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The KIR (killer-cell immunoglobulin-like receptor) region is characterized by structural
variation and high sequence similarity among genes, imposing technical difficulties for
analysis. We undertook the most comprehensive study to date of KIR genetic diversity in a
large population sample, applying next-generation sequencing in 2,130 United States
European-descendant individuals. Data were analyzed using our custom bioinformatics
pipeline specifically designed to address technical obstacles in determining KIR
genotypes. Precise gene copy number determination allowed us to identify a set of
uncommon gene-content KIR haplotypes accounting for 5.2% of structural variation. In
this cohort, KIR2DL4 is the framework gene that most varies in copy number (6.5% of all
individuals). We identified phased high-resolution alleles in large multi-locus insertions and
also likely founder haplotypes from which they were deleted. Additionally, we observed
250 alleles at 5-digit resolution, of which 90 have frequencies ≥1%. We found sequence
patterns that were consistent with the presence of novel alleles in 398 (18.7%) individuals
and contextualized multiple orphan dbSNPs within the KIR complex. We also identified a
novel KIR2DL1 variant, Pro151Arg, and demonstrated by molecular dynamics that this
substitution is predicted to affect interaction with HLA-C. No previous studies have fully
explored the full range of structural and sequence variation of KIR as we present here. We
demonstrate that pairing high-throughput sequencing with state-of-art computational
tools in a large cohort permits exploration of all aspects of KIR variation including
determination of population-level haplotype diversity, improving understanding of the
KIR system, and providing an important reference for future studies.
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INTRODUCTION

A variety of membrane-bound receptors control the response of
natural killer cells (NK) to infected or malignant cells (1, 2). The
killer-cell immunoglobulin-like receptors (KIR) are the most
polymorphic family of NK receptors and encoded by a gene
family located at chromosomal region 19q13.4 (3, 4). The KIR
genes exhibit extraordinary variation, both within populations
and between them (5–7). Although KIR gene-content has been
extensively studied in numerous populations worldwide (8–11),
less is known about KIR allele diversity. The unusual structural
variation of the KIR region, coupled with the numerous alleles
for each KIR gene (12) and extensive sequence similarity within
the KIR gene family are distinguishing characteristics of KIR
variation. Further characterizing the KIR region are frequent
duplications, large deletions, hybrid genes and recombinant
alleles (13–17). Together, these obstacles have impeded high-
resolution allelic characterization of all KIR genes in population
studies, which has been accomplished in only a few studies
(18–21).

Transduction of NK cell activating and inhibitory signals is
achieved by a subset of human leukocyte antigen (HLA) class I
molecules, which serve as KIR ligands (22–24). These two
interacting molecule families evolve as a unique and integrated
system (25–28), and combinations of KIR and HLA have been
associated with numerous diseases (29–32), including
autoimmune disorders (33–36), malignancies (37–39) and
infections (40–43). Combinations of KIR and HLA class I also
affect placentation and the success of reproduction (44–47).
Therefore, high-resolution allelic analysis of KIR and HLA
class I diversity across populations will be necessary to
understand their evolution and lay a foundation for functional
studies to determine disease mechanisms. To facilitate this
progression, we have used our custom KIR genotyping and
bioinformatics pipeline to interrogate KIR diversity in a sample
of 2,130 US residents. These methods were explicitly designed to
cope with the complexities of KIR alleles, gene and haplotypes.
We describe the most comprehensive analysis to date of the KIR
genes, exploring copy number variation, haplotype patterns, and
novel variation not previously reported.
MATERIAL AND METHODS

Study Population
We analyzed a cohort of 2,130 unrelated healthy adult
individuals previously described by Hollenbach et al., 2019
(48). All individuals self-identified as being of European
descent and were resident of the United States.

KIR Genotyping
DNA samples were sequenced for all KIR genes, according to
Norman and collaborators (49). After sequencing, raw fastq files
were analyzed using our custom bioinformatics pipeline PING
(Pushing Immunogenetics into the Next Generation) to obtain
KIR gene content and allelic genotypes from next-generation
Frontiers in Immunology | www.frontiersin.org 2
sequencing (NGS) data (49). We applied an updated version of
the pipeline that precisely determines the copy number of each
locus through multiple alignment and filtration steps, also
accurately identifying KIR genotypes. The updated pipeline
increased the accuracy of KIR genotype determination and is
publicly available (50).

