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Pathogenic mycobacteria species may subvert the innate immune mechanisms and can
modulate the activation of cells that cause disease in the skin. Cutaneous mycobacterial
infection may present different clinical presentations and it is associated with stigma,
deformity, and disability. The understanding of the immunopathogenic mechanisms
related to mycobacterial infection in human skin is of pivotal importance to identify
targets for new therapeutic strategies. The occurrence of reactional episodes and
relapse in leprosy patients, the emergence of resistant mycobacteria strains, and the
absence of effective drugs to treat mycobacterial cutaneous infection increased the
interest in the development of therapies based on repurposed drugs against
mycobacteria. The mechanism of action of many of these therapies evaluated is linked
to the activation of autophagy. Autophagy is an evolutionary conserved lysosomal
degradation pathway that has been associated with the control of the mycobacterial
bacillary load. Here, we review the role of autophagy in the pathogenesis of cutaneous
mycobacterial infection and discuss the perspectives of autophagy as a target for drug
development and repurposing against cutaneous mycobacterial infection.
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INTRODUCTION

Pathogenic mycobacteria species subvert the innate immune system barriers and modulate the
activation of phagocytes to cause disease not only in the respiratory tract but also in soft tissues and
skin, sometimes resulting in disseminated infection (1). Cutaneous mycobacterial infections may
cause different clinical manifestations, such as cutaneous manifestations of Mycobacterium
tuberculosis (M. tuberculosis) infection, Buruli ulcer caused by M. ulcerans and other related
slowly growing mycobacteria, leprosy caused by M. leprae and M. lepromatosis, and cutaneous
infections caused by rapidly growing mycobacteria such as M. abscessus subsp. abscessus,
M. abscessus subsp. bolletti, M. abscessus subsp. massiliense, M. chelonae and M. fortuitum (1–9).
Among patients with advanced immunosuppression, M. avium-intracellulare complex,
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the M. haemophilum, and M. kansasii may cause cutaneous or
disseminated disease. Mycobacterial infections of the skin and
subcutaneous tissue are associated with important stigma,
deformity, and disability. The treatment for cutaneous
mycobacterial infections depends on the specific pathogen,
whereas for rapidly growing mycobacteria, the official
treatment guidelines recommend carrying out susceptibility
tests for antibacterial drugs of different classes (10, 11).
Management often includes use of multiple antibiotics for
several months (12). Treatment options for cutaneous
tuberculosis follow the same recommendations for the
treatment of other forms of TB, being limited to conventional
oral therapy and surgical intervention for severe forms, such as
lupus vulgaris (13, 14). The therapeutic regimen is based on the
combination of isoniazid, rifampicin, pyrazinamide, ethambutol
and streptomycin according to the needs of each individual. In
most cases, skin manifestations result from hematogenous
dissemination or are a direct extension from the focus of the
infection (14, 15). In addition, treatment of leprosy is performed
with multidrug therapy (MDT) and comprises 6 or 12 doses,
depending on the clinical form. There is not a consensus for the
treatment of cutaneous infections caused by non-tuberculous
mycobacteria. Recently, much effort has been made to develop
more effective therapies by modulating host responses to
mycobacteria (i.e., host-directed therapy).

After recognition by skin cells, mycobacteria may use a wide
range of strategies to escape the microbicidal activity of skin host
cells. Some of these immune escape mechanisms are the
inhibition of the maturation of phagolysosomes, inhibition of
the acidification of phagolysosomes, bacterial escape to reside in
the cytosol, modulation of host cell metabolism, inhibition of
oxidative stress, and inhibition of apoptosis and autophagy
associated with increased type 1 interferon (IFN) expression
and inflammasome activation (16–23).

Autophagy is an intracellular catabolic process that may
contribute to the removal of invading pathogens via a
lysosomal degradation pathway. The activation of autophagy
by diverse drugs or agents may represent a promising treatment
strategy against mycobacterial diseases. In this review, we discuss
the current knowledge of, advances and perspectives on new
therapeutic strategies targeting autophagy against mycobacterial
infections in the skin.
OVERVIEW OF AUTOPHAGY MACHINERY
ON SKIN CELLS

Autophagy is a homeostatic mechanism highly conserved
evolutionarily and dependent on the lysosome action (24). It is
responsible for the cellular catabolism of dysfunctional organelles,
components of the cytoplasm and, more recently, invading
pathogens, thus determining the maintenance of homeostasis
and adaptation of the cell to stress (25, 26). Autophagy has been
described as having a primary role in physiological cellular
processes such as development and growth, in the senescence
process, and immune defense (25, 27–29). Based on the way the
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autophagy target is taken to the lysosome, its final destination of
degradation, autophagy was didactically classified into three
forms: macroautophagy, microautophagy, and chaperone-
mediated autophagy. In this review, we will exclusively address
the action and manipulation of the macroautophagy pathway.

Only a small amount of research has considered the impact of
autophagy on the pathogenesis of skin diseases, including
diseases caused by mycobacteria. Skin is the largest organ of
the body and it is not only the first line of defense against
numerous insults but it is also the site whereas some infectious,
including mycobacterial diseases, may manifest.

