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Electric fields are generated in vivo in a variety of physiologic and pathologic settings,
including wound healing and immune response to injuries to epithelial barriers (e.g. lung
pneumocytes). Immune cells are known to migrate towards both chemical (chemotaxis),
physical (mechanotaxis) and electric stimuli (electrotaxis). Electrotaxis is the guided
migration of cells along electric fields, and has previously been reported in T-cells and
cancer cells. However, there remains a need for engineering tools with high spatial and
temporal resolution to quantify EF guided migration. Here we report the development of an
electrotaxis-on-chip (ETOC) platform that enables the quantification of dHL-60 cell, a
model neutrophil-like cell line, migration toward both electrical and chemoattractant
gradients. Neutrophils are the most abundant white blood cells and set the stage for
the magnitude of the immune response. Therefore, developing engineering tools to direct
neutrophil migration patterns has applications in both infectious disease and inflammatory
disorders. The ETOC developed in this study has embedded electrodes and four
migration zones connected to a central cell-loading chamber with migration channels
[10 µm X 10 µm]. This device enables both parallel and competing chemoattractant and
electric fields. We use our novel ETOC platform to investigate dHL-60 cell migration in
three biologically relevant conditions: 1) in a DC electric field; 2) parallel chemical gradient
and electric fields; and 3) perpendicular chemical gradient and electric field. In this study
we used differentiated leukemia cancer cells (dHL60 cells), an accepted model for human
peripheral blood neutrophils. We first quantified effects of electric field intensities (0.4V/
cm-1V/cm) on dHL-60 cell electrotaxis. Our results show optimal migration at 0.6 V/cm. In
the second scenario, we tested whether it was possible to increase dHL-60 cell migration
to a bacterial signal [N-formylated peptides (fMLP)] by adding a parallel electric field. Our
results show that there was significant increase (6-fold increase) in dHL60 migration
toward fMLP and cathode of DC electric field (0.6V/cm, n=4, p-value<0.005) vs. fMLP
alone. Finally, we evaluated whether we could decrease or re-direct dHL-60 cell migration
away from an inflammatory signal [leukotriene B4 (LTB4)]. The perpendicular electric field
significantly decreased migration (2.9-fold decrease) of dHL60s toward LTB4 vs. LTB4
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alone. Our microfluidic device enabled us to quantify single-cell electrotaxis velocity
(7.9 µm/min ± 3.6). The magnitude and direction of the electric field can be more
precisely and quickly changed than most other guidance cues such as chemical cues
in clinical investigation. A better understanding of EF guided cell migration will enable the
development of new EF-based treatments to precisely direct immune cell migration for
wound care, infection, and other inflammatory disorders.
Keywords: electrotaxis, neutrophil, migration, microfluidics, wound healing, immunomodulation
INTRODUCTION

Cell migration plays a critical role in biological processes such as
immune response to infection, wound healing (1–3), cell isolation,
cell separation (4, 5), cancer metastasis (6–9), and immune-
inflammatory responses (10). Electrotaxis is the cell directional
movement under the effect of electric fields. The term -taxis was
used by researchers to indicate the gradient of physical or
chemical cues. Chemical gradients in tissue cause a chemical
stimulus (11) for cell migration (chemotaxis). The observation
that cells can follow chemoattractant was first studied by scientists
who discovered the mechanisms underlying the attraction of
neutrophils to the sites of infection (11). However, directional
cell movements toward attractive and away from repulsive signals
are notably critical in almost all physiological processes.
Physiological and externally applied electric fields (electrotaxis/
galvanotaxis) are essential factors for inducing cell migration in
the tissue microenvironment. Electrotaxis is a guiding mechanism
for the orientation and directional movements of many cell types,
including fission yeast cells (12), Caenorhabditis elegans (13–16),
pathogenic bacterium such as Pseudomonas aeruginosa,
Escherichia coli, and Dictyostelium (17–20). It has been
reported that some cells migrate toward the cathode [e.g.,
neural stem cells (21–26), fibroblasts (27–29), keratinocytes
(30–33), rat prostate cancer cells (34, 35), T lymphocyte (36–
40), lung cancer cells (41–45), and many epithelial cell types (3,
30, 46–51)], and other cells migrate to the anode [e.g., corneal
endothelial cells (52), breast cancer cells (53, 54), glioblastoma
(55, 56), and human vascular endothelial cells (57, 58)]. Signaling
pathways involved in the electrotaxis phenomenon are still not
fully understood. Recent studies demonstrate electromigration
(electrophoretic and electroosmotic) of cell surface receptors,
voltage-gated ion channels in cells for calcium signaling (59),
and asymmetric ion distribution and electrotaxis of ions inside the
cell are some cellular mechanism of sensing and responding to
cellular electric fields (60). The directional movement of cells is
due to an electrostatic polarity associated with cellular structure
and cell-cell/cell-ECM interaction. Developmental polarity is
observed along three axes, anterior-posterior, dorsal-ventral,
and left-right in biological cells. Such polarities can be
established by concentration gradients of secreted proteins and
asymmetric organization of cellular components, such as the
cytoskeleton (28, 61).