Haplotype Estimation
Gene-content haplotypes were identified manually, based on the
precise copy number determination, the known linkage
disequilibrium among KIR genes, and allelic information.
Uncommon haplotypes were identified based on previous
observations (13, 51, 52). Candidates for novel gene-content
haplotypes were identified when paired with common
haplotypes and observed in two or more individuals. After
identifying gene-content haplotypes, we inferred the
haplotypes of their KIR alleles using the expectation-
maximization (EM) algorithm and the R package haplo.stats
(http://CRAN.R-project.org/package=haplo.stats).

Linkage Disequilibrium (LD) Analysis
Allelic genotyping data were transformed into an Arlequin entry
file (.arp) using GenAlEx 6.5 (53). Gametic phase estimation
using an EM algorithm and further pairwise linkage
disequilibrium analysis were performed using Arlequin
3.5.2.2 (54).

Identification of Novel Alleles
We searched for the single nucleotide variants (SNV) in
KIR2DL1 and KIR3DL1S1 that were identified by our software
but not present in any allele listed at the Immuno Polymorphism
Database (IPD)-KIR release 2.9.0 (12). For individuals carrying a
candidate novel SNV in KIR2DL1 or KIR3DL1S1, the respective
genes were re-sequenced using the Sanger method (55) using
previously described primers (25, 56).

Simulations of Molecular Dynamics
In silico, the KIR2DL1 chain was isolated from the KIR-HLA
complex (PDB ID: 1IM9) (57). To map the rs200879366
variation on the KIR2DL1 structure, the proline at position
151 was replaced by arginine using the Mutate plugin in Visual
Molecular Dynamics (VMD) package (58). Both allotypes were
solvated in separate simulation boxes using TIP3P solvent, and
the ion concentration was adjusted to 150 KCl. Energy
minimization was then performed on both systems for 150,000
steps. To mimic the anchorage of KIR2DL1 to the lipid
membrane, the atom of residue 200 was fixed in space.
Conformational transitions of KIR2DL1 allotypes were
modeled using the NAMD software package (59) and the
CHARMM36 forcefield (60) in NPT ensembles. Temperature
and pressure were maintained at 310 K and 1 bar using the
Langevin thermostat and Langevin piston Nose-Hoover,
respectively. Periodic boundary condition in all directions and
a timestep of 2fs were used. Simulations on both systems ran for
100ns. The angle between the D1 and D2 domains is the leading
indicator of KIR2DL1 conformational transition. It was obtained
by aligning the corresponding atom selections and calculating
May 2021 | Volume 12 | Article 674778
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rotation and displacement at every timeframe using in-house tcl
scripts. Structure visualizations were performed using VMD.
RESULTS

KIR Gene Copy Number Analysis Identified
Numerous Deletions and Duplications
Involving KIR3DP1, KIR2DL4, and
KIR3DL1S1
We determined KIR gene copy number for all 13 KIR genes
(KIR2DL1, KIR2DL23, KIR2DL4, KIR2DL5A, KIR2DL5B,
KIR2DS1 , KIR2DS2 , KIR2DS3 , KIR2DS4 , KIR2DS5 ,
KIR3DL1S1, KIR3DL2, KIR3DL3) and the two pseudogenes
(KIR2DP1, and KIR3DP1). Carrier frequencies and gene
frequencies, based on the direct counting of all copies for each
KIR, are given in Supplementary Table 1.

