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Knowledge of glycogen synthase kinase 3b (GSK3b) activity and the molecules identified
that regulate its function in infections caused by pathogenic microorganisms is crucial to
understanding how the intensity of the inflammatory response can be controlled in the
course of infections. In recent years many reports have described small molecular weight
synthetic and natural compounds, proteins, and interference RNA with the potential to
regulate the GSK3b activity and reduce the deleterious effects of the inflammatory
response. Our goal in this review is to summarize the most recent advances on the role
of GSK3b in the inflammatory response caused by bacteria, bacterial virulence factors (i.e.
LPS and others), viruses, and parasites and how the regulation of its activity, mainly its
inhibition by different type of molecules, modulates the inflammation.
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INTRODUCTION

Glycogen synthase kinase 3 (GSK3) is an evolutionarily conserved eukaryotic Ser/Thr kinase that
regulates a broad range of substrates, which to date includes more than 100 proteins (1) with diverse
function such as receptors, structural proteins, signaling molecules, and transcriptional factors,
making GSK3 one of the most versatile kinases in the cell (2). This enzyme plays an important role
in glycogen metabolism, cell cycle control, apoptosis, embryonic development, cell differentiation,
cell motility, microtubule function, cell adhesion and inflammation (3, 4). The main isoforms of
GSK3, GSK3a and GSK3b (5), are encoded by two different genes gsk3a and gsk3b. The isoforms
share an identity of approximately 98% within their kinase domains and 100% similarity, being able
to phosphorylate the same substrates (2). GSK3b is activated by phosphorylation at Tyr216 and it is
inactivated by phosphorylation at Ser9. Given its involvement as repressors of several pathways such
as apoptosis, insulin, phosphoinositide 3-kinase (PI3K), wingless and int-1 (Wnt)/b-catenin,
hedgehog, and notch, this enzyme is involved in essentially every major process in the cell (3).
Besides, GSK3b regulates many components of the innate and adaptive immune systems due to the
modulation of a number of important transcription factors (6–8).
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GSK3b TRANSCRIPTIONALLY
REGULATES PRO- AND ANTI-
INFLAMMATORY RESPONSES

The toll-like receptor (TLR) family consists of more than 13
members. All of them detect distinct pathogen-associated
molecular patterns (PAMPs) derived from various microbial
pathogens, such as viruses, bacteria, protozoa and fungi. The
interaction of PAMPs with TLR culminates in the activation of
nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-kB) through the Toll/IL-1 receptor (TIR)-domain-containing
adaptors, myeloid differentiation primary response gene 88
(MyD88)- or TIR-domain-containing adapter-inducing interferon-
b (TRIF)-dependent pathway, which controls the expression of
inflammatory cytokine genes (9). The activated state of GSK3b
promotes the activation of NF-kB, leading to a proinflammatory
response; in contrast, activation of TLR2, 4, 5, 9 by the MyD88-
dependent signaling pathway promotes the Akt (PKB)-dependent
inactivation of GSK3b that leads to an anti-inflammatory response
by inactivating NF-kB and activating the cAMP-response element
binding protein (CREB), the activator protein 1 (AP-1), the signal-
transducer and activator of transcription 1-3 (STAT1-3), the nuclear
factor erythroid 2-related factor 2 (Nrf2), and b-catenin (6, 7, 10–13).
During viral infection, activation of GSK3b by TLR3/TRIF signaling
pathway controls the tumor necrosis factor (TNF) receptor
associated factor 6 (TRAF6)-mitogen-activated protein kinase
mitogen activated protein kinase kinase kinase (MAP3K7)-(TAK1)
and receptor-interacting serine/threonine-protein 1(RIP1)/NF-kB
axis to positively regulate pro-inflammatory cytokine production.
Activation of GSK3b also activates the TRAF3-TRAF family
member associated NFkB activator (TANK)-binding kinase 1
(TBK1)-interferon regulatory factor 3 (IRF3) axis to regulate IFN-
b production (7). However, overexpression of constitutive active
GSK3b results in the inhibition of NF-kB (14, 15) (Figure 1).

Activation of the canonical Wnt signaling pathway has
previously been shown to recruit Dishevelled (Dvl/Dsh) protein
and enhances activation of GSK3b, thus influencing b-catenin
degradation and toll-like receptor (TLR)/NF-kB signaling
activation (16, 17). Also, Wnt5a/receptor tyrosine kinase-like
orphan receptor 1 (ROR1)/Dvl2/Akt signaling activates NF-kB
promoting the secretion of the cytokines, Interleukin (IL) 6 (IL-6),
IL-11, and IL-18 (18). However, the regulatory effects of Wnt/b-
catenin signaling are controversial because they depend on
different contexts. For example, Wnt3a-frizzeled protein 1(Fzd1)
interaction induces b-catenin accumulation and suppresses TLR/
NFkB-dependent pro-inflammatory cytokine production (17).
Recently, it was demonstrated in primary monocytes stimulated
with lipopolysaccharide (LPS) and in a mice endotoxin model that
Wnt3a/Dvl3 signaling functions as a negative regulator of
TLR4-mediated inflammation through an increase of GSK3b
phosphorylation at Ser9, the accumulation of b-catenin, and a
subsequent suppression of NF-kB activity (10) (Figure 1).

