolonged strategies allow clinicians
to retrieve time for viability and functional assessment, as well as
for implementation of perfusate with new drugs (176, 187, 188).
Although the primary results are encouraging, more research
focusing on the reduction of immunogenicity of ECD organs is
needed. A randomized, controlled multicentre UK trial of DCD
kidneys is underway to assess the effects 1h period of NMP
compared to static cold storage with the result expected in 2021
(ISRCTN15821205) (189).

All these studies compared NMP to SCS, a limited number of
research article are available on the comparison between NMP
and HMP (190–193). In these porcine models, an overall
improvement in renal function was demonstrated in NMP
compared to HMP, even if Darius et al. found that a
continuous oxygenated period of HMP from time of retrieval
to be better that NMP and Blum et al. described similar renal
functionality after an 8 hour period of HMP or NMP (192, 194).

Recently, in a swine model of renal transplantation, Vallant
et al. directly compared kidneys pairs from the same donor and
after 4h of HMP followed by 2h of simulated reperfusion by
NMP with whole blood. They demonstrated enhanced renal
resistance, better renal histology in HMP group compared to
NMP. Intriguingly, authors used healthy, young, slim donor pigs,
reducing potential external influencing factors to a minimum,
however they performed only two hours of simulated
Frontiers in Immunology | www.frontiersin.org 13
reperfusion, thus a relatively short time to investigate long-
term effects of renal grafts.

Ex Vivo Therapeutic Strategies
The use of drugs in preservation solution represents the “new era”
of therapeutic strategies designed to reduce I/R injury, exerting
antioxidative, anti-inflammatory, and anti-apoptotic activities.

From the flavonoid group of polyphenols, Quercitin (Que)
has been reported to possess strong anti-inflammatory and
antioxidant properties, attenuating inflammation and apoptosis
(195, 196). Several studies analyzed the effects of Que and sucrose
(Scr) in CS solution, underling their effects in reducing tubular
damage, inflammatory infiltrate, limiting the I/R injury (111,
115) (Table 1).

Recently, Gochi M et al. showed the effects of Que and Scr in
CS solution and hypothermic oxygenated perfusion (HOPE) in
autologous transplantation models (116). They found that the
addition of Que and Scr in preservation solution ameliorated
renal function and reduced oxidative stress, preserving renal
parenchyma (116). Despite these strong results, this study did
not demonstrate that Que could exert beneficial effects in long
term-outcome (116). Therefore, clinical studies should be
performed to investigate the effects of Que in terms of graft
survival and recipient outcome.

Another renoprotective drug that has attracted the attention
of researchers is the Metformin (197). It is widely used as
antihyperglycemic drug to treat patients with type 2 diabetes
(198). The mechanism of action is still not completely clarified,
but several studies reported pleiotropic effects in inhibition of the
complex 1 of the mitochondrial respiratory chain (198, 199).
Beyond its principal effects in glucose-decrease, this drug could
reduce endothelial dysfunction, inducing nitric oxide
production, activating cellular energy pathways, and reducing
the expression of some inflammatory markers as Endothelin
1 (ET-1) (200, 201). During renal I/R injury, ET-1 has
widespread effects on renal parenchyma and increased levels
are associated with damage, endothelial dysfunction and fibrosis
(202) (Table 1).

Moreover, animal studies have reported that pre-treatment with
metformin could reduce both myocardial and cerebral I/R injury
(203, 204). However, no significant results were obtained in
randomized clinical studies in myocardial setting (205, 206).
Recently, Huijink T M et al. tested the effects of metformin in a
rat model of renal I/R injury and in NMP with ischemic porcine
kidneys (112). In rat experimental model, pre- and post-
conditioning with metformin significantly reduced tubular cell
necrosis and endothelial dysfunction and improved organ quality
(112). However, no significant differences were observed comparing
pre and post conditioning effects. In porcine study, creatinine
clearance did not differ between kidneys perfused in NMP with
metformin and without drug, even if there was a tendency toward
lower creatinine levels in metformin-treated group (112).
Histological analysis of porcine renal biopsies reported no
differences in morphological lesions of renal parenchyma between
two NMP groups (112). Therefore, metformin can be used in renal
transplantation setting but it remains unclear whether addition of
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this drug during machine perfusion results in improved organ
quality after transplantation (112).

Recently, Sedigh A et al. evaluated the efficacy of heparin when
added in HMPmodality to reduce renal damage in a swine model
of I/R injury (114). They observed that heparin bound endothelial
cells of glomeruli capillaries, probably promoting a first line of
protection to preserve filtration function (114). Moreover, there
was a great decrease of renal parenchymal damage and a lower
intrarenal resistance that could be associated with a better
outcome of the graft. Beyond anticoagulant properties, heparin
has anti-inflammatory functions and could attenuate renal I/R
injury (113). Therefore, the addition of heparin in machine
perfusion approach could be useful in implementing cadaveric
organ quality (113, 114) (Table 1).