The KIR A haplotype is defined by the presence of only one
gene encoding a short-tailed activating receptor (KIR2DS4) and a
fixed number of genes encoding inhibitory KIR. In contrast, KIR B
haplotypes encode various combinations of activating and
Frontiers in Immunology | www.frontiersin.org 3
inhibiting receptors (61). A total of 31.4% of individuals in the
cohort of 2,130 Europeans are homozygous for the full-length KIR
A haplotype (cA01~tA01/cA01~tA01, f = 0.58). The centromeric
and telomeric portions of the KIR haplotype are flanked by the
framework genes KIR3DL3-KIR3DP1 and KIR2DL4-KIR3DL2,
respectively (62, 63). On analyzing these two regions separately,
we observed that 94% of the centromeric diversity is explained by
just three gene-content haplotypes (cA01, cB02, and cB01; Figure
1A), whereas tA01 and tB01 correspond to 93% of the telomeric
haplotypes (Figure 1B). We also indentified the presence of two
novel centromeric haplotypes, and two telomeric haplotypes not
previoulsy described in Europeans. The novel cB06 haplotype
differs from cB01 by lacking KIR2DP1, and cA03 differs from the
more common cA01 by lacking KIR3DP1. Present in the telomeric
region is tA02, which only differs from tA01 by lacking KIR2DS4.
Of particular interest is a haplotype observed in two individuals
that has only theKIR3DL2 framework gene in the telomeric region.
The gene content and organization of 3.5% of the centromeric and
4.9% of the telomeric haplotypes could not be determined.

Of the framework genes, KIR2DL4 has the most copy number
variation in our study. We observed 72 individuals (3.4%)
carrying one copy of KIR2DL4 and 67 (3.1%) carrying three
A

B

FIGURE 1 | Telomeric and centromeric gene-content haplotypes in European-Americans. Although multiple variations of the KIR full-length haplotypes have been
described, most are multiple variations of a few centromeric and telomeric haplotypes. The centromeric and telomeric regions of KIR haplotypes are flanked by the
genes KIR3DL3-KIR3DP1 and KIR2DL4-KIR3DL2, respectively, which are referred to as framework genes (62, 63). (A) Frequencies of centromeric KIR gene-content
haplotypes in the study population. (B) Frequencies of telomeric KIR gene-content haplotypes in the study population. All listed haplotypes that were not previously
described, we have observed in multiple individuals and in combination with a high frequency haplotype, allowing their inference with confidence. All uncommon
haplotypes for which the phase could not be determined are grouped as “undetermined”. Figure created with BioRender.com.
May 2021 | Volume 12 | Article 674778
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copies (Figure 2A). In this cohort, deletion of KIR2DL4 is
invariably accompanied by the deletion of KIR3DL1S1.
KIR3DP1 is deleted in 63 of the 72 (87.5%) haplotypes having
the KIR2DL4~KIR3DL1S1 deletion. KIR3DL1S1 and KIR3DP1
are duplicated in 63 out of 68 individuals carrying duplications of
KIR2DL4. Insertion of KIR3DP1~KIR2DL4~KIR3DS1 into a
tA01 haplotype created a novel haplotype, carried by 38
individuals (f = 0.009; Figure 2B). Insertion of the segment
KIR2DS3*00103~KIR2DP1~KIR2DL1*00401~KIR3DP1~
KIR2DL4*00501~KIR3DS1*01301~KIR2DL5A*00501 also into
tA01 gave another novel haplotype observed in 19 individuals
(f = 0.004; Figure 2C). In addition, we always observed the
Frontiers in Immunology | www.frontiersin.org 4
centromeric cB04 haplotype to be in the same gametic phase as
tB03, and cA03 always with tB02. Duplication of KIR2DL2
present in cB02 was observed in 7 individuals (f = 0.002)

Several KIR Haplotypes Are Marked by
Specific KIR Alleles
All 13 KIR genes were genotyped to five-digit allele resolution in
the study sample. We identified 250 KIR alleles, of which 90
(37.6%) have frequencies equal or greater than 0.01, and 40
(17%) have frequencies equal or greater than 0.05 (Figure 3A).
KIR3DL3 has the highest variety of alleles (n = 83), followed by
KIR3DL2 (n = 48) and KIR3DL1S1 (n = 39) (Figure 3B).
A B

FIGURE 3 | Overview of the KIR allelic diversity in European-Americans. (A) Total number of KIR alleles at 5-digit resolution observed in 2,130 European Americans
and stratified by frequency. (B) Number of alleles observed for each gene (5-digit resolution), stratified by frequency.
A B