Investigation of the effects of electric fields on biological cells
in polymer-based microfluidics has been the interest of many
org 2
researchers over two decades (62–64). Many of these studies
focused on separation, sorting, and isolation of cells (4, 5).
However, studying the active electrotaxis of cells with high
temporal-resolution is important in understanding immune
cell trafficking behaviors in the human body (65). The
migration of neutrophils toward the cathode of an electric field
was previously reported with endogenously generating electrical
gradient (66, 67). In the previous groundbreaking work (66),
neutrophils migrated alongside epithelial cells guided by an
electric field modeling wound healing. The study also mapped
individual mouse neutrophil migratory trajectories toward the
cathode of an electric field on a planar surface. Peretz-Soroka
et al. developed a model to predict the electro-mechano-chemical
coupling, where free energy ATP hydrolysis is transformed in the
power of electrically polarized cell movement. In this study, they
demonstrated that cells pre-stimulated by fMLP electrically-
polarized and spread out to form a planar migratory mode and
demonstrated a memory effect of cells migrating for up to 10 min
after EF was turned off (67). In the current investigation, we
quantified the significance of neutrophil-like cells migration
toward the cathode in the presence of a defined chemoattractant
gradient. In our novel ETOC platform the electric field and
chemoattractant concentrations can be precisely controlled and
neutrophil directional migration can be easily tracked in channels.
Our ETOC platform allowed us to optimize electric field
conditions in the presence of a controlled chemoattractant
gradient and required less cells and reagents.

In this work, we developed a new electrotaxis-on-chip
(ETOC) platform to explore the potential of electric fields in
driving neutrophils towards an infection or away from an
inflammatory microenvironment. To better understand the
in vivo complexity of neutrophil migratory decision-making, it
is essential to recapitulate chemoattractant and electric field
conditions more accurately using an in vitro experimental
model. Measuring individual cell velocity and directionality
in vivo requires precise control of the tissue spatiotemporal
microenvironment. Microfluidic chemotaxis assays have been
shown to assist researchers to address neutrophil migration
under spatiotemporally controlled chemical gradients (68–72).
Also, engineering a novel ETOC platform has various advantages
such as reduction of joule heating, facilitation of high through-
put investigation, and precise control of electric fields, cells, and
reagents (73). Dual gradient microfluidic platforms have been
used by our group and other researchers to study neutrophil
chemotaxis with coexisting pro-inflammatory and chemotactic
August 2021 | Volume 12 | Article 674727

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Moarefian et al. Electrotaxis-on-Chip to Quantify Neutrophil Migration
signals mimicking those released by tissue bacteria (74–77).
Researchers have also previously investigated the effect of co-
existing chemotaxis and electrotaxis on cell migration (39).
Lymphocyte chemotaxis (78), electrotaxis (36, 37), and co-
existing chemotaxis and electrotaxis (40) show the migration
of T-cells toward the cathode. The study of T-cells migration
suggested greater electrotactic attraction of T-cells toward
cathode of DC electric fields in the presence of a competing
CCL19 chemoattractant gradient. However, a microfluidic device
for quantifying neutrophil time-dependent migration pattern
and decision making with co-existing electrotaxis and
chemoattractants [pro-inflammatory (LTB4) and chemotactic
(fMLP)] has not been previously investigated.