Autophagy is considered an effector tool of the immune
system since it is a relevant pathway of elimination and
recognition of pathogens by the immune system (30). As well
to cellular homeostasis, autophagy works to eliminate
intracellular pathogens, including some pathogens associated
with skin diseases, such as Streptococcus pyogenes from group
A (31, 32), Staphylococcus aureus (33, 34), M. leprae (35, 36),
M. marinum (37, 38), and M. tuberculosis (39–42). Through a
process called xenophagy, which plays a principal role in innate
immune defense, intracellular pathogens are directed to the
autophagosome and then to the lysosomal degradation
pathway (43, 44). Xenophagy is the process of eliminating
intracellular pathogens through autophagic machinery, being a
unique type of macroautophagy/selective autophagy that targets
invasive pathogens, being an important defense mechanism
against infectious diseases (45, 46).

Few studies have focused on deciphering autophagy
machinery in skin cells, such as: keratinocytes, skin fibroblasts,
melanocytes, Langerhans cells, dendritic cells, mast cells,
neutrophils, NK and B cells. The current knowledge regarding
skin cell autophagy during mycobacterial diseases is based
mainly in studies with cell lineage and dermal macrophages.

Briefly, after pathogen recognition by host cells, the first step
is the formation of the isolation membrane, which starts to grow
and expand in size until sequestration and the surrounding of the
target and finally closure to form the autophagosome.
Subsequently, autophagosomes fuse with lysosomes to generate
autolysosomes through elimination and recycling the
sequestered charges via the lysosomal proteases (Figure 1)
(28). A large number of proteins have been identified as highly
relevant in different stages of control and action in autophagic
flow. Several cell types have autophagy as an effector mechanism
for homeostatic/immune functions as skin cells like
keratinocytes and macrophages (Figure 1) (47).

A wide variety of signals regulates the activation of
autophagy. The induction of autophagy can occur through the
recognition of microbial factors that are ubiquitinated and
recognized by autophagy cargo adaptor proteins (these include
p62 (sequestosome 1), NBR1 (neighbor of BRCA1 gene 1
protein), NDP52 (calcium binding and coiled-coil domain 2),
optineurin and galectin) or can occur by the production of
reactive oxygen radicals and IFN-g-mediated proteolysis, and
autophagosome formation (43, 48–52). The autophagy pathway
may be negatively regulated by PI3K (phosphoinositide
3-kinase)/Akt (protein kinase B)/mTOR (target of rapamycin
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FIGURE 1 | Different steps of the autophagic pathway targeted by autophagy-modulating drugs. A schematic view of the different cell types populating the skin.
Vertebrate skin is comprised of two major compartments: the epidermis and the dermis. The superficial part of the epidermis, known as the stratum corneum, is
composed of dead keratinocytes and acts as a barrier. The epidermis is composed mainly of keratinocytes with few melanocytes. The major immune cells in this
compartment include Langerhans cells (LCs) and CD8 T-cells. The dermis is composed of fibroblasts, NK cells, T-cells (CD4 ab, and gd), B cells, dermal dendritic
cells, macrophages, mast cells, and neutrophils (non-exhaustive list). The knowledge of skin cell autophagy is mainly based in studies with dermal macrophages.
Briefly, (1) autophagy is inhibited by mTOR and activated by AMPK. mTOR is inhibited by the autophagy-initiation signals as metabolic stress, ROS, infection and
drugs, and leads to the activation of AMPK. After AMPK activation, the ULK1 complex (ATG13, ULK1/2, FIP200) initiates the phagophore formation (2), involving the
targets (pathogens, dead cells, cellular components and organelles, protein aggregates), which in turn activates the Class III PI3K complex (Beclin 1, VPS34, VPS15,
ATG14) (3). This complex completes the autophagosome maturation and elongation by forming PI3P in the omegasome membrane and recruiting downstream
ubiquitin-like conjugation systems that convert LC3-I to LC3-II (4). Fully formed autophagosomes then fuse with lysosomes (autolysosomes), degrade the
sequestered cargo via lysosomal hydrolases and recycle macromolecule components (5). Several drugs can interfere with the autophagic pathway by inhibiting or
activating different parts of the process (see also Table 1). Drugs as rapamycin, resveratrol and nitazoxanide, that inhibit mTOR, or carbamazepine, metformin and
pyrazinamide, that activate AMPK, induce autophagy. Bedaquiline, ambroxol and linezolid increase the formation of autophagosomes. Loperamide and valproic acid
increase the colocalization of LC3-decorated autophagosomes with M. tuberculosis. Ibrutinib and isoniazid facilitate the fusion of phagosome and lysosome. Vitamin
D3 (1,25D3) induces the expression of antimicrobial peptides as cathelicidin and upregulates the expression of Beclin 1 and ATG5, that are pivotal for the
autophagosome formation. On the other hand, azithromycin was demonstrated to inhibit the acidification of the autolysosome impairing M. abscessus degradation.
Frontiers in Immunology | www.frontiersin.org May 2021 | Volume 12 | Article 6742413
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in mammals) signalling (53). In contrast, the mitogen-activated
protein kinase pathway (MAPK) can induce autophagy (54, 55).
AUTOPHAGY AS AN INNATE IMMUNE
MECHANISM AGAINST
MYCOBACTERIAL DISEASES