TNF receptor (TNFR)-associated intracellular signaling has
been established as a pivotal activator of NF-kB and mitogen-
activated protein kinases (MAPK) pathways. In addition, TNF
signaling serves as negative regulator of noncanonical NF-kB
Frontiers in Immunology | www.frontiersin.org 2
and proinflammatory toll-like receptor (TLR) pathways (19).
TNF-induced signaling promotes nuclear accumulation of
GSK3b, which promotes anti-inflammatory response by
mediating sustained expression of the signaling inhibitor A20
and IkBa synthesis that rapidly terminates TLR4-induced
canonical NF-kB signaling, and by suppressing chromatin
remodeling (20) (Figure 1). Therefore, activation of TLRs,
Frizzleds, and TNFR may lead to the active and inactive state
of NF-kB, in the same way the active state of GSK3b leads to the
active and inactive state of NF-kB (Figure 1). All these different
and complex responses make it hard to predict the end response
of this transcriptional factor in the presence of an inflammatory
stimulus. This is an open question and an exciting area for
future research.

In order to update and discuss the most recent data published
on modulation of the inflammatory response by GSK3b we
searched for articles from 2012-2021 in the PubMed database
that contained one of the following combination of keywords:
GSK3beta inflammation bacterial infections (12 articles),
GSK3beta inflammation lipopolysaccharide (104 articles), GSK3beta
inflammation peptidoglycan (PGN) (6 articles), GSK3beta
inflammation virus infection (25 articles), GSK3beta inflammation
parasites infection (6 articles). In case of articles describing the role
of GSK3b on inflammation caused by viruses and parasites we
decided to include all articles published before and after 2012. Our
first selection criteria were mainly based on articles containing
original data obtained from cells or whole animal models infected
with pathogenic bacteria, viruses and parasites or stimulated with
purified PAMPs. Among these articles we only considered those
with measurements of inflammatory molecules [e.g. IL-12 subunit
p40 (IL-12p40), IL-1a/b, IL-6, tumor necrosis factor-a (TNF-a),
nitric oxide (NO)] and, in some cases, those containing
measurements of the anti-inflammatory molecules, such as IL-10.
We have also included articles in which inflammation was reduced
by modulation of GSK3b activity during infection with bacteria,
viruses and parasites or PAMPs stimulation. It is worth to mention
that this updated review does not include articles already cited in
our previous article on the topic (21).