C

FIGURE 2 | Deletions and duplications involving KIR2DL4, KIR3DL1S1, and KIR3DP1 were observed in more than 6% of KIR haplotypes Together with KIR2DL23
and KIR3DL1S1, framework genes (KIR3DL3, KIR3DP1, KIR2DL4, and KIR3DL2) were initially considered to be present in all KIR haplotypes, with only rare
exceptions. Here, we show that deletions and duplications in these genes are relatively frequent in the study population. (A) Frequencies of gene copy number for
individual genes. (B) Suggested origin of the novel haplotype containing a duplication of KIR3DP1~KIR2DL4~KIR3DS1 and observed in 38 individuals (f = 0.009).
Created with BioRender.com. (C) Suggested origin of the novel haplotype containing a duplication of KIR2DS3~KIR2DP1~KIR2DL1~KIR3DP1~KIR2DL4~KIR3DS1~
KIR2DL5A, observed in 19 individuals (f = 0.004). Figure created with BioRender.com.
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Figure 4 summarizes KIR allele diversity of the cohort and
complete allele frequencies are given in Supplementary Table 2.
Among the 20most common centromeric haplotypes, 16 are cA01
(Figure 5A). Similarly, 17 of the 20 most common telomeric
haplotypes were tA01 (Figure 5B).

This is the first study to describe high-resolution (5-digit) KIR
haplotypes for all functional KIR genes in a large population
sample. Analyzing this large number of individuals gave us
sufficient power to fully explore the patterns of LD and
identify alleles that are exclusively or predominately associated
with specific haplotypes (Figure 6). For example, the alleles
KIR3DL2*00701 and *018 were observed solely in tB01
haplotypes, whereas KIR3DL2*00103, *00201, *00501, *00901,
*00101, and *008 were observed only in tA01. Similarly,
KIR3DL3*00301 and *00402 are characteristic of CenB,
whereas *00901 and *00101 are exclusive to CenA haplotypes.
With few exceptions, 2DL4*00501 is the only KIR2DL4 allele
found in tB01 haplotypes (99.4%), being in complete LD with
KIR3DS1*013. Additionally, a few low-frequency alleles are
associated with specific, uncommon haplotypes; for example,
Frontiers in Immunology | www.frontiersin.org 5
KIR3DL2*034 (f = 0.002) is present only in tB03, and
KIR2DL5B*00801 (f = 0.004), is present only in cB04 (f = 0.01).
Furthermore, for the first time we describe multiple high-
resolution allelic configurations of the full-length cB04~tB03
haplotype (Supplementary Table 3).

As well as the haplotypic associations, we observed many
instances of strong LD among specific sets of KIR alleles (Figure
7) . In summary, KIR2DL4*00501 , KIR3DS1*01301 ,
KIR2DS1*00201, KIR2DL5A*00101, KIR2DS5*00201, and
KIR3DL2*00701 are frequently observed together. Many other
KIR2DL4 alleles are in strong LD with specific KIR3DL1 alleles.
Specific examples are KIR2DL4*00801 with KIR3DL1*00101
(D’ = 0.99, r2 = 0.85); KIR2DL4*011 with KIR3DL1*00501 (D’ =
0.95, r2 = 0.85); KIR2DL4*00802 with KIR3DL1*00401 (D’= 0.95,
r2 = 0.73); KIR2DL4*00602 with KIR3DL1*00701 (D’ = 0.91,
r2 = 0.68); and KIR2DL4*00103 with KIR3DL1*008 (D’ = 1, r2 =
0.6). In the centromeric region, KIR2DL5B*00201 and
KIR2DS3*00103 are always observed together. KIR2DL1*00401 is
in strong LD with KIR2DS3*00103 (D’ = 0.98 and r2 = 0.83) and
KIR2DL5B*00201 (D ’ = 0.95 and r2 = 0.82), whereas
FIGURE 4 | Overview of the most common alleles in European-Americans. Only alleles with frequencies greater than 1% are shown. For full list of allelic frequencies,
see Supplementary Table 2.
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KIR2DL3*00201 is associated with KIR2DL1*00201 (D’ = 0.97,
r2 = 0.89). A full list of LD values for pairs of KIR alleles is given in
Supplementary Table 4.