There is a strong relationship between autophagy signals and
pattern recognition receptors, such as TLR (Toll-Like Receptors)
that include TLR3, TLR4, TLR5, TLR6, TLR9, and the
heterodimers TLR1/2, TLR7/8 that are capable of activating
autophagy in macrophages, dendritic cells, and neutrophils
(56–58). This activation occurs via signaling of the adaptor
proteins MyD88 (myeloid differentiation factor 88) and TRIF
(TIR-domain-containing adapter-inducing interferon-b). Xu
and colleagues (59) demonstrated that after the stimulation of
TLR4, positive LC3 (microtubule-associated protein 1A/1B-light
chain 3) aggregates form in the macrophage cytoplasm and
increase mycobacterial elimination through autophagy.
Interestingly, for the LC3-aggregates induction, via TLR4
induction, it is necessary to activate the protein TRIF, as well
as other proteins like RIP1 (receptor-interacting protein 1) and
p38 for autophagic induction (56, 59). TLR4 acts as a pro-
autophagic receptor in TRIF-dependent pathways. TLR4 induces
the production of TNF (tumor necrosis factor) by a mechanism
that is mediated both by reactive oxygen species (ROS) and
nitrogen intermediates (i.e. nitric oxide), and by p38 and MAPK
and the inhibition of these components may lead to total
autophagy inactivity (60–62). Studies have shown that in LPS
(lipopolysaccharide)-TLR4-mediated autophagy, activation of
the transcription factor Nrf2 (nuclear factor erythroid 2–
related factor 2) occurs, which leads to increased p62
transcription and formation of aggresome-like induced
structures (ALIS) with subsequent autophagic degradation (63,
64), showing the ability of this receptor to link innate immunity
with cellular oxidative response or adaptive immunity.

It is known that TLR receptors are of great importance for the
activation of dendritic cells (DCs) and their subsequent
maturation, some of these receptors such as TLR4 and TLR2
are already described as inducing an innate response against
M. tuberculosis (65–67). Khan and colleagues (68) observed that
the co-stimulus of CD40 and TLR4 leads to the production of
pro-inflammatory cytokines such as IL-6, IL-12 and TNF,
autophagy and death of mycobacteria. Interestingly, when they
evaluated this co-stimulus as an adjunct to anti-TB therapy, they
observed an increase in vivo and in vitro of the deadly potential of
anti-TB drugs. Shin and colleagues (69) showed that stimulation
of TLR2/1/CD14 by mycobacterial lipoprotein LpqH can activate
antibacterial autophagy by activating vitamin D receptor
signaling and inducing cathelicidin. They suggested that the
TLR2/1/CD14-Ca2+-AMPK (Adenosine monophosphate-
activated protein kinase)-p38 MAPK pathways contribute to
cathelicidin-dependent expression, which played an important
role in LpqH-induced autophagy. A study comparing the
induction of autophagy by different species of mycobacteria
Frontiers in Immunology | www.frontiersin.org 4
found that non-pathogenic mycobacteria, such as M.
smegmatis, induce a more robust autophagy response than M.
tuberculosis (strain H37Rv) (70). The group observed a decrease
in LC3-II protein expression when the TLR2 receptor was
blocked, as well as a reduction in the colocalization of LC3 with
M. smegmatis DpmmB (lipoglycan deficient mutant), suggesting
the participation of TLR2 in the activation of autophagy during
infection with M. smegmatis (70). M. smegmatis can also be
recognized by NOD2 (nucleotide-binding oligomerization
domain-containing protein 2) and dectin-2 receptors (71).

In addition to the TLR receptors, another group of innate
receptors was the nucleotide-binding oligomerization domain
(NLRs). It has already been described that the presence of the
NOD2 receptor is capable of synergistically amplify the
production of pro-inflammatory cytokines and their bactericidal
activity (72). In previous studies, Khan and colleagues (73) have
demonstrated that after the induction of both receptors, an
increase in the bactericidal capacity of DCs in vitro was
observed and they required a much lower dose of the drug to
kill M. tuberculosis, in addition, activated DCs induced a more
effective T cell response in vivo with an increase in autophagy (73,
74). Since pathogenic mycobacteria can modulate the autophagy
machinery in skin cells, we hypothesize that autophagy may be a
target for new therapeutic strategies against mycobacterial
infections in the skin.
AUTOPHAGY-TARGETING
THERAPEUTICS UPON
MYCOBACTERIAL INFECTION

Despite the efficacy of anti-TB treatment based on classic
isoniazid and rifampicin, limitations in terms of drug
resistance, duration of treatment, associated with the use of a
complex treatment regimen (75), made the researchers use
another strategy in the treatment of different bacterial disease.
Besides, unlike infections caused byM. tuberculosis andM. leprae
for which there is a well-established therapeutic regimen, there
are no standardized and effective regimens for the treatment of
non-tuberculosis mycobacteria (NTMs) (10). A promising
strategy in the treatment of infectious diseases is the use of
host-directed therapy. It works as an adjuvant therapy, which
aims to enhance the main components of the host ’s
antimycobacterial effector mechanisms (76–79). Several studies
on immunity, host-pathogen interactions, and host-directed
interventions have shown that the antimycobacterial action of
anti-TB drugs (standardized scheme) is associated with the
induction of autophagy (40). Thus, several drugs used in the
clinical area to treat infectious diseases may have their action
through the autophagic process.