GSK3b in the Inflammatory Response
Activated by Bacteria Infection and LPS
In an animal model of keratitis it was observed that infection of
corneal cells with Pseudomonas aeruginosa promoted GSK3b
activation by decreasing its phosphorylation at Ser9, while the
inhibition of GSK3b with SB216763, before P. aeruginosa
infection, reduced the cornea inflammation by reducing the
expression of IL-6 and IL-1b and by reducing the bacterial
load (22). The traditional method for identifying Escherichia
coli strains uses antibodies to test for surface antigens: The O-
polysaccharide antigens, a component of LPS, flagellar H-
antigens, and capsular K-antigens. There are currently ∼186
different E. coli O-groups and 53 H-types (23). Infection of
HAEC HA549 with Mycobacerium bovis Bacillus Calmette-
Guerin (BCG), a Gram-positive bacillus, or stimulation with
LPS from unspecified origin (UO) exhibited TLR2/6 signaling
activation and Wnt/b-catenin activity inhibition due to an
May 2021 | Volume 12 | Article 675751
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increase in Axin and GSK3b expression. This combined effect led
to a potent inflammatory response characterized by a robust
expression of NF-kB and over-regulation of IL-6, IL-1a, IL-2, IL-
8, and TNF-a (24). In MMC BV2 cell line activated by LPS (UO),
it was observed an important induction of nitric oxide synthase
(iNOS) protein expression and NO synthesis, which were
Frontiers in Immunology | www.frontiersin.org 3
reduced by LiCl and SB216763 (25). Moreover, based on the
rat septic myocardial injury model, it was found that LPS (UO)
induces GSK3b phosphorylation at its active site (Y216) and
upregulates FOXO3A level in primary cardiomyocytes. The
FOXO3A expression was significantly reduced by GSK3b
inhibitors. In vivo, GSK3b suppression consistently improved
FIGURE 1 | GSK3b transcriptionally regulates pro- and anti-inflammatory responses. (1). All TLR and TNFR1-associated intracellular signaling promote
transcriptional activation of NF-kB. (2a-c) Wnt3/5/Dvl2/Akt signaling also promotes activation of NF-kB. (3) The active state of phosphorylated GSK3b at Tyr216
(GSK3b pTyr216) promotes the activation of NF-kB and at the same time it promotes the inhibition of AP1, CREB, STAT1/3, Nrf2, and b-catenin, leading to
proinflammatory cytokines production. (4a, b) During viral infection, TLR3/TRIF/GSK3b signaling pathway positively regulates both pro-inflammatory cytokines and
IFN-b production through NF-kB and AP-1 activation and IRF3 activation, respectively. (5a, b) Activation of the canonical Wnt signaling pathway enhances activation
of GSK3b, thus influencing b-catenin degradation and NF-kB activation (6). Overexpression of GSK3b inhibits NF-kB transcriptional activity. (7) Upon the activation of
TLR (2, 4, 5, or 9)/MyD88/PI3K/Akt signaling, GSK3b is inhibited by phosphorylation at Ser9 (pSer9), leading to an anti-inflammatory response. GSK3b is also
phosphoinhibited by S6K, PKA/C, and Dvl3 proteins. (8) TNF induces an increase in the nuclear expression of GSK3b and GSK3b promotes anti-inflammatory
responses by mediating expression of the signaling inhibitors that terminate TLR4-induced NF-kB signaling, and by suppressing chromatin remodeling. Lines in red
denote a proinflammatory response, while lines in blue denote an anti-inflammatory response. AP-1, activator protein 1; IRF3, interferon regulatory factor 3; CREB,
cAMP-response element binding protein; NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cells; Nrf2, nuclear factor erythroid 2-related factor 2;
PI3K, phosphoinositide 3-kinase; PKA/C, protein kinase A/C; PKB, protein kinase B, also known as Akt; STAT1-3, signal transducers and activators of transcription
1-3; S6K, ribosomal protein 6 kinase; TLR2, 4, 5, 9, Toll-like receptor 2, 4, 5 and 9; TNFR, tumor necrosis factor receptor; Wnt5, wingless-related integration site
member 5:: dishevelled segment polarity protein 1, 2 and 3 (Dvl1/2/3). Lipoproteins (TLR2 ligand), LPS (TLR4 ligand), flagellin (TLR5 ligand), bacterial CpG DNA
(TLR9 ligand) and viral double-stranded RNA (TLR3 ligand).
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cardiac function and relieved heart injury induced by LPS. In
addition, the increase in inflammatory cytokines IL6, IL1b and
TNFa in LPS-induced model was also blocked by inhibition of
GSK3b, which curbed both ERK and NF-kB pathways, and
suppressed cardiomyocyte apoptosis via activating the AMP-
activated protein kinase (AMPK) (26). Long term exposure of
male mice C57BL/6 to E. coli O26:B6 LPS in the neonatal period
showed memory impairment and increased levels of TNFa and
IL-1b as well as increased expression of GSK3b and Tau proteins
in the hippocampus and cortex (27) (Table 1).

In contrast, human stem cells from the apical papilla (SCAP)
stimulated with LPS from Porphyromonas gingivalis, a Gram-
negative coccobacillus, showed an increase in phosphorylated
GSK3b at Ser9 (phospho-GSK3b-Ser9), a residue recognized
to inhibit the catalytic activity of the enzyme when it is
phosphorylated, that resulted in the expression of IL-1b and TNF-
a (28). LPS (UO) triggered TLR4/PI3K/Akt signaling pathway that
resulted in phospho-GSK3b-Ser9 in MCF7 and MDA-MB-231
breast cancer cell lines. In addition, LPS promoted NF-kB p65 and
p50 subunits nuclear translocation, suggesting an increase in the pro-
inflammatory response (29). Also, a study in mice macrophages
demonstrated that intracellular osteopontin, an inflammatory
cytokine, negatively regulated the inflammatory response caused
by LPS from E. coli O111:B4 via inhibition of GSK3b
phosphorylation at Ser9 and activation of 4EBP1phosphorylation
at Thr37/46 (30) (Table 1).

It is important to note that the source of LPS used in some
studies previously described was not specified. Probably, the LPS
used come from different E. coli serotypes having different lipid
A- or O-antigens. Therefore, we speculate that opposing
inflammatory response observed when GSK3b is inhibited by
phosphorylation at Ser9 may depend on the type of cell
stimulated and/or the origin and composition of LPS,
specifically the type of lipid A and/or O-antigen components.

GSK3b in the Inflammatory Response
Activated by Viruses
The transcription factor that binds to the purine-rich (PU)-box
(PU.1) is a member of the E-twenty-six (ETS) family expressed
exclusively in B lymphocytes, macrophages, and all hematopoietic
lineages, except T-cell lines and mature T-lymphocytes (36).
Interaction of the regulatory protein p30 from HTLV-I with
PU.1 inhibited its DNA binding and transcription activity in
THP-1 monocytes. This gave rise to a down-regulation of TLR4
number, an increase in phospho-GSK3b-Ser9, and a reduction of
the pro-inflammatory cytokines TNF-a and IL-8, and monocyte
chemoattractant protein-1 (MCP-1). HTLV-I p30 also stimulated
the release of IL-10, an anti-inflammatory cytokine, after THP-1
monocytes down-regulation of TLR4 (31) (Table 1).