Numerous Novel KIR Variants Are Present
in the Cohort of European Americans
In this analysis of 2,130 individuals, we identified 398 individuals
(18.7%) carrying at least one KIR recombinant allele that do not
correspond to any sequences deposited in the KIR database. We
define as recombinant allele those that are characterized by
different phasing combinations of previously known variable
sites. These observations are likely to represent the presence of
new alleles that were not present or not detected in previous
studies of KIR variation. KIR3DL1S1 accounts for 33% of the
observations of candidate new alleles, corresponding to a total
allelic frequency of 0.04 at this locus. A large proportion of
individuals carrying possible novel alleles were also observed for
other KIR2D and KIR3D genes (Table 1).

In addition to these candidate novel KIR recombinant alleles,
we also used our software to identify possible novel SNVs. In
some cases, these SNVs may have been reported in the dbSNP
database (64), but they were not associated with any KIR allele
sequence deposited in the IPD-KIR database release 2.9.0 (12).
Therefore, in the context of KIR, these SNVs would be
contributing to novel alleles that each differ from a known KIR
allele by a single nucleotide substitution. To confirm the
sequences of novel variants, we used the Sanger method to re-
sequence individuals carrying any possible novel SNV in
KIR2DL1 and KIR3DL1S1. While confirmation of all novel
Frontiers in Immunology | www.frontiersin.org 6
variants was out of scope for the current project, we selected
these loci as exemplars for this work due to substantial previous
work examining their structure and function (25, 56, 61, 65–71),
including the availability of crystal for molecular modeling
structures (57, 72–76). In future work we will continue to
explore novel variants that were detected at other loci during
this study.

For KIR2DL1, 8 of 30 variants were confirmed by Sanger
sequencing, while 10 of 32 variants were similarly confirmed for
KIR3DL1S1. Most of the SNVs in KIR3DL1S1 were observed in
only a single individual, except for two synonymous variants,
rs754894112 and rs1462310393 (Table 2). In contrast, the
majority of confirmed novel variants in KIR2DL1 were
observed in several individuals (Table 3). Interestingly, 14 out
of the 18 confirmed variants in these two genes were non-
synonymous substitutions, with functional effects ranging from
conservative to radical according to the Grantham scale of
physicochemical distances between amino acids (77).

Simulation of Molecular Dynamics
Predicts That Dimorphism in Codon 151 of
KIR2DL1 Affects Binding to HLA Class I
To explore the functional differences of KIR2DL1 alleles that
differ by a single nucleotide, we simulated and compared the
molecular dynamics simulations of KIR2DL1 allotypes that differ
by the non-conservative substitution of proline to arginine at
position 151. Underlying this difference is rs200879366*C>G.
Different conformations were sampled during the simulation
trajectory, so that each time step features an individual
A B

FIGURE 5 | High-resolution allelic haplotypes in European-Americans. (A) The 20 most common centromeric KIR haplotypes. (B) The 20 most common telomeric
KIR haplotypes observed in European Americans (n = 2,130). Created with BioRender.com.
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conformer. The angle change mediated the transition between
free and HLA-bound states of KIR2DL1 between the Ig domains
(D1 and D2) that eventually affected the HLA binding region
(Figure 8A). Within 100ns of simulation, the angle between the
D1 and D2 domains was decreased by 10° in the wildtype (Pro)
but was not perturbed in the mutant (Arg) (Figure 8B). The
conformational transition appears to be mediated by a network
of interactions spanning fromMet44 to Arg 151. In the wildtype,
Met44 is released from Pro185, allowing the angle between D1
and D2 to decrease (Figure 8C). By contrast, the angle is
increased in the mutant. This enables Arg151 to form a salt
bridge with Asp135, leading to an interaction between Met136
and Pro185 (Figure 8D) that allows Pro185 to more strongly
associate with Met44. This set of localized rearrangements in
KIR2DL1 is likely essential for its stable binding to HLA class I.
DISCUSSION