We previously showed that xenophagy is a crucial mechanism
in the leprosy outcome. A functional autophagy pathway driven
by IFN-g and Beclin 1 in skin lesion macrophages was associated
with the self-healing paucibacillary tuberculoid form of the
disease, whereas a BCL2 (apoptosis regulator Bcl-2)-mediated
block of Beclin 1 autophagy axis was linked to the progressive
May 2021 | Volume 12 | Article 674241
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multibacillary lepromatous pole (35). While macrophages patrol
the dermis, the human epidermis is enriched for Langerhans cells
(LC). Langerhans cells restricted human immunodeficiency virus
(HIV)-1 infection through the capture of viral particles by
langerin and subsequent internalization into Birbeck granules
and targeting of HIV-1 for destruction in the TRIM5 (tripartite
motif-containing protein 5) auto lysosomal pathway (80), which
in turn is induced by IFN-g (81). In M. leprae-infected LC, the
antimicrobial activity induced by IFN-g treatment is achieved
through autophagy, which improves the degradation of M.
leprae-containing phagolysosomes and fine-tunes LC’s power
to present antigens for T cells in a CD1a-restricted manner (82).
Thus, IFN-g therapy or a drug targeting autophagy on skin cells
could be favorable to the clinical management of leprosy and
other skin-related mycobacteriosis such as fish-tank granuloma
(83) and Buruli ulcer (1), as well as outbreak associated
postsurgical and tattoo ink infections caused by rapidly
growing mycobacteria (2, 4). Indeed, the acid-fast bacilli
clearance in the skin of multibacillary leprosy patients is
accelerated when multidrug therapy is used along with an
intradermal treatment with recombinant human IFN-g (84).

Cell-based studies in leprosy have predominantly focused on
dermal cells such as macrophages, neutrophils and T cells. In the
dermis, macrophages are an important cell type that promote
Th1-type responses, but there is evidence about the involvement
of the epidermis in the development of reactional episodes (85)
which are acute inflammatory episodes that can occur before,
during or after the release of multidrug therapy, being
responsible for the cases of disability caused by the disease
(86). The relevance of autophagy as a drug target is not only
restricted to the control of M. leprae infection but also to its
potential to regulate the exacerbated inflammation associated
with leprosy reactional episodes, as autophagy tempers
inflammation by hijacking active inflammasomes for
destruction (87). The downregulation of autophagy observed in
skin lesion macrophages of multibacillary leprosy patients also
predicts the reversal reaction onset. This impairment of the
autophagic pathway correlates with the activation of NLRP3
(NALP3; NACHT, LRR and PYD domains-containing protein 3)
inflammasome and IL-1b production, which drive the
inflammatory status found in multibacillary patients when
undergoing reversal reaction (36). On the other hand, due to
Th2!Th1 shift and increased IFN-g production, autophagy
levels are restored in lepromatous patients when the reversal
reaction episode is established, which in turn help to reduce the
bacillary load in skin cells (35). Therefore, leprosy lesion skin
cells can earn a dual benefit from the use of autophagy as a
platform for drug development; both inflammasome and
antimicrobial optimal activities can be reached by modulating
autophagy to a certain level. However, some bacterial pathogens
inhibit autophagosome maturation and promote bacterial
replication, such as M. tuberculosis (88, 89). Given the
background, Silva and colleagues (35) demonstrated that live
but not dead M. leprae can inhibit the autophagic flux in
macrophages, which indicates a requirement for an active
mycobacterial ESX-1 secretion system.
Frontiers in Immunology | www.frontiersin.org 5
The ESX-1 secretion system is also involved in the targeting of
M. marinum by LC3; however, ubiquitination does not seem to
be necessary for this process (83). Legionella pneumophila and
Coxiella burnetii also developed strategies to explore or subvert
autophagy (88). Kim and colleagues (42) demonstrated that M.
abscessus (UC22 – rough variant) induces autophagy and inhibits
autophagic flow in murine macrophages. Also as observed, the
lipid components of the clinical isolate UC22, which is highly
virulent, play a critical role in the formation of the
autophagosome. These data suggest that virulent M. abscessus
can survive and grow within autophagosomes, preventing
autophagosome-lysosome fusion and clearance from cells (42).
A study demonstrates the role of lactoferrin, an antimicrobial
peptide, in the autophagy of macrophages infected with M.
avium. D-lactoferrin inhibits intracellular growth of M. avium
and, at the same time, leads to structural changes in infected
macrophages leading to increased lysosomal content and
increased numbers of autophagic vesicles (90).

P-aminosalicylate, one of oldest drugs used against
tuberculosis, inhibits the assimilation of iron (91). Depletion of
iron is strongly associated with increased expression and
accumulation of regulated in DNA damage and development 1
(REDD1), which inhibits mTOR activation, decrease
phosphorylation of Akt and TSC2 (tuberous sclerosis complex
2) (92, 93). Iron depletion was also shown to increase the
activation of HIF-1a (hypoxia-inducible factor) and AMPK
and induce autophagy (92, 94).