Infection of triple-transgenic mouse brain model 3xTg-AD
with MHV caused a decrease in phospho-GSK3b-Ser9 that
correlated with a strong increase in GSK3b activity, an increase
in the number of cells expressing the major histocompatibility
complex II (MHCII+), the cluster of differentiation (CD) 4 (CD4+),
and 8 (CD8+), and an increase in the pro-inflammatory cytokines
TNF-a, IL-1b, and IL-6 (32). The same pro-inflammatory
Frontiers in Immunology | www.frontiersin.org 4
response was observed when mice 3xTg-AD were treated with
LPS from E. coli O55:B5. Altogether, these data suggest that viral-
or bacterial-mediated infections trigger central nervous system
inflammation that in turn may play a comorbidity factor for
Alzheimer’s disease.

In mouse ESC and EFC cell lines infected with SeV GSK3a
and GSK3b activated the antiviral innate immune response by
phosphorylation of the b-catenin phosphodegron motif, which
subsequently regulates interferon regulatory factor 3 (IRF3)-
DNA binding and interferon b (IFN-b) gene expression (33).
As GSK3b is considered a negative regulator of b-catenin, this
study sheds light to this apparent paradox by demonstrating a
different role of b-catenin phosphorylation by GSK3b in retinoic
acid-inducible gene 1-like receptor (RLR) signaling.
Furthermore, it also confirms that the GSK3b isoform activity
alone is not sufficient for the antiviral response (33) (Table 1).
Injection of GSK3b inhibitors in mice caused an in vivo increase
in CD8+ cytotoxic T lymphocyte (CTL) function. It was also
observed a clearance of MHV68 and LCMV clone 13 and
blocking of T cell exhaustion (37). This indicates that
beneficial effects of GSK3b inhibitors in viral infections could
be due to the activation of the immune system cells.

In humans, the aspartate transaminase (AST) and alanine
transaminase (ALT) are specific indicators of liver inflammation
and disease severity in a number of chronic liver diseases such as
alcoholic and non-alcoholic liver disease, autoimmune liver
disease and hepatitis infection (38). Interestingly, it was
concluded that HBV infection enhanced b-catenin expression
by activating the Akt/GSK3b signaling, which led to a marked
increase in phospho-GSK3b-Ser9. Moreover, serum b-catenin
levels correlated with elevated levels of ALT and AST but not
with viral load, supporting the notion that serum b-catenin may
be a useful tool for assessing HBV-related liver diseases (34)
(Table 1). It is likely that during viral infection the inhibited or
activated state of GSK3b may promote inflammation, a similar
situation to those observed in bacterial infections.

GSK3b in the Inflammatory Response
Activated by Parasites
Leishmania spp. is a parasite injected in the human blood as
promastigotes by an insect that are phagocytized by
macrophages (39). Studies in RAW264.7 murine macrophages
and bone marrow-derived monocytes (BMDM) from mice
infected with Leishmania donovani have demonstrated that
GSK3b is phosphorylated and inhibited by Akt. As a
consequence, GSK3b is no longer able to phosphorylates b-
catenin and regulates the activation of forkhead box protein O1
(FOXO-1), a pro-apoptotic transcriptional regulator limiting
both proinflammatory response and macrophage apoptosis.
Macrophages transfected with a constitutively active GSK3b
mutant and infected with L. donovani showed a decrease in
parasite survival, reduction of IL-10 expression, and stimulation
of IL-12 production. Collectively, these findings revealed that the
intra-macrophage survival and multiplication of L. donovani is
the result of host cell apoptosis and immune response inhibition
(35) (Table 1). A similar situation, in which the inflammatory
May 2021 | Volume 12 | Article 675751
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response is reduced by the GSK3b inhibited state was found in a
rat sepsis model induced by either intravenous E. coli LPS or LPS
plus Staphylococcus aureus peptidoglycan (PGN) (40, 41), when
macrophages were stimulated with TLR2, 4, 5, 9 microbial
agonists (12) and in other cellular types stimulated with PAMP
or infected with bacteria (21). According to these published
reports there still remain many open questions and it is evident
that more studies are necessary to get a deeper insight on the
function of GSK3b in the inflammatory response during
parasite infection.
STRATEGIES TO INHIBIT THE
INFLAMMATORY RESPONSE BY
GSK3b INHIBITION