Some evidences suggested that the protective role of HDL
against I/R injury is not limited to the cardiac muscle but could
be extended to other organs and tissues (207). In particular,
Thiemermann C et al. evaluated the effects of HDL in a rat model
of renal I/R injury (110). Since inflammatory process represents a
key mechanism in renal I/R injury, the use of HDL confirmed
less renal dysfunction with reduced serum creatinine levels and
recovery of glomerular, endothelial and tubular function (110)
(Table 1). Recent studies demonstrated that HDL could prevent
I/R injury also in brain, intestine, liver, and lung (207).
Therefore, it is clear that if administered promptly in donors
or in machine perfusion system could prevent organ damage and
probably assure a better recipient outcome.

Delivery of siRNA
The kidney may represent a specific target for RNA interference
therapy, considering its structure and higher vascularized
parenchyma (208).

Several clinical studies have been performed to evaluate the
effects of p53 siRNA in reducing I/R, preventing AKI and DGF
(209–211). The first trial was a Phase I, randomized, double-blind
study that was designed to reduce p53 levels decreasing the
incidence of AKI during cardiovascular surgery (208) (Table 1).
In the last years, Quark Pharmaceuticals pushed the use of this
compound in deceased donor kidney transplant to avoid the
occurrence of DGF (208). From the Phase I to Phase III, overall
results demonstrated reduction in DGF incidence and severity and
favorable recipient outcome. In May 2018, a phase III multi-center
trial is designed to evaluate p53 siRNA versus placebo for the
prevention of Major Adverse Kidney Events (MAKE) in subjects at
high risk for acute kidney injury following cardiac surgery (208). To
date, this study is ongoing but the Food and Drug Administration
(FDA) could expand its use in transplant field.

Yang C. et al. performed several experiments to test the effect
of caspase-3 siRNA in cold preservation solution and in swine
auto transplantation model (117). In their first experiments, they
observed significant protective effect only in ex vivo perfusion
model (212). Optimizing naked caspase-3 siRNA stability by
chemical modification, they demonstrated a significant
improvement of renal function also in auto transplantation
model (117) (Table 1).

Another important key mechanism in renal I/R injury is
represented by complement system activation. Treatment with
Frontiers in Immunology | www.frontiersin.org 14
C5a siRNA preserved renal parenchyma in a mouse model of I/R
injury (107). In addition, Zheng X et al. demonstrated that the
use of both C3 and Caspase-3 siRNAs decreased complement
activation (108). Local inflammatory response, infiltration of
inflammatory cells, parenchymal damage with recovery of
renal functions. Recently, de Ramon L et al. demonstrated that
siRNA inhibition of CD40, a costimulatory mediators of T cells
response, strongly improved renal inflammatory status in a
rodent transplantation model (109) (Table 1).

Finally, Yuzefovych Y et al. highlighted the potential of siRNA
approach in ex vivo perfusion system of donor organs by
downregulating major histocompatibility complex (MHC) class
I and II transcripts in transplanted graft (122). Despite the
advances for crossing the HLA barrier in transplantation, the
use of immunosuppressive drugs is necessary to achieve graft
long-term outcomes, but it is accompanied by reduced immunity
to infection and malignant diseases (122) (Table 1). Therefore,
targeted MHC siRNA could aid to reduce organ immunogenicity
and offers the possibility to overcome the problems related to
immunosuppression therapy and obtain a better recovery of the
graft (122).

H2S Supplementation
An emerging candidate with potential effects in I/R field is the
biological agent named hydrogen sulfide (H2S). It is an
endogenous molecule released by gas transmitter that exerts
cytoprotective effects ranging from anti-oxidant to anti-
inflammatory and anti-apoptotic properties (118) (Table 1).

In the context of allogeneic renal transplantation, Lobb I et al.
demonstrated that the use of University of Wisconsin preservation
solution plus NaHS modulated the allograft transcriptome,
reducing the expression of genes involved in inflammation,
apoptosis, oxidative stress and coagulation (118). In accordance,
the same authors observed that H2S treatment prevent
mitochondrial dysfunction and could represent a therapeutic
strategy to reduce graft injury associated with prolonged cold I/R
injury (119).