The general configuration of KIR gene-content haplotypes was
first described two decades ago, when it was observed that four
Frontiers in Immunology | www.frontiersin.org 7
framework genes separate two distinct sub-clusters of genes (7, 24,
62, 78, 79). KIR3DL3 and KIR3DP1 were seen to delimit the
centromeric region, while KIR2DL4 and KIR3DL2 delimit the
telomeric region of the KIR gene family. The other two genes that
are present inmostKIR haplotypes areKIR2DL23 andKIR3DL1S1
(6). Although deletions and duplications of these genes have been
previously reported (15–17, 80–82), technical limitations have
precluded direct copy number determination of all KIR in large-
scale population studies. We show here that large structural
deletions and duplications involving the framework genes are
relatively frequent in European-descendant individuals. For
instance, more than 6% of individuals carry a deletion or
duplication of KIR2DL4. Similar to haplotype variants described
in the literature (13, 51, 52), all gene-content KIR haplotypes
lacking KIR2DL4 also lacked KIR3DL1S1 (tB02 and tB03). These
haplotypes have been described for other European-Americans
(52), while an extensive study of Europeans from Germany did
not seek to analyze novel gene-content haplotypes (83).
Observation of KIR2DL4~KIR3DL1S1 deletions at high-
frequencies in Africans (18, 25) raises the possibility that these
variant KIR haplotypes originated prior to the modern human
FIGURE 6 | Some alleles are associated with specific KIR haplotypes. Alleles associated with specific haplotypes are listed inside each box. Underline marks alleles
exclusively present in the specific haplotype. The other alleles were differentially associated with particular haplotypes, but not exclusively (>95% of the observations).
For haplotype new2, please see Figure 2.
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migration out of Africa, and that they might also be present in
most worldwide populations.

Interestingly, haplotypes carrying KIR2DL4 duplications also have
duplications of KIR3DL1S1 and KIR3DP1. Based on our observations,
including the fact that cB04~tB03 are always in phase, we propose that a
single deletion of KIR2DS3*00103~KIR2DP1~KIR2DL1*00401~
KIR3DP1~KIR2DL4*00501~KIR3DS1*01301~KIR2DL5A*00501 from
the haplotype cB01~tB01 originated the cB04~tB03 haplotype. This
seven-locus fragment was possibly inserted into cA01~tA01, which
would explain the novel full-length haplotype that we identified in
multiple individuals. The large cohort that we analyzed allowed us to
phase the alleles of the seven-locus indel at high-resolution, providing a
unique opportunity to infer the origin of these haplotypic variants.

Previous studies described KIR haplotypes at lower genotyping
resolution and in smaller sample sizes. For example, Vierra-Green
et al. (52) described KIR haplotypes at 3-digit resolution in 506
Frontiers in Immunology | www.frontiersin.org 8
Euro-Americans while Hou et al. (20) analyzed most KIR genes at
higher resolution but in a small cohort. Here, we present the first
study to show 5-digit allelic haplotypes of all KIR genes for a large
sample of the European-descent U.S population. Notably, the
most common centromeric haplotype in our study cohort,
KIR3DL3*00901~ KIR2DL3*00101~KIR2DL1*00302 (f = 0.10), is
also the most common in four African populations (Datoonga, f =
0.11; Baka, f = 0.15; Dogon, f = 0.18; and Fulani, f = 0.14) (18). This
haplotype is likely the same reported as the most frequent (f =
0.23) in a smaller European American cohort that was not
analyzed for all KIR genes at high resolution (20). Interestingly,
two of the low-frequency telomeric haplotypes present in our
sample (tA02 and KIR3DL2) have not been reported in other
European populations, but were observed in African populations
from Mali (3DL2, f = 0.01), Democratic Republic of Congo (tA02,
f = 0.08) and Tanzania (3DL2, f = 0.01; tA02, f = 0.01) (18). A
limitation of determining haplotypes without family segregation
studies or confirmation by long-range sequencing is the
impossibility to identify unknown haplotype structures or to
precisely infer those haplotypes observed in lower frequencies.
For this reason, we were not able to confidently identify the less
common haplotypes, therefore, presenting data only for the most
common ones. However, our large population sample coupled
with the curated high-quality data allow us to identify the
haplotypic diversity that represent most of the KIR diversity
in Europeans.