The GSK3b inhibitors so far designed for the treatment of
infectious and non-infectious diseases such as diabetes, cancer,
and neurodegenerative disorders have not been fully successful
mainly because GSK3b is embedded in multi-protein complexes,
which makes the access of inhibitory compounds difficult.
Another problem concerns the almost structurally identical
active sites of GSK3a and GSK3b. The lack of selectivity of the
organic compounds designed against both GSK3 isoforms have
excluded a range of promising GSK3 inhibitors from their
journey into clinical trial phases (42). Nevertheless, a broad
spectrum of GSK3b inhibitors as well as other inhibitors have
been reported to inhibit GSK3b and inflammation during
infection with bacteria, viruses and parasites as well as LPS and
PGN cell stimulation. These inhibitors are classified within the
following categories.
ATP-Competitive and ATP-Noncompetitive
Inhibitors of GSK3b
Among many competitive inhibitors against GSK3 (42),
SB216763 is a potent, selective, and ATP-competitive GSK3a/b
inhibitor with an IC50 of 34.3 nM for both isoforms (43). In a
murine model of periodontal bone loss infected with
Porphyromonas gingivalis and an in vitro study in MOLC
MC3T3-E1 treated with LPS from P. gingivalis the inhibition
of GSK3b with SB216763 before infection or LPS stimulation,
induced the inhibition of the pro inflammatory cytokines IL-
12p40, TNF-a, IL-1b, IL-6, and IL-17 expression (44, 45) (Table
S1). Interestingly, in mice treated with LPS from E. coli the
compound SB216763 attenuated the NF-kB-mediated
expression of IL-6 but not TNF-a (46). Moreover, in a murine
acute liver failure (ALF) model induced by D-Galactosamine (D-
GalN)/LPS (UO) the inhibition of GSK3b by SB216763 resulted
in downregulation of TNF-a, IL-1b, and IL-12p40 expression
(47, 48) (Table S1).

The small molecule BIO is a highly potent, selective, and
reversible ATP-competitive inhibitor of GSK3a/b with IC50

values around 5 nM. BIO maintains self-renewal in human
and mouse ESC, regulates cell mass proliferation, and keeps
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the undifferentiated state of pancreatic MSC (49). Inhibition of
GSK3a/b activity with SB216763 or BIO caused a delay in IkBa
degradation and diminished the expression of TNFa in LPS
(UO) stimulated neutrophils and macrophages. In vivo
inhibition of GSK3a/b with SB216763 or BIO induced a
decrease in the severity of LPS-induced lung injury as assessed
by development of pulmonary edema, production of TNFa and
macrophage inflammatory protein 2 (MIP-2), and release of the
alarmins high-mobility group protein 1 (HMGB1) and histone
H3 in lungs (50). In the context of viral infection, human hepatic
CSCs (Huh7, JFH-1-Huh7, Huh7.5, and MH14C) treated with
BIO and infected with HCV suffered an impairment of IFN
signaling via inhibition of signal transducer and activator of
transcription 1 (STAT1) phosphorylation and degradation (51).
Also, a BIO analog 6BIGOE inhibited LPS (UO)-induced release
of the pro inflammatory cytokines IL-1b, IL-6, and TNF-a,
chemokine IL-8, and prostaglandin (PG) in human primary
monocytes while increasing b-catenin and IL-10 levels via
intracellular inhibition of GSK3 (52) (Table S1).

Compound CHIR99021 is another cell-permeable, ATP-
competitive inhibitor of GSK3 with IC50 values of 10 nM and
6.7 nM for GSK3a and GSK3b, respectively (53). CHIR99021 or
SB216763 strongly reduced gene expression and secretion of the
pro inflammatory cytokines TNF-a, IL-1b and IL-6, the chemokines
IL-8 and MCP-1, the intercellular adhesion molecule 1 (ICAM-1),
and the vascular cell adhesion molecule 1 (VCAM-1) in adipose
tissue and skeletal muscle from women with gestational diabetes
stimulated with LPS from E. coli 026:B6 (54) (Table S1). In rats, the
non-ATP competitive inhibitor thiadiazolidinone 8 (TDZD-8) or
insulin treatment similarly reduced the plasma level of IL-1b and the
organ injury/dysfunction caused by LPS from E. coli (O127:B8) plus
PGN from S. aureus administration (55). Others non-ATP
competitive inhibitors of GSK3b such as benzothiazepinones
derivatives 3j and 6j highly attenuate in vivo the LPS (E. coli
O55:B5)-induced acute lung injury (ALI) and diminish
inflammation response in mice by inhibiting the IL-1b and IL-6
expression (56). Data from this study indicate that 3j and 6j might
be potential candidates for further development of inflammation
pharmacotherapy in LPS-induced ALI (Table S1).
Inhibition of the Inflammatory Response
by Molecules that Induce Inhibition of
GSK3b Activity by Phosphorylation
Plant Bioactive Compounds
Crude methanolic extracts (CME) from Gleichenia truncata used
in malarial and melioidosis infection models showed anti-
malarial and anti-inflammatory effects that were mediated in
part by increased GSK3b phosphorylation at Ser9 (57). Apigenin
is one of the most widespread flavonoids in plants (58). Apigenin
from Matricaria chamomilla suppressed LPS (UO)-induced
TNF-a, IL-1b, and IL-6 production in BV2 microglia via
activating GSK3b/Nrf2 signaling pathway and suppressing
NFkB activation (59). Also, Gastrodin, a natural phenol from
Gastrodia elata BI, mediated anti-inflammatory and anti-
proliferation effects in LPS (E coli O111:B4)-stimulated BV-2 or
Frontiers in Immunology | www.frontiersin.org 6
in primary microglia by modulating the Wnt/GSK3b/b-catenin
signaling pathway (60). Phytochemicals such as ISO from Inula
helenium, trigonoreidon B from Rigonostemon reidioides, betulin
from the bark of birch trees, and xanthohumol from Humululus
lupulus were able to induce inhibition of the inflammatory
response by phospho-inhibition of GSK3b in BV2 and Raw
264.7 cells, and mice lung, respectively, treated with LPS from E.
coli O55:B5 or LPS (UO) (61, 62–65). The phytopigments
curcumin and anthocyanins exhibited anti-inflammatory activity
in mice infected with the protozoan parasite Plasmodium berghei
and also decreased the inflammatory response induced by LPS
(UO) stimulation through an increase in phospho-GSK3b-Ser9
(66, 67) (Table S1).
Proteins
Administration of the bioactive protein EPO to mice treated with
LPS (UO) inhibited GSK3b and NF-kB activity, caused the
reduction of the inflammatory cytokine IL-1b, and enhanced
the formation of NO, which in turn caused local vasodilation,
inhibited adhesion of platelets and neutrophils, and regulated
angiogenesis (68, 69). Inhibition of GSK3b by recombinant
human vaspin in HPMEC stimulated with E. coli LPS 0111:B4
promoted the reduction of mRNA expression levels of TNF-a,
IL-6, VCAM, and E-selectin. In addition, mice subjected to
systemic administration of adenoviral vector expressing vaspin
were protected against LPS-induced acute respiratory distress
syndrome by alleviating the pulmonary inflammatory response
and pulmonary endothelial barrier dysfunction, which was
accompanied by activation of the Akt/GSK3b pathway, leading
to the phospho-inactivation of GSK3b (70) (Table S1).