We have previously reported on iontophoretic drug delivery
in a microfluidic device and will now apply this same concept to
drive immune cell migration (79). Neutrophils are the immune
system’s first responders against pathogenic infection after
chronic wounds and injuries and linking innate and adaptive
immunity in inflammatory immune responses. Endogenous DC
electric field (dcEF) plays an important role in wound healing (3,
49, 80), tissue regeneration (59, 81, 82), and embryogenesis (83).
In addition to chemical stimuli (neutrophil-like cells
chemoattractant), the endogenous DC electric field may
Frontiers in Immunology | www.frontiersin.org 3
influence neutrophil-like cells migration to the infectious
(Figure 1A). In this study, we designed and validated a novel
four-sided microfluidic ETOC platform for studying neutrophil-
like cells migratory decision-making toward fMLP or LTB4 in the
presence of an electric fields. Recent microfluidics electrotaxis
assays (30, 36, 37, 39, 40, 43, 45, 48, 73, 84, 85) used electric field
intensity between (4V-20V) to reach the target of 0.4V/cm-4V/
cm electric field for inducing cell electrotaxis in microchannels.
The endogenous electric field experimentally measured in wound
healing was 0.4V/cm-2V/cm, and many clinical trials reported a
significant increase in the rate of wound healing from 13% to
50% (86). However, exogenous electric fields of higher intensities
used for transdermal drug delivery (87), increase the
permeability of cell membrane (88), and a therapeutic tool for
restoring tissue integrity in severe injuries with the exogenous
electric field of less than 4 V/cm. The electric field can
synergistically drive a higher percentage of neutrophils toward
a chemoattractant (fMLP) signal or reduce the number of
neutrophils migrating toward an inflammatory signal (LTB4).
We were able to direct neutrophils away from pro-inflammatory
signals (LTB4) (perpendicular field) (Figure 1B), as well as
increase neutrophil-like cells migrating towards fMLP (parallel
field) (Figure 1C). LTB4 and fMLP induce a respiratory burst in
A B C

FIGURE 1 | Simultaneous neutrophil chemotaxis and electro taxis in a microfluidics platform. (A) Electrotaxis of neutrophils toward wounds’ endogenous electric
fields and externally applied electric fields. The schematic of the microfluidic experiment design for investigating the effect of electro taxis signal on neutrophil
migration in the absence of chemoattractant. (B) Decision-making of neutrophils towards an inflammatory chemoattractant (LTB4) and perpendicular electric field.
The schematic of the microfluidic experiment design for investigating the effect of pro-inflammatory electrotaxis and chemotaxis signals on neutrophil migration.
(C) Neutrophil electrotaxis towards an infection with parallel chemoattractant (fMLP) and electric field. The schematic of the microfluidic experiment design for
investigating the effect of electrotaxis and chemotaxis signals on neutrophil migration.
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human neutrophils (89). N-Formyl-Met-Leu-Phe (fMLP), a
mimic of N-formyl oligopeptides that are released from
bacteria, is a potent neutrophil chemoattractant at the site of
infection. Also, fMLP induces cytokines (e.g., TNFa) release by
macrophages in microbial infection, which is the cause of self-
limited tissue barrier against the inflammatory response of
neutrophils (90, 91) (Figure 1). We hypothesize the effect of
exogenous and endogenous electric fields for enhancing the
chemotactic effect of fMLP and facilitating the migratory
pathway for neutrophils (Figure 1C). On the other hand, LTB4
is the lipid leukotriene B4 and the pro-inflammatory pathway for
neutrophils, which cause the neutrophil inflammation in healthy
tissue such as skin and lungs. Neutrophil accumulation in the
lungs causes damage to healthy endothelial and epithelial cells. It
would be beneficial to redirect neutrophils in this
hyperinflammatory state toward controlled electrotaxis signals.
Neutrophil migration induced by the externally applied electric
field may enable the reduction of neutrophil migration towards
an inflammatory chemoattractant (LTB4) (Figure 1B). In the
future, EF-based treatments may be used to precisely direct
immune cell migration for inflammatory disorders.
Frontiers in Immunology | www.frontiersin.org 4
MATERIALS AND METHODS