Zinc has been shown to be a positive regulator of autophagy
in several different cell types and conditions, increasing the
production of ROS, the formation and turnover of
autophagosomes and cellular clearance (95–101). Nevertheless,
zinc depletion was found to induce non-selective autophagy in
yeast to release zinc recycled from zinc-rich proteins (91, 102,
103), demonstrating the key role of autophagy on zinc
homeostasis. Zinc chelation was found to arrest autophagy and
impair lysosomal acidification (95, 104). Phosphorylation of
ERK1/2 is necessary for the regulation of zinc-induced
autophagy by either activating the Beclin 1-PI3K complex or
by promoting disassembly of mTOR complex but the
mechanisms in which zinc modulates autophagy are still not
completely understood (95, 99, 105). Uncoupling of autophagy
and zinc homeostasis in the airway epithelial cells was
demonstrated to be a fundamental mechanism in the
pathogenesis of chronic obstructive pulmonary disease (106).
In TB, previous studies have shown that zinc levels in the
peripheral blood decrease with age and during active disease
but are improved after the beginning of treatment with anti-TB
drugs (107–111). Oral zinc supplementation in Brazilian
children exposed to adults with pulmonary TB was
demonstrated to increase the positivity of tuberculin test
(PPD) and induration size, decreasing false negative results
(112). It is postulated that zinc supplementation could correct
asymptomatic zinc deficiencies, improve the effect of autophagy-
mediated therapy in TB, as well as giving a booster to immunity
(109, 111, 112). There are currently several studies associating
autophagy and infection by bacteria, including studies showing
May 2021 | Volume 12 | Article 674241
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the different strategies developed by bacteria to inhibit the host’s
autophagic responses (113–117), as well as studies that show that
the activation of autophagy by starvation or by treatment with
rapamycin restricts bacterial growth and is capable of improving
cell resistance to infection (39, 40, 118–120). The therapeutic
benefit of pharmacological agents that can modulate autophagy
must be considered since a diverse variety of pathogens using
autophagic machinery has been described in their favor. It is
primary to understand whether the pathogen exploits this
pathway as a whole (systemically) or just part of components
to increase its intracellular replication and/or survival. Besides, it
is necessary to consider whether the drug will act on all
autophagic pathways or only on a specific component, which
may, or may not, be used to replicate for the pathogen. For
example, intracellular Brucella abortus (B. abortus) survives by
promoting the formation of vacuoles containing B. abortus,
which requires the activity of the autophagy initiation proteins
PIK3C3 (phosphatidylinositol 3-kinase catalytic subunit type 3),
ULK1 (serine/threonine-protein kinase ULK1), ATG
(autophagy-related protein) 14L (Barkor; Beclin 1-associated
autophagy-related key regulator), and Beclin 1, but not the
autophagy activity stretching proteins ATG16L1, ATG4B,
ATG5, ATG7 and LC3-II (121). In this condition, the use of
inhibitors of the autophagy protein conjugation systems or
inhibitors of autophagosome maturation would not have a
protective effect against the survival of this bacterium. Still in
this context, it is important to consider those patients who are
affected by infections (for example, TB) that can be eliminated if
autophagy is regulated positively, but who are co-infected with
pathogens that use the autophagic pathway in their favor, such as
concomitant infections with the Hepatitis B virus and HIV (122).
Under other conditions, the co-infected patient is favored by
autophagic activation, as is the case of patients with cystic fibrosis
(CF) who are treated with cysteamine. The autophagic stimulus
mediated by cysteamine in macrophages of cystic fibrosis (with
the CFTRdel506 mutation) patients favors the clearance of
Pseudomonas aeruginosa, a bacterium that frequently infects
the lungs of CF patients (123). Therefore, it is primary to
understand the differences between each stimulus, pathogen,
and the type of cell under study so that the use of this route as
a target for the development of antimycobacterial drugs can
be advanced.
TREATMENTS INDUCING AUTOPHAGY
DURING TUBERCULOUS
MYCOBACTERIAL INFECTION

When autophagy studies were started, the only drug that
was able to chronically induce this pathway was rapamycin.
There is evidence of its antimycobacterial activity, where it
has been observed that it significantly inhibits infection by
M. kansasii, M. avium, Bacillus Calmette–Guérin (BCG), and
virulent strains of M. tuberculosis (124, 125). However, the
adverse effects of rapamycin (which were not associated with
Frontiers in Immunology | www.frontiersin.org 6
autophagy induction) made this drug unattractive for use.
Several drugs are capable of inducing autophagy and treating
mycobacterial diseases, some examples are summarized in
Table 1 and their activities are illustrated in Figure 1.

Among the various drugs described in the literature with pro-
autophagic properties, ambroxol (126), metformin (127),
verapamil (143), carbamazepine (128, 129), valproic acid (129,
130), and loperamide (130) are already approved for clinical use
in different pathologies. The strategy of using drugs with a
known safety profile for new indications related to autophagy
is attractive because they do not need to undergo a complete
toxicological assessment (18, 147, 148).

Regarding the pro-autophagic property of ambroxol, it has
been shown to potentiate the antimicrobial activity of rifampicin
in the murine model in trials for TB (126). The antidiabetic drug
metformin reduced the intracellular growth ofM. tuberculosis in
a manner dependent on AMPK. Also, metformin was able to
induce reactive mitochondrial oxygen species and facilitate
phagosome-lysosome fusion (127). However, a more recent
study failed to show the improvement in the bacterial activity
of antituberculosis drugs by metformin in the murine model
(149). This data makes us reflect on the importance of
considering whether the anti-TB drug may or may not alter
the pharmacokinetics of the repositioning drug. The use of
rifampicin in this more recent study (149) may have altered
the pharmacokinetics of metformin. Besides, it is also prudent to
pay attention to the differences in the experimental design
carried out to assess the effectiveness of the therapy, which can
be combined (149) or used alone (monotherapy) (127).

Initial studies that evaluated the effect of verapamil and its
analogs on macrophages infected with M. tuberculosis showed
that the structural analog KSV21 had an additive effect on the
inhibitory antimicrobial activity of Isoniazid and Rifampicin
(143). In addition, the antibiotics isoniazid and pyrazinamide,
two first-line cocktail drugs used to treat TB, exert their
antimycobacterial activity through autophagy (40).

Recently, the impact of linezolid and bedaquiline on the intra-
macrophagic behavior of M. tuberculosis has been reported. It
was observed that the anti-Mtb effect of these new drugs
occurred via activation of autophagy and increased formation
of autolysosomes in infected macrophages (131). Bedaquiline
induces metabolic stress in M. tuberculosis, which results in the
accumulation of NADH (nicotinamide adenine dinucleotide),
followed by the generation of ROS (subsequently generating ROS
by the bacteria) (150). Although not directly proven, ROS can
trigger autophagy activation and be responsible for antibiotic-
induced death of M. tuberculosis (151).