On the other hand, absence of active GSK3b and reduction of
inflammation was observed in the myocardium of Tg mice
overexpressing heat Shock 70 kDa protein 12B protein
(HSPA12B) that were treated with LPS from E. coli O111:B4
(71). By manipulating the triggering receptor expressed on
myeloid cells 2 (TREM2) levels with a lentiviral-mediated
strategy, it was demonstrated in microglia that TREM2-
overexpression following LPS (UO) stimulation led to a markedly
reduction in GSK3b activity and tau hyperphosphorylation via
suppression of the inflammatory response (72). In a mouse model
of LPS from E. coli O55:B55-induced neuroinflammation, both
gene deletion and pharmacological inhibition of the calcium-
activated potassium channel KCa3.1, which is active in the
phenotypic switch that occurs during astrogliosis in Alzheimer’s
disease and ischemic stroke decreased CNS glia inflammation,
including reactive astrogliosis and microglial activation via the
Akt/GSK3b signaling pathway (73). Mice with deletion of ZNRF1
(another inflammation model) in their hematopoietic cells
displayed an increased resistance to endotoxic and polymicrobial
septic shock due to attenuated inflammation via the Akt–GSK3b
pathway (74). On the other hand, Syk protein deficiency in MDC
resulted in the suppression of LPS (E. coliO111:B4)-induced TNFa
and IL-6 but enhancement of IFNb and IL-10 due to GSK3b
inactivation (75) (Table S1).

Interestingly, the rLrp ofMycobacterium tuberculosis inhibited
proinflammatory cytokine production and downregulated APC
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function in mouse macrophages via a TLR2-mediated PI3K/Akt
pathway activation-dependent mechanism (76). Also it was
identified that the protein GRA18 from Toxoplasma gondii, once
released in Raw 264.7 macrophages cytoplasm, induced b-catenin
up-regulation and the expression of a specific set of genes that are
commonly associated with an anti-inflammatory response
mediated by the chemokine C-C motif (CC) ligand(L)-17 (CCL-
17) and CCL-22 by interacting with GSK3b/PP2A-B56 (77)
(Table S1).
Lipids and Lipid Derivatives
The a-lipoic acid, the RVD1/2 resolvins, and the maresin1
(MaR1) inhibit upregulation of VCAM-1, ICAM-1, iNOS,
TNF-a, IL-1b, and IL-8 in LPS (E. coli O111:B4)-treated mice
and LPS (E. coli O111:B4)-stimulated-BV-2 microglial cells, and
primary human monocytes through a PI3K/Akt-dependent
mechanism (78–80). Moreover, neutrophil LPC suppressed
activation of NF-kB, leading to a decrease in the secretion of
pro-inflammatory cytokines TNFa and IL-6, and an increased
secretion of anti-inflammatory cytokine IL-10 through GSK3b
phosphorylation during M. tuberculosis infection in mouse
macrophages (81) (Table S1).
Compounds Designed to Selectively Inhibit Proteins
Structurally Unrelated to GSK3b
Reduction of inflammatory markers has also been observed by
compounds designed to selectively inhibit proteins structurally
unrelated to GSK3b in cells stimulated with LPS from E. coliO111:
B4, O55:B5, and LPS (UO). Among these types of compounds, it is
worthmentioning the cell permeable small molecule AMBMP that
is a recognized canonical Wnt/b-catenin activator, the g-secretase
and notch inhibitor DAPT, and the novel benzoxazole derivative
K313 with immunosuppressive activity toward T cell proliferation.
They all inhibit the activity of GSK3b by increasing the relative
abundance of phospho-GSK3b-Ser9 (82–84). (Table S1),
suggesting that these molecules may be used as effective GSK3b
inhibitors of LPS-induced inflammation.