Device Design and Fabrication
A microfluidic competitive chemotaxis chip (mC3) previously
reported in our study (77, 92) is designed with two
chemoattractant reservoirs that enable the formation of a
chemoattractant gradient. The adopted design [Electrotaxis-on-
Chip (ETOC)] includes electrodes to precisely control electric
fields in the cell migration channels. We have previously
reported on incorporating electrodes into microfluidic
platforms to model iontophoretic drug delivery and use similar
methods in this study (79). The ETOC device consists of four
parts: (i) Control reservoir (blue) contains the complete cell
medium. (ii) fMLP chemoattractant reservoir (green). (iii) LTB4
chemoattractant reservoir (red). (iv) Anode reservoir (black)
contains the complete cell medium. (v) Central cell-loading
chamber for loading neutrophil-like cells. (vi) Four linear
migration channels connecting the central cell-loading to
reservoirs for quantifying neutrophil-like cells electrotaxis
(Figure 2A). Figure 2B demonstrates the device and
experimental design. The TRANS and DAPI images of the
FIGURE 2 | Electrotaxis-On-Chip (ETOC) microfluidic platform. (A) Microfluidic device design. Control reservoir (blue) contains a complete cell medium. fMLP
chemoattractant reservoir (green). LTB4 chemoattractant reservoir (red). Anode reservoir (brightfield) contains a complete cell medium. Central cell-loading chamber
for loading neutrophil. Four linear migration channels connecting the central cell-loading to reservoirs for quantifying neutrophil electrotaxis. (B) PDMS based
microfluidic device, LTB4 chamber color-coded with a red food dye and fMLP chamber color-coded with a green food dye. The anode chamber is blue, and the
media chamber is orange color-coded. Stainless steel electrodes were inserted in the cathode and the anode chamber. The cell loading chamber is at the center of
the device. (C) Nikon TiE microscope 10X image of the microfluidic device and stained dHL60 by Hoechst stain (DAPI fluorescent DNA stains), scale bar 200 µm.
(D) The electric potential in the migration channels. (i) Cathodic channels. (ii) Anodic channels.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Moarefian et al. Electrotaxis-on-Chip to Quantify Neutrophil Migration
microfluidic device were taken by Nikon TiE microscope with
10X objective, and stained dHL60 by Hochstein (DAPI
fluorescent DNA stains) were loaded inside the device
(Figure 2C). The COMSOL simulations showed electric
potential (Figure 2D) in the migration channels.

A microfluidic device for quantifying neutrophil-like cells
migration pattern was designed and fabricated using standard
photolithography techniques (93). Two standard photolithography
techniques were used to create a silicon mold from two separate
masks, chemoattractant wells, and migration channels. Mask
aligner (Karl Suss MA-6 Mask Aligner) was used to align two
separate masks. Replication molding techniques facilitate the
fabrication of PDMS (polydimethylsiloxane) microfluidic device
(94). Mixing the PDMS and curing agent with a 10:1 weight ratio
prepared PDMS pre-polymer (Sylgard 184; Dow Corning,
Waltham, MA). The PDMS prepolymer was then degassed in the
desiccator and poured onto prepared silicon mold. The PDMS was
cured at 65°C for 8hr. After curing, the inlets and outlets were
punched using a 0.75 mm biopsy puncher. Finally, PDMS device
was bonded to a glass slide using nitrogen plasma bonding
[Nordson MARCH (AP-300)] for mechanical stability and place
on an 80°C hot plate for 45 min.

Cell Preparation and Loading
Human promyelocytic leukemia cells (HL60 CCL-240, American
Type Culture Collection ATCC, Manassas, VA) were used in this
study. Iscove’s Modified Dulbecco’s Medium (IMDM, ATCC,
Manassas, VA) supplemented with 10% fetal bovine serum (FBS,
ATCC, Manassas, VA) were used as a complete media for HL60
cells. Cells were cultured (90% confluent) in complete media and
incubated at 37°C in 5% CO2. 1.5% Dimethyl sulfoxide (DMSO,
Sigma-Aldrich, St. Louis, MO) was added to 1.5X106 cells. mL−1 of
HL60s and incubate for 4-5 days to differentiate cells to a
neutrophil-like state (denoted as dHL60 cells) following ATCC
culture guidelines and protocols previously established in our
laboratory (77). dHL60s were spun down (130G) at RT for
7 min before the experiment and resuspended in fresh media.
Then, the central cell-loading chamber for loading neutrophil-like
cells (Figure 2A) was filled by dHL60 cells (400,000 cell/40 mL)
using a gel loading pipette tip. Devices were washed with 1X PBS
(Thermo Fisher Inc.) twice; then, plates were filled with complete
media before the experiment. Complete media were changed
before time-lapse imaging. Viability of dHL60 cells loaded into
the microfluidic platform was >90% viable, as confirmed by live and
dead cell staining assay after 8 hours of time-lapse imaging with 600
mV and without chemotaxis assay (Supplementary Figure 1).