Recently, Juriasingani S et al. evaluated the effects of H2S in
sub normothermic static solution, using ex-vivo DCD porcine
kidneys (120). After 24h from H2S supplementation, kidneys
showed lower tubular necrosis and overall damage. Another study
employed H2S to supplement preservation solution in NMP
(121). The addition of H2S induced a reversible hypometabolic
state during NMP reducing ROS levels and renal lesions,
potentially avoiding the deleterious effects of I/R injury (121).

All these studies support the use of H2S for clinical purposes
considering its effects in inducing reversible state of
hypometabolism without functional or structural deterioration.
More research is needed to determine long term effects of H2S
and its use in the transplantation setting.
RECIPIENT STRATEGIES: TREATMENT TO
COUNTERACT IRI

Although donor pre-treatments have been investigated with
controversial results, an optimal management of the recipients
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mayminimize the impact of IRI in kidney transplantation (22). It
is strongly recommended to avoid dehydration before
transplantation in order to reduce the risk of hypovolemia: the
central vein pressure should be maintained higher than the usual
normal range for an adequate kidney perfusion (22). As
recommended by European Renal Best Practice guidelines, the
maintenance of an optimal intravascular volume using isotonic
crystalloids rather than colloids and, when possible, the exclusion
of any potential nephrotoxic drugs may reduce the risk of
worsening renal function in the early period after kidney
transplantation; in this scenario, treatment with calcineurin
inhibitors may be postponed after kidney function
improvement (213). In addition, antioxidant treatment may be
considered in reducing the risk of IRI: in a small clinical study
where 74 recipients were randomized to receive N-acetylcysteine,
600mg twice a day, or placebo, the treated group showed a higher
mean eGFR throughout the first 90 days and at 1 year, and the
risk of DGF was significantly lower (123).
CONCLUSION AND FUTURE
PERSPECTIVES

Regardless donor type, IRI is an unavoidable consequence after
kidney transplantation that could lead to graft failure.

The last decade has been characterized by huge efforts in renal
hypothermic and normothermic ex-vivo machine perfusion
techniques, mainly to face the severe shortage of organs
available for transplantation. Ex vivo HMP and NMP
treatment offer a window of opportunity for testing and
improve suboptimal graft , summarized in the 4Rs:
Resuscitation, Repair, Rejuvenation, Regeneration. Organs with
greater ischaemic insults could be successfully utilized leading to
the approval of more uncontrolled DCD organs. ECD kidneys
could be treated with protective agents during perfusion to
reduce the detrimental impact of IRI. The comprehension of
molecular mechanisms of renal IRI and DCD donation together
with the application of new preservation technologies has led to
experimental setting of new drugs to be delivered in the
perfusion phase. This area of research has the enormous
potential to develop a list of perfusion solutions enriched with
different compounds able to block precisely oxidative stress,
Frontiers in Immunology | www.frontiersin.org 15
inflammaging, complement activation or immune response
based on clinical observations.

Ideally, a personalized, organ-tailored formulations could be
chosen based on degree of ischemic damage, the condition of the
donor or the recipient, the expected duration of the treatment or
the donor age.

However, to date, the exact formulation of a perfusion
solution is still unknown, there is no an ideal composition and
we are still far away from predicting long-term renal post-
transplantation outcome based on resistance or other
parameters collected from perfusion devices.

The diffusion of new perfusion technologies, the publication
of international registry to standardize perfusion protocols and
retrieve data will permit to anticipate renal outcome. Finally, the
application of omics studies (from transcriptomic to proteomics)
would lead to identification of new biomarkers to be monitored
during perfusion and in the recipient.
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Organ Donor Management and Delayed Graft Function in Kidney
Transplant Recipients: A Multicenter Retrospective Cohort Study. Am J
Transplant (2019) 19:277–84. doi: 10.1111/ajt.15127

130. O’Neill S, Oniscu GC. Donor Pretreatment and Machine Perfusion: Current
Views. Curr Opin Organ Transplant (2020) 25:59–65. doi: 10.1097/
MOT.0000000000000725

131. Niemann CU, Feiner J, Swain S, Bunting S, Friedman M, Crutchfield M, et al.
Therapeutic Hypothermia in Deceased Organ Donors and Kidney-Graft
Function. N Engl J Med (2015) 373:405–14. doi: 10.1056/NEJMoa1501969

132. Schnuelle P, Mundt HM, Drüschler F, Schmitt WH, Yard BA, Krämer BK,
et al. Impact of Spontaneous Donor Hypothermia on Graft Outcomes After
Kidney Transplantation. Am J Transplant (2018) 18:704–14. doi: 10.1111/
ajt.14541

133. Torras J, Herrero-Fresneda I, Lloberas N, Riera M, Ma Cruzado J, Ma Grinyó
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