Our well-powered analysis of LD across the KIR region shows
that some alleles are clearly associated with specific structural
haplotypes. Because KIR2DL4*00501 and KIR3DL2*00701 are
present in tB01 and are associated with other tB01-associated
alleles, such as KIR3DS1*01301, it was possible to verify that the
FIGURE 7 | Strong linkage disequilibrium (LD) between KIR alleles. Boxes represent the pairs of KIR alleles with the strongest LD in the present study. D’ values are
written inside of each box and color scale represent r2 values. Only pairs with r2 > 0.2, D’ > 0.7 were shown. The p-value of all pairs was < 10-5.
TABLE 1 | Large proportion of individuals carrying possible novel alleles.

Locus n f

KIR3DL1S1 154 7.23%
KIR3DL2 57 2.68%
KIR2DL5 56 2.63%
KIR2DL4 53 2.49%
KIR3DL3 48 2.25%
KIR2DL1 43 2.02%
KIR2DL23 31 1.46%
KIR2DS3 24 1.13%
KIR2DS5 10 0.47%
KIR2DS4 5 0.23%
n, absolute number individuals carrying potential at least one possible novel allele; f,
relative frequency of individuals carrying possible novel alleles.
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insertion of fragments containing KIR3DS1 occurred on the
cA01~tA01 haplotype. In some cases, specific alleles also
associate with uncommon haplotypes, which may be used as
markers for these unique haplotypes. These examples highlight
Frontiers in Immunology | www.frontiersin.org 9
how our detailed LD information for high-resolution KIR
sequencing constitutes a significant resource, yielding valuable
information that will facilitate the comprehension and
identification of KIR haplotypes in future studies.
TABLE 2 | Ten confirmed novel single nucleotide variants in KIR3DL1S1.

rsID n Exon Change Mature protein Amino acid Grantham

rs771871523 1 3 G>T 12 Ala>Ser 99
rs1272096635 1 4 C>A 107 Ala>Asp 126
rs769147743 1 4 T>C 127 Ile>Thr 89
rs200893904 1 4 C>T 171 Thr>Ile 89
rs1182774591 1 4 G>C 187 Ala>Pro 27
new SNP 1 5 G>C 249 Arg>Pro 103
rs754894112 12 5 C>T 266 synonymous
rs1462310393 2 5 C>A 275 synonymous
new SNP 1 7 C>T 319 His>Tyr 83
rs984592565 1 9 G>A 392 Arg>His 29
M
ay 2021 | Volume 12 | Art
These variants have been have been reported and assigned rsID in the dbSNP database (64), but not present in any KIR allele deposited in the IPD-KIR database release 2.9.0 (12),
therefore representing novel KIR alleles differing from others by only one nucleotide position. New SNP represent variants not previously assigned rsID in the dbSNP database.
TABLE 3 | Eight confirmed novel single nucleotide variants in KIR2DL1.

rsID n Exon Change Mature protein Amino acid Grantham

rs201225013 7 1 A>G signal peptide Met>Val 21
rs148427642 4 1 T>G signal peptide Cys>Gly 159
rs749640662 13 5 G>A 120 Ala>Thr 58
rs200879366 8 5 C>G 151 Pro>Arg 103
rs749653872 3 5 C>T 157 synonymous
rs570412759 16 7 G>A 245 Arg>Hist 29
rs201527316 1 9 G>A 296 Arg>Hist 29
rs778821930 2 9 C>A 309 synonymous
These variants have been have been reported and assigned rsID in the dbSNP database (64), but not present in any KIR allele deposited in the IPD-KIR database release 2.9.0 (12),
therefore representing novel KIR alleles differing from others by only one nucleotide position.
A B