There are several FDA-approved compounds that indirectly
modulate the inflammatory response in cell cultures stimulated
with LPS from E. coli (UO) or PGN from S. aureus by increasing
the relative abundance of phospho-GSK3b-Ser9. Some of these
compounds are: S632A3, a glutarimide antibiotic; fluoxetine, an
anti-depressive drug that selectively inhibits the serotonin
reuptake; propofol, an enhancer of anesthesia used in surgical
trauma; ephedrine hydrochloride, a vasopressor used to treat
anesthesia-induced hypotension, sympathectomy or hypotension
conditions derived from overdose of antihypertensive drugs;
lithium, an element used to treat bipolar disorder that also acts
as a tumor suppressor, and dexmedetomidina, that has sedative
and analgesic properties (85–92) (Table S1). Interestingly, it was
demonstrated that progressively weighted ladder climbing as a
rodent model of resistance-exercise training (RT) ameliorated
LPS(UO)-induced cognitive impairment, a forerunner to
neuroinflammatory diseases. These improvements in cognitive
Frontiers in Immunology | www.frontiersin.org 7
function occurred in concert with RT-induced IGF-1R/Akt/
GSK3b signaling (93).
GSK3b-GENE KNOCKDOWNS BY siRNAs
AND miRNAs

Small interfering RNA (siRNA) and microRNA (miRNA) are
short duplex RNA molecules that exert gene silencing effects at
the post-transcriptional level by targeting specific messenger RNAs
(mRNAs). However, their mechanisms of action and clinical
applications are distinct. The major difference between siRNAs
andmiRNAs is that the former is highly specific to only one mRNA
target, whereas the latter have multiple targets. Clinical trials of
siRNA and miRNA-based drugs are already underway (94).

GSK3b-siRNA knockdown diminished expression of TNF-a
in LPS(UO)-stimulated RAW 264.7 macrophages (50), inhibited
NF-kB activation, enhanced CREB activation in LPS(UO)-
stimulated acute monocytic leukemia THP-1 cells (95), and
diminished expression of IL-1b, IL-6, and TNF-a in WNV
infected HGC U251 cells (96). Silencing of phosphatase and
tensin homolog (PTEN) and GSK3b with miR-21 induced
macrophage efferocytosis and modulated LPS(UO)-induced
inflammatory response (97). Recently, it was also shown that
GSK3b-gene knockdown with miR-199b caused attenuation of
the inflammatory response in THP-1 monocytes treated with
LPS (E. coli O26:B6) (98) (Table S1). Furthermore, IL-12p40
expression was evaluated by siRNA-gene expression silencing of
GSK3a and GSK3b in BVE-E6E7 endothelial cells stimulated
with PGN from S. aureus. Interestingly, GSK3a-gene silencing
resulted in a marked increase in IL-12p40 while GSK3b-gene
silencing had an opposite effect (99) (Table S1). These data
indicate that regulation of the inflammatory response by GSK3a
or GSK3bmay depend on the spatio-temporal regulation of both
isoforms and the predominance of molecular mechanisms
controlling their activity in each type of cell.
STRATEGIES TO INHIBIT THE
INFLAMMATORY RESPONSE BY
GSK3b ACTIVATION

The phytochemicals salidroside and sappanone A induced
inhibition of inflammation in mice stimulated with LPS (UO)
through overexpression of GSK3b and reduction of the relative
abundance of phospho-GSK3b-Ser9, respectively (100, 101).
Isoproterenol inhibition of resistin or its siRNA-gene silencing
in PDLC stimulated with nicotine and LPS from P. gingivalis had
anti-inflammatory effects associated with activation of GSK3b
and inactivation of b-catenin (102). The lipid derivative Mar-1
relieved inflammation in PDLC stimulated with LPS from
P. gingivalis by GSK-3b activation and b-catenin expression
inhibition (103). Interestingly, Nrf2 knockdown in RAW264.7
along with LPS (UO) stimulation caused an increase in the
protein level of the glucose transporter type 4 and reduction of
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Akt and GSK3b phosphorylation. Nrf2 knockdown also induced
a high-level secretion of IL6 and IL10. These results demonstrate
that Nrf2 regulates inflammation and glucose metabolism
besides its classic function in redox regulation (104) (Table 2).
CONCLUSIONS