Electrotaxis Assay and Experiment Setup
Complete media (IMDM+10% FBS) salt bridge was used to
connect electrotaxis wells in the microfluidic device. Sterile
stainless-steel acupuncture needles (Kingi, China) with a
diameter of 0.12 mm were placed at the inlet and outlet of the
electrotaxis wells to deliver DC electric field, and stainless-steel
wires (Zoro, Inc.) were used to construct electric field circuit.
Electrodes were fixed using Epoxy glue (Devcon Inc.), and
devices were washed stay in 1X PBS (Thermo Fisher Inc.) for
30 min twice and washed twice for removing any toxicity from
Frontiers in Immunology | www.frontiersin.org 5
Epoxy glue. Optimal electric field intensities were chosen to
induce maximal dHL60 cell migration for both endogenous DC
field and applied DC field. The characteristic length of the
current microfluidic device is 0.15 cm. Therefore, we chose an
applied voltage from 0 mV to 600 mV to examine reported
electric field intensities in clinical and in vivo investigations (0.4
V/cm-4 V/cm). The electrotaxis conditions include 1. An
endogenous potential field modeling wound healing (<100
mV). 2. External applied electric potential (<600mV). The
intensity of the DC electric field is very low and it is not high
enough for the generation of electrolysis and bubble generation
during the experiment. Also, the media on top of the
microfluidics device has changed every four hours for
maintaining the same level and prevent acidification. The
phenol red color of the media did not change significantly
during the experiment.

Chemotaxis Assay
Fibronectin is a large and the most abundant glycoprotein in the
extracellular matrix (92). In has been used in previous
microfluidic-based studies for increasing cell adhesion (6).
Microfluidic channels were coated using 50 mL fibronectin
(Sigma-Aldrich, St. Louis, MO) [10 mg/mL] to mimic the
extracellular matrix (ECM) neutrophil-like cells adhesion
promotion. After adding fibronectin on top of the device, the
device was then placed in a vacuum desiccator for 10 min and an
additional 45 min to 1 hour at the room temperature for
fibronectin adsorption to the glass and PDMS channel
surfaces. The drop of fibronectin should cover all punches to
let the air displaced by fibronectin solution in PDMS channels.
The 6-well plates were filled with 4.5 ml of 1X PBS.
Chemoattractants Leukotriene B4 (LTB4, Cayman Chemical,
Ann Arbor, MI) and (N-Formylmethionine-leucyl-
phenylalanine (fMLP, Sigma-Aldrich, St. Louis, MO) were
diluted using complete media (IMDM+10%FBS). Ten
microliters of each chemoattractant solution (fMLP, [10 nM]
and LTB4, [100 nM]) were then loaded into the chemoattractant
reservoirs. The first set of experiments are without
chemoattractant. In the second set, LTB4 chemoattractant was
loaded using gel loading pipettes. The third set of experiments
was with fMLP chemoattractant. Clinically relevant optimal
chemoattractant concentrations previously reported (6) for
inducing maximal dHL60s migration.