Resveratrol has also been studied for its antioxidant effect and
its role in inducing autophagy. Regarding the antioxidant effect,
resveratrol can increase the activity of antioxidant enzymes and
works by eliminating free radicals (152, 153). Resveratrol has
inhibitory activity on the mTOR molecule (133, 154). Other
studies have shown antibacterial properties, mainly activity
against gram-positive bacteria, flavonoid, and resveratrol (132).
Still, on drugs capable of stimulating the autophagic death of
M. tuberculosis, the anticonvulsant drug carbamazepine was able
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TABLE 1 | Therapeutic strategies of drug repositioning targeting autophagy of host cells against mycobacterial diseases.

Drugs Mycobacteria Model Mechanism of Action Reference

Rapamycin M. avium subspecies
paratuberculosis
(MAP)

Inhibition of MAP growth in vitro (BACTEC
radiometric 7H12 broth)

Inhibition of mTOR Greenstein et al.
(124)

Rapamycin M. smegmatis Murine bone marrow derived macrophages
(BMDM) and RAW264.7 macrophages

Inhibition of mTOR Zullo et al. (125)

Ambroxol M. tuberculosis BMDM and primary human macrophages Increased autophagosomes production Choi et al. (126)
Metformin* M. tuberculosis Monocytes differentiated to macrophage Increases AMPK expression, inducing

phosphorylation of ULK1
Singhal (127)

(THP-1 cell line)
Carbamazepine* M. tuberculosis Primary human macrophages Lowers myoinositol levels, activates AMPK and

induces autophagy in an mTOR independent
manner

Cárdenas et al.
(128); Schiebler et al.

(129)
Infection of C57BL/6
mice with MDR strain

Valproic acid* M. tuberculosis Primary human macrophages Increases colocalization of LC3 with Mtb Schiebler et al. (129);
Juárez et al. (130)

Loperamide M. tuberculosis Primary human macrophages Decreases the production of TNF and increases
the colocalization of LC3 with Mtb

Juárez et al. (130)

Bedaquiline* M. tuberculosis Human differentiated monocytes (U-937 cell line) Increases the formation of autophagosomes Genestet et al. (131)
Linezolid* M. tuberculosis Human differentiated monocytes (U-937 cell line) Increases the formation of autophagosomes Genestet et al. (131)
Resveratrol M. tuberculosis MIC values were determined against M.

tuberculosis using the standard microbroth
dilution method

Inhibits of mTOR Sun et al. (132); Park
et al. (133)

Baicalin M. tuberculosis RAW264.7 macrophages Induces autophagy by inhibiting the PI3K/Akt/
mTOR pathway

Zhang et al. (134)

Azithromycin* M. abscessus Primary human macrophages and C57BL/6 mice Blocks lysosomal acidification Renna et al. (135)
Rifabutin* M. abscessus MICs in dose-response assays were determined

by the broth microdilution method
Undefined Aziz et al. (136)

Nitazoxanide M. leprae C57BL/6 mice mTOR inhibition by TSC2 Bailey et al. (137)
Isoniazid M. tuberculosis Primary BMDMs, human primary monocytes, and

MDMs
Facilitates phagosome-lysosome fusion Kim et al. (40)

Pyrazinamide M. tuberculosis Primary BMDMs, human primary monocytes, and
MDMs

Activates AMPK and induces autophagy Kim et al. (40)

Vitamin D3 M. tuberculosis Human macrophages Stimulation of VDR to induce cathelicidin
expression; upregulation the expression of Atg5
and Beclin-1

Jo, (138); Palucci &
Delogu, (139)

Vitamin D3 M. leprae Peripheral monocytes Stimulation of VDR to induce cathelicidin
expression

Krutzik et al. (140),
Montoya et al. (141)

Ibrutinib M. tuberculosis Monocytes differentiated to macrophage Facilitates phagosome-lysosome fusion Hu et al. (142)
(THP-1 cell line) and C57BL/6 mice

Iron – DN TfR-1 and DMT-1 CKO model Iron depletion increases the activation of HIF-1a
(hypoxia-inducible factor) and AMPK.

Wu et al. (94);
Fretham et al. (92)

Verapamil M. tuberculosis BMDM from ATG5(flox/flox) (control) and ATG5
(flox/flox) Lyz-Cre mice; Human monocytes

Inhibits Ca2+ channel, cytosolic Abate et al. (143)
M. bovis BCG Ca2+↓

Zinc – MCF-7 cells Increasing the formation and turnover of
autophagosomes

Hwang et al. (95);
(human breast cancer cell line) Cho et al. (104)

Simvastatin M. tuberculosis Peripheral blood mononuclear cells (PBMCs) Increases the autophagic flux
(autophagolysosomes)

Guerra-De-Blas et al.
(144)

PBMCs or MDMs from patients with familial
hypercholesterolemia (FH) and C57BL/6 mice

Reduction of membrane cholesterol levels
promotes phagosomal maturation (monocyte
autophagy)

Parihar et al. (145)

Rosuvastatin M. tuberculosis PBMCs or MDMs from patients with familial
hypercholesterolemia (FH) and C57BL/6 mice

Reduction of membrane cholesterol levels
promotes phagosomal maturation (monocyte
autophagy)