Data included in Table 1 show that LPS from P. gingivalis and
other type of LPS from different origin promoted opposing
inflammatory responses on different cell types (HAEC A-549,
MMC BV2, MCF7, MDA-MB-231, and Human SCAP) when
GSK3b activity was inhibited. This variability may depend on the
cell stimulated and/or the origin and composition of LPS used in
these studies, specifically the lipid A and O-antigen components.
The same phenotype was observed with viral stimuli. Human or
murine cells stimulated with the viral PAMP, p30 protein or
infected with viruses MHV or SeV, clearly shows that inhibition
of GSK3b suppressed the inflammation. In contrast, data from a
clinical study in humans infected with HBV indicate that
inhibition of GSK3b also promoted inflammation (Table 1 and
Figure 2). In regard to parasites, inhibition of GSK3b suppressed
the inflammatory response in murine cells infected with
Leishmania donovani (Table 1 and Figure 1). Further studies
with different parasites and cells will allow to draw solid
conclusions on the role of GSK3b in the inflammatory response.

Some of the studies included in Table S1 and Table 2 indicate
that stimulation of human adipose tissue and skeletal muscle,
RAW 264.7, and BV2 with LPS from E. coli serotype O55:B5 or
stimulation of HPEC, mouse macrophages, mice BMDM
RAW264.7, MDC, BV2, and primary human monocytes with
LPS from E. coli serotype O111:B4 elicited a pro inflammatory
response, which was suppressed through the inhibition of GSK3b
with different molecules. In contrast to LPS from E. coli serotype
055:B5 and 0111:B4, LPS from P. gingivalis induced a
proinflammatory response in human SCAP after inhibition of
GSK3b (Table 1). Accordingly, LPS from P. gingivalis elicited a
proinflammatory response in HPLC, which was suppressed
through the activation of GSK3b with MaR1, isoprotenerol or
resistin-siRNA (Table 2). These apparently contradictory results
indicate that inhibition of GSK3b may lead to inhibition or
activation of the inflammatory response as it is the case when
cells are stimulated with LPS from different sources (Figure 2).
Molecules with different structural nature were able to control
inflammation through GSK3b inhibition (Table S1). However,
we also observed that inflammation was inhibited by GSK3b
overexpression (i.e. salidroside and maresin-1) or by decreasing
the relative abundance of phospho-GSK3b-Ser9 (i.e. sappanone
A, isoprotenerol or resistin-siRNA) (Table 2). GSK3b signaling
promoted by infection, activated NF-kB-mediated expression of
proinflammatory molecules and inhibited the activity of b-
catenin, Nrf2, CREB, STAT1/3, and cJun-AP1, except in MCF7
and MDA-MB-231 stimulated with LPS (Tables 1, S1, 2 and
Figure 2). A related situation was found in human periodontal
ligament cells stimulated with LPS from P. gingivalis and
nicotine, and treated with isoprotenerol or resistin-siRNA. In
Frontiers in Immunology | www.frontiersin.org 8
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this work, activation of GSK3b suppressed the NF-kB-dependent
expression of proinflammatory molecules PGE2, NO, COX-2,
TNF-a, IL-1b, IL-6, IL-12, MMP-1, MMP-2, MMP-9 and
inhibited b-catenin activity Table 2.

Finally, data discussed in this review indicate that inhibition of
GSK3b can induce a proinflammatory or anti-inflammatory
response during infection, depending mainly on the microbial
stimulus. Also, reduction of the inflammatory response does not
always lead to GSK3b inhibition. Consequently, GSK3b should be
considered as a switch to modulate inflammation. This is important
when choosing the type of anti-inflammatory molecule required in
each particular case and provides the basis to design new inhibitors.
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Cytokines and chemokines
IFN1 a/b Interferon a/b
IL-1 a/b Interleukin-1 subunit a and b
IL-2 Interleukin-2
IL-6 Interleukin-6
IL-8 Interleukin-8
IL-10 Interleukin-10
IL-12p40 Interleukin-12 subunit p40
IL-17 Interleukin-17
TNF-a Tumor Necrosis Factor-a
Cell types
BMDM Bone marrow-derived macrophages
BVE-E6E7 Immortalized bovine endothelial cell line
CSC Cancer Stem Cells
EFC Embryonic fibroblast cells
ESC Embryonic stem cells
ETS Erythroblast transformation specific
HAEC A459 Human alveolar epithelial cells A459
HGC U251 Human glial cell line
HPMEC Human pulmonary microvascular endothelial cells
PDLC Human periodontal ligament cells
MCF7 Human mammary gland breast cells
MDA-MB-231 Human gland breast cells
MSC Mesenchymal stem cells
MDC BV2 Murine dendritic cells BV2
MMC Murine microglial cells
MOLC Murine osteoblastic-like cells
SCAP Stem cells from the apical papilla
THP-1 Human monocytes cell line
Viruses
HBV Human hepatitis B virus