Live Microscopy and Image Processing
Nikon TiE fully-automated microscope equipped with a Plan
Fluor 10x Ph1 DLL (NA = 0.3) lens and 37°C with 5% carbon
dioxide incubator was used for time-lapse imaging experiments.
NIS-elements (Nikon Inc., Melville, NY) software facilitates
image capturing and analysis conducted by using ImageJ.
Images were recorded using a bright-field channel at six-
minute intervals for 8 hr. Live/dead images were captured
using FITC (green) and TRITC (red) fluorescent channels. The
number of cells per channel migrating toward chemoattractant,
cathode, and anode reservoirs, was quantified as followed: (1)
Control (no potential) (2) Electrotaxis (3) Co-existing
chemotaxis and electrotaxis. We used dHL60s cell type as
August 2021 | Volume 12 | Article 674727
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neutrophils. DC electric potential variations are: 0 mV, 40 mV,
80mV, 200 mV, 400 mV, and 600 mV. DC electric field variation
are: 0 V/cm, 0.27 V/cm, 0.53 V/cm, 1.33 V/cm, 2.67 V/cm, and 4
V/cm. Low-intensity DC potentials (0 mV, 40 mV, and 80mV)
mimic endogenous DC fields, and high-intensity potentials (200
mV, 400 mV, and 600 mV) mimic applied DC fields. We used
two chemoattractants at optimal concentrations to induce
dHL60 chemotaxis: (1) LTB4 (pro-inflammatory): [100 nM].
(2) fMLP (chemotactic): [10 nM].

Statistical Analysis
Prism version 8.1.2 (332) software (GraphPad Software, La Jolla,
CA) with a confidence level of a = 0.05 was used for statistical
analyses. Pair t-test comparison was used for comparing a
control condition to electric field conditions (n=4) as well as
dHL60 viability in the microfluidic device after 8 hours of
migration experiment (n=2). Data are presented as arithmetic
mean ± SD. “n” represent the number of biological samples.
RESULTS

Effect of DC Electric Potential on
dHL60’s Electrotaxis
We inspected the effect of electric fields on the dHL60 cells
(neutrophil-like cells) loaded in the central chamber of our
electrotaxis-on-chip (ETOC) platform. Five different potential
intensities were investigated in this section to simulate
endogenously (<100 mV) and externally applied potentials
(<600mV). In the absence of an electric field (denoted as EF),
dHL60s had a significantly low migration, less than ~5 cells per
Frontiers in Immunology | www.frontiersin.org 6
channel, into the four side-chambers. After electric field
stimulation, neutrophils migrated toward the cathode with an
order-of magnitude increase in numbers. Examining the effect of
externally endogenous potential (<100mV) intensities showed
a significant migration of neutrophils toward cathode at 40mV
(n=4, p-value=0.0006) and 80mV (n=4, p-value=0.0026). Also,
40mV applied potential indicated more significant migration
than 80mV. On the other hand, 600mV (n=4, p-value=0.0003)
indicated the most significant migration toward the cathode
in the range of externally applied potential (Figure 3A and
Supplementary Video 1). Migration toward media was
significantly low, less than ~5 neutrophils per channel,
which is expected due to the elimination of electrical signal
and chemical stimuli (Figure 3). The most critical finding of
neutrophil-like cells directional movement during electrotaxis is
the low migration of neutrophils toward the anode
(Supplementary Video 2), less than ~5 neutrophils per
channel, and significant migration toward the cathode, with
20-30 cells per channel (n=4, p-value<0.005), which indicated
the neutrophils’ positive polarity. The electric potential spectrum
for the first scenario, only electrotaxis, has been shown in
Supplementary Figure 2.

Effect of DC Electric Potentials Co-Exist
With LTB4 Chemoattractant on
dHL60 Migration
We then examined the effect of co-existing pro-inflammatory
chemotaxis (LTB4 gradient) and electrotaxis. LTB4 [100 nM] was
added to one side of the device for generating a perpendicular
pro-inflammatory chemoattractant gradient to DC electric fields
to test the neutrophil-like cells decision making. The switching
FIGURE 3 | Neutrophil-like cells electrotaxis under the effect of the DC electric field. (A) Quantification of the number of neutrophils migrated per channel toward the
cathode. The result shows a significant increase (65%-80%) in migration by applying different DC electric field strength (n=4, p-value<0.005). Quantification of the
number of neutrophils migrated per channel toward the anode. The result indicates a significantly low, less than ~5 cells per channel, directional movement of
neutrophils toward the anode. Quantification of the number of neutrophils migrated per channel toward the complete media. The result shows a significant low, less
than ~3 cells per channel, migration toward the complete media due to no electrical or chemical signals. (B) Nikon TiE microscope 10X image of the microfluidic
device and experiment setup of electrotaxis. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; ns, not statistically significant.
August 2021 | Volume 12 | Article 674727
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direction of neutrophils to LTB4 chemoattractants was observed
in the second set of the experiment. The perpendicular
chemoattractant gradient attenuated neutrophils migration
toward the cathode. However, the migration of neutrophils
toward the cathode significantly increased by applying electric
fields. Neutrophil-like cells migration toward the cathode
showed that potentials of 40mV (n=4, p-value=0.0008), 80mV
(n=4, p-value<0.0001), 200mV (n=4, p-value=0.0001), 400mV
(n=4, p-value<0.0001), and 600mV (n=4, p-value=0.0026)
induced a significant migration toward the cathode in the
presence of pro-inflammatory chemoattractant gradients in the
perpendicular direction (Figure 4A and Supplementary
Video 3). The migration of neutrophils toward LTB4

significantly decreased (60%-70%, n=4, p-value<0.005) by
applying electric fields under potentials of 400 mV (n=4,
p-value=0.0233) and 600 mV (n=4, p-value=0.0325).
However, low strength fields (caused by potentials <400 mV)
did not attenuate neutrophil-like cells migration toward the
cathode (p-value=0.7-0.9) (Figure 4A). A similar result to the
first set experiment was obtained in neutrophil-like cells migration
toward media due to no electrical or chemical cure in the media
chamber (Figure 4). Migration toward the anode showed a trend
of increased migration by increasing applied field. However,
neutrophils’ movement toward the anode, less than ~15 cells per
channel (not significant). The electric potential spectrum for the
second scenario, perpendicular and competing LTB4 and
electrotaxis, has been shown in Supplementary Figure 3.
Frontiers in Immunology | www.frontiersin.org 7
Effect of DC Electric Potentials Co-Exist
With fMLP Chemoattractant on
dHL60 Migration
The third scenario investigated the potential of electrotaxis to
increase neutrophil-like cells directional movement to the cite of
infection. fMLP [10 nM] was added to the cathode chamber of
the device, (side A) for generating a parallel chemotactic gradient
to the electric field to test the third hypothesis. Applying the
electric field enhanced the migration of neutrophils toward fMLP
chemoattractant significantly. In some cases, such as 80 mV
(n=4, p-value<0.001) and 600mV (n=4, p-value<0.001) the effect
of the electric potential was more significant. In other cases, such
as 40 mV (n=4, p-value<0.005), 200 mV (n=4, p-value<0.005),
and 400 mV (n=4, p-value<0.005) the significant enhancement
in migration was observed (Figure 5A and Supplementary
Video 4). As expected, according to the first two scenarios, the
migration of neutrophils toward the anode is 86% (600mV), 62%
(400 mV), 60% (200 mV), 90% (80 mV), and 42% (40 mV) less
than the cathode (Figure 5A). Sides of the device with the
complete media demonstrated no significant migration due to
the elimination of electrochemical gradients (Figure 5). The
electric potential spectrum for the third scenario, parallel and
synergistic fMLP and electrotaxis, has been shown in
Supplementary Figure 4. The neutrophil-like single cells
velocity under the influence of electrochemical gradient was
investigated. The Electrotaxis-On-Chip (ETOC) microfluidic
platform enabled us to quantify single-cell neutrophil-like cells
A B

FIGURE 4 | Neutrophils-like cells electrotaxis under the effect of competing pro-inflammatory chemoattractant gradient and DC electric field. (A) Quantification
of the number of neutrophils migrated per channel toward the anode. The result indicates a significantly low, less than ~5 cells per channel, directional
movement of neutrophils toward the anode. Neutrophil-like cells migration toward the anode is around 50% more than neutrophil-like cells migration toward a
complete media. Quantification of the number of neutrophils migrated per channel toward the pro-inflammatory chemoattractant gradient (LTB4). Results show a
significant decrease (60%-70%) in neutrophil-like cells migration toward LTB4 by applying external electric potentials (400mV (n=4, p-value=0.0233) and 600 mV
(n=4, p-value=0.0325)). Quantification of the number of neutrophils migrated per channel toward the complete media. Results show no neutrophil-like cells
migration toward the complete media due to no electrical or chemical signals. Quantification of the number of neutrophils migrated per channel toward the
cathode. The result shows a significant increase (80%-90%) in migration by applying different DC electric field strength (n=4, p-value<0.005). (B) Nikon TiE
microscope 10X image of the microfluidic device and experiment setup of perpendicular and competing electrotaxis and LTB4 chemotaxis. *P ≤ 0.05;
**P ≤ 0.01; ns, not statistically significant.
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electrotaxis velocity in three scenarios: 1. 600 mV electric
potential without a chemical gradient (7.9 µm/min ± 3.6). 2.
Competing 600mV electric potential and 10nM LTB4
chemoattractant gradient (2.9 µm/min ± 1.7). 3. Synergistic
600mV electric potential and 10nM fMLP chemoattractant
gradient (14.8 µm/min ± 2.6) (Figure 6).
DISCUSSION

Electrical stimuli are known to manipulate cells, providing
potential therapeutic approaches in treatments of inflammatory
diseases. The electrotaxis-on-chip (ETOC) platform developed
here will give immunologists a platform for investigating the
physiological roles and mechanisms of electrotaxis in a more
efficient way and to optimize treatment parameters in vitro
before testing in patients or mouse models. Our reductionist
approach studies show that: 1) Neutrophil-like cells migrate
toward the cathode of a DC electric field; 2) Perpendicular
electric fields reduce neutrophil-like cell migration towards an
inflammatory chemoattractant (LTB4); and 3) Concurrent or
parallel electric fields can synergistically increase neutrophil
chemotaxis towards an infection (fMLP).

Electrotaxis represents an additional mechanism for the
control of leukocyte migration. It is likely to play a role in sites
of epithelial injury, and may permit novel approaches for
manipulating the positioning of neutrophils and other immune
cells to enhance pathogen-killing and vaccine or antitumor
responses. Although there is currently no clinical practice for
inflammation or infection by directly manipulating electrotaxis
A B

FIGURE 5 | Neutrophils-like cells electrotaxis under the effect of fMLP chemoattractant gradient and DC electric field. (A) Quantification of the number of neutrophils
migrated per channel toward the cathode and fMLP chemoattractant. The result shows a significant increase (85%-95%) in migration by applying different DC
electric field strengths with potentials of 80 mV and 600mV (n=4, p-value<0.001) across the chip. Quantification of the number of neutrophils migrated per channel
toward the anode. The result indicates a significantly low, less than ~5-10 cells per channel, directional movement of neutrophils toward the anode. Quantification of
the number of neutrophils migrated per channel toward the complete media. Results show no neutrophil-like cells migration toward the complete media due to no
electrical or chemical signals. (B) Nikon TiE microscope10X image of the microfluidic device and experiment setup of parallel and synergistic electrotaxis and fMLP
chemotaxis. *P ≤ 0.05; ns, not statistically significant.
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FIGURE 6 | dHL60 single cell velocity under the influence of
electrochemical gradient (n=10). The Electrotaxis-On-Chip (ETOC)
microfluidic platform enabled us to quantify single-cell neutrophil-like cells
electrotaxis velocity (7.9 µm/min ± 3.6). (ns P > 0.05; *P ≤ 0.05; **P ≤ 0.01;
***P ≤ 0.001; ****P ≤ 0.0001).
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of immune cells, electrical treatments for chronic wound with
therapeutic benefits have been commonly used by medical
practitioners, such as physical therapists. There are even
human trials to treating human spinal cord by implanting an
oscillating EF stimulator (95). The potential electrotaxis-based
therapeutic approach for infectious disease or reducing
inflammation is likely safely and cost efficiently because the EF
is applied at low magnitude using relatively simple electrical
setups. On the other hand, it will be critical to optimize the
applied EF in clinical applications using enabling platforms such
as the ETOC developed here. These platforms can also be used to
better understand the molecular mechanisms driving immune
cell electrotaxis. A better understanding of EF guided immune
cell migration will inspire the development of new EF-based
treatments or other biophysical energies that can modulate
physiological EF for inflammatory disorders, immunotherapies
or other clinical applications. In future, further advances in the
design of high-throughput microfluidic devices, more neutrophil
chemoattractant (e.g. IL-8) investigation, and using isolated
primary neutrophils from patient samples are recommended.
The design of microfluidic device can be improved by pressure
vapor deposition of the electrodes on glass surface instead of
manually inserting the electrodes inside the PDMS device. Also,
the location of the cell loading reservoir can be fixed with high
accuracy to improve the distribution of electric current lines in
the chip.
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