Parihar et al. (145)

Omadacycline Mycobacterium
abscessus

Broth microtiter dilution assay – Shoen et al. (146)

Mycobacterium
chelonae
Mycobacterium
fortuitum

Tigecycline Mycobacterium
abscessus

Broth microtiter dilution assay – Shoen et al. (146)

Mycobacterium
chelonae
Mycobacterium
fortuitum
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to induce autophagy in mice infected with the multidrug-
resistant M. tuberculosis strain, resulting in a decrease in their
bacterial load and improvement in pulmonary pathology (129).
It was observed that carbamazepine induces antimicrobial
autophagy due to decreased levels of Myoinositol (by blocking
myoinositol uptake) into a pathway independent of mTOR.
Furthermore, it was seen that this drug also activates AMPK
(128). In that same study, the group described the induction of
autophagy by the drug valproic acid, another anticonvulsant
drug (129), which favored the increase in the co-localization of
LC3 with M. tuberculosis, an effect similar to that observed after
treatment with anti-diarrhea medication loperamide (130).
Unlike carbamazepine, which activates AMPK, the induction
of autophagy by baicalin in macrophages infected by M.
tuberculosis occurred through inhibition of the PI3K/Akt/
mTOR pathway. Additionally, baicalin showed a suppressive
effect on the activation of the NLRP3 inflammasome via PI3K/
Akt/NF-kB (nuclear factor-kB), as well as reduced the levels of
the pro-inflammatory cytokine IL-1b (134). Both the induction
of autophagy and the inhibition of NF-kB contribute to limit the
activation of the NLRP3 inflammasome. Autophagy can limit the
activation of the inflammasome indirectly or directly. Indirectly,
it can reduce endogenous stimuli that favor the activation of the
inflammasome (155, 156) and can directly inhibit the autophagic
degradation of inflammasome components (87, 157).

Fluvastatin is a statin class drug currently used to treat
hypercholesteromia and prevent cardiovascular disease, by
blocking the enzyme hydroxy-methyl-glutaryl-CoA (HMG-
CoA) reductase, which catalyzes a key step in cholesterol
synthesis. Fluvastatin was demonstrated to be effective in
targeting not only the mycobacteria but also increasing the
ability of the host cells to eliminate M. tuberculosis infection
(158). Other statins, including simvastatin and rosuvastatin were
also demonstrated to control M. tuberculosis infection by
promoting phagosomal maturation and autophagy (145).

Some studies demonstrated the protective role of autophagy
in excessive inflammation duringM. tuberculosis infection (159).
Based on these studies, we conclude that autophagy plays an
important role in the fight against TB, by direct killing of the
pathogen, while also avoiding excessive inflammatory damage.
This makes an antimycobacterial agent that has autophagy as a
pharmacological target, a promising candidate to assist in
therapy directed at the host.
ROLE OF AUTOPHAGY IN THERAPEUTIC
APPROACHES FOR NTMS AND
SKIN DISEASES

The treatment of nontuberculous mycobacteriosis is not very
rewarding. Currently, the proposed therapeutic regimen for
infection with NTMs is based on the use of macrolides
(clarithromycin or azithromycin), ethambutol, and rifamycins
(160). Azithromycin is a potent antibiotic and is often prescribed
for prophylaxis and treatment regimens of mycobacterial
Frontiers in Immunology | www.frontiersin.org 8
infections (10). However, one study reported that long-term
use of azithromycin by adults with CF increased the risk of
infection with M. abscessus. That was observed because the
therapeutic dosage of azithromycin impaired autophagic
degradation (135). That is, these data emphasize the
importance of autophagy in the host’s response to infection
by NTMs.

The challenge of treating lung diseases caused by M.
abscessus is related to antibiotic resistance, including all first-
line drugs for anti-TB treatment (161, 162). Even rifampicin,
which has bactericidal activity against M. tuberculosis and M.
leprae, has low potency against M. abscessus. Although
rifampicin is part of the treatment regimens established for M.
kansasii and Mycobacterium avium complex infections, it is not
recommended against M. abscessus (163, 164). Recently,
rifabutin (of the rifamycin group) was shown, through its
bactericidal activity, to be effective against strains of clinical
isolates from the three subspecies of the M. abscessus complex
(subsp. abscessus, subsp. massiliense, and subsp. bolletii) (136).
Recently, the in vitro activity of omadacycline and tigecycline
against clinical isolates of M. abscessus, M. chelonae and
M. fortuitum was evaluated (146). Omadacycline, a new
tetracycline analog, approved for the treatment of acute
bacterial skin and skin structure infections (ABSSSI) (165)
showed activity against the three clinical isolates (146). There
are reports that these microorganisms have been identified in
postoperative infections caused by mycobacteria, including the
three opportunistic pathogens: M. fortuitum (166), M. abscessus
(167) and M. chelonae (168). Postoperative infections have been
reported after orthopedic, laparoscopic, ophthalmic procedures
and cosmetic operations (mainly liposuction, abdominoplasty,
rhinoplasty) (169, 170). M. chelonae can cause localized skin
infection after being accidentally inoculated from the
environment (pedicure beds, water heaters, and tattoo parlors)
(171, 172). In immunocompromised patients, the infection
caused by this mycobacterium can manifest itself as a
disseminated skin disease. A case report demonstrated
M. chelonae skin and soft tissue infection in a patient with
chronic lymphocytic leukemia (LLC) who was using ibrutinib, an
oral drug, which acts by inhibiting Bruton tyrosine kinase (BTK)
for the treatment of various malignant B-cell diseases (173, 174).
After 6 months of therapy with ibrutinib, the 85-year-old man
developed skin lesions on his arms and legs (175). Fiocari and
colleagues (176) showed that ibrutinib promotes an M2
phenotype by modifying the function of macrophages/
monocytes in the LLC. Taken together, these results showed
that ibrutinib can have detrimental consequences on the
microbicidal response in patients treated with ibrutinib. On the
other hand, a more current study reported the impact of the drug
ibrutinib on the intra-macrophagic behavior of M. tuberculosis.
It was observed that the anti-TB effect of this medication
occurred via activation of autophagy and facilitates
phagosome-lysosome fusion in infected macrophages (142).