DC

FIGURE 8 | Pro151Arg substitution in KIR2DL1 is predicted to affect the stability of its binding to HLA-C. The impact of the Pro151Arg mutation on the KIR2DL1
conformation and its HLA-C binding site was studied by simulating both the mutant and wildtype structures. (A). The angle between D1 and D2 domains (alpha) of
KIR2DL1 was computed in both allotypes as an indicator of conformational transition from the HLA-bound to a free state. (B) The alpha angle in the mutant is closer
to the HLA-bound state, whereas the transition to the unbound state occurs smoothly in the wildtype. (C) The interaction between Met44 and Pro185 was disrupted
upon angle change between D1 and D2 in the wildtype. (D) Arg151 forms an interaction with Asp135, which also leads to new interactions between Met136,
Pro185, and Met44, maintaining the open conformation of the mutant.
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With the development of robust high-resolution KIR typing
methods, the discovery of novel KIR variants has become more
achievable. However, short read misalignment is a major
confounding factor in discovering novel variants, particularly
those differing from known variants by only one nucleotide.
Because the identification of possible novel SNVs is overall not
likely in comparison to the possibility of being artifacts due to
misalignment of highly similar sequence reads, our pipeline is
initially set to exclude them from the primary analysis but flag
them for further detailed inspection. This is a limitation intrinsic
to short-sequence data analysis in the context of the KIR
sequence homology, and rare novel variants might be missed.
Aiming for an overview of the extent of this methodological
limitation, we applied Sanger method to re-sequence all possible
novel variants in two highly polymorphic genes, regardless of
their frequencies. Although we confirmed approximately one-
third of the possible novel SNVs for KIR3DL1S1 and KIR2DL1,
most of these variants were observed in only one or a few
individuals. In other words, even though our pipeline can
possibly miss some of the novel variation, the new SNVs do
not represent significant overall distortions in our dataset. In fact,
our method has been proven to show an overall high
performance for determining accurate genotypes (median
96.5%), and only 1% to 3% of unresolved genotypes (50).

Low frequent variants may, however, be of particular interest
especially if they may cause impact on the receptors’ function. It
is remarkable that most confirmed novel variants cause moderate
to radical non-synonymous substitutions, ultimately leading to
functional protein variation. To provide new insights to the
functional significance of describing novel variants, we focused
on variant rs200879366*G, which was previously reported with a
frequency of 0.01 in the Finnish population (84) but had not
previously been associated with a specific KIR allele. Although
residue 151 is in the D2 domain it does not make direct contact
with the HLA-C ligand. Nevertheless, polymorphism at the
neighboring residue, position 154, has been implicated in
differential avidity for the HLA-C ligand (85). Our prediction
shows that Asp135, which is directly engaged in HLA binding,
forms a bond with Arg151, allowing us to speculate that
rs200879366*G may result in reduced binding to HLA. This
example demonstrates the likelihood that many other functional
variants will be identified as we interrogate KIR allelic diversity in
worldwide populations.

According to the recently updated IPD-KIR database (Release
2.10.0, 16 December 2020), the variant rs200879366*G marks
two unconfirmed alleles, KIR2DL1*044 and KIR2DL1*046,
corroborating our findings. These unconfirmed allele sequences
were freshly submitted by the same group that genotyped KIR in
over a million European samples from the DKMS donor registry
(86). Although a remarkable effort in its scale and importance to
the field, that study targeted specific exons of each KIR, resulting
in a 3-digit resolution genotyping with substantial ambiguities.
In contrast, our study sought to analyze all KIR exons and
introns of each gene (5-digit resolution). While smaller than
the DKMS study by orders of magnitude, our study is
nevertheless the largest sample to-date to comprehensively
Frontiers in Immunology | www.frontiersin.org 10
analyze all aspects of KIR variation at this resolution, including
copy number, allele-haplotype associations, pairwise LD, and
functional consequences of novel variation.

For decades, most KIR studies in populations were limited to
analyzing the presence and absence of genes (5, 7, 9, 62, 87–89).
The study of KIR gene content laid the basis of the field and
suggested that KIR diversity and plasticity were and may still be
ahead of our technical capabilities. Here, we aimed to set new
ground for exploring KIR diversity by providing the first large-
scale study to deeply analyze copy number variation and high-
resolution allelic variation of all genes in a large population
sample from the United States. Our results show a large
proportion of multi-locus deletions and duplications of genes
that were until recently considered rare, in addition to unusual
gene-content haplotypes and a high frequency of novel alleles.
We argue that as we continue to interrogate KIR at high-
resolution, we will continue to uncover more layers of this
region’s complexity, discovering frequent novel variants with
functional relevance that have been previously missed due to
technical limitations.
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