Nitazoxanide has also been studied for its role in inducing
autophagy. The use of nitazoxanide in C57BL/6 mice infected
with M. leprae showed a bactericidal action similar to that of
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rifampicin, an antibiotic used in the therapeutic regimen against
leprosy (137). Based on this study, nitazoxanide (NTZ) may be
an effective option for the treatment of leprosy (137).

The epidermis is composed mainly by keratinocytes, which
contributes to the defense responses against various stimuli in
the environment (177). Numerous findings indicate that
autophagy plays an important role in the biology and
pathology of keratinocytes (177). It has already been seen that
calcipotriol, a vitamin D analog, has the ability to induce
autophagy in keratinocytes (178). Analogous vitamin D
molecules have been used to treat different skin diseases, such
as psoriasis, lamellar ichthyosis and epidermolytic hyperkeratosis
(179). The autophagic pathway converges with the vitamin D3-
cathelicidin pathway, which is preferably seen in the
paucibacillary form of leprosy (140, 141). Vitamin D3 induces
autophagy via cathelicidin in macrophages infected with M.
tuberculosis, with cathelicidin being required for IFNg-
mediated antimicrobial activity (180, 181). Also, 1,25(OH)2D3-
induced LL-37 (C-terminal antimicrobial peptide) enhances the
co loca l i z a t ion o f mycobac t e r i a l phagosomes and
autophagosomes (182). Vitamin D3 has been used successfully
in the treatment of patients with TB (183). Vitamin D3 could be
one of the components for the treatment of leprosy and other
chronic infectious diseases in which the cellular immune
response is unregulated (184, 185). Vitamin D prevents tissue
damage through the negative regulation of perforin, granzyme B
and granulisine in cytotoxic T lymphocytes (186).

Many species of mycobacteria that cause skin infections are
considered to have a natural ability to acquire resistance to
antibiotics and to have a significant reduction in sensitivity to
antibiotics, which makes treatment efficacy more difficult by
increasing failure rates (187, 188). Thus, using therapies directed
at the host, such as those that induce autophagy, to inhibit
bacterial cell release and form biofilms or bacterial media can
increase the effectiveness of currently available antibiotics, i.e.
azithromycin (135) and verapamil (143, 189) already mentioned
in the text, as well as, Carvacrol (190–193), Tetracycline (146,
194, 195), Thioridazine (196–199) and, Mefloquine (200, 201).
Frontiers in Immunology | www.frontiersin.org 9
CONCLUSION

This review describes the potential of host cell autophagy as a
target for the development of new strategies against
mycobacterial diseases. There are few studies focusing on skin
cell autophagy during mycobacterial infections but in this review
we summarized autophagy mechanisms in some cells most
relevant to skin mycobacterial diseases. In addition, drug
repurposing presents itself as a promising perspective in the
control of infections caused by mycobacteria, being used in
isolation or complementary to existing treatments. Some
challenges still need to be faced, such as the understanding of
the mechanisms used by different species of mycobacteria to
induce autophagy, the evaluation of host cell autophagy by
different clinical isolates, including resistant strains, the impact
of a therapy directed at the host cell in cases where there is co-
infection and, finally, if the use of a drug in combination with
current therapeutic regimens will have a beneficial effect on
bacillary load.
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Villamil-Gómez WE, Gotuzzo E, et al. Cutaneous Mycobacterial Infections.
Clin Microbiol Rev (2018) 32(1):e00069–18. doi: 10.1128/CMR.00069-18

2. Duarte RS, Lourenço MCS, Fonseca LDS, Leão SC, Amorim EDLT,
Rocha ILL, et al. Epidemic of Postsurgical Infections Caused by
Mycobacterium Massiliense. J Clin Microbiol (2009) 47(7):2149–55.
doi: 10.1128/JCM.00027-09

3. Khan FA, Khakoo R. Nontuberculous Mycobacterial Cutaneous Infections:
An Updated Review. Cutis (2011) 88(4):194–200.

4. Kennedy BS, Bedard B, Younge M, Tuttle D, Ammerman E, Ricci J,
et al. Outbreak of Mycobacterium Chelonae Infection Associated With
Tattoo Ink. New Engl J Med (2012) 367(11):1020–4. doi: 10.1056/
nejmoa1205114

5. Gervais P, Manuel O, Jaton K, Giulieri S. Skin Infections Due to Rapid-
Growing Mycobacteria. Rev Med Suisse (2014) 10(427):931–4.

6. Pinheiro RO, Schmitz V, Silva BJ, de A, Dias AA, de Souza BJ, et al. Innate
Immune Responses in Leprosy. Front Immunol (2018) 9:518. doi: 10.3389/
fimmu.2018.00518
7. de Macedo CS, Lara FA, Pinheiro RO, Schmitz V, de Berrêdo-Pinho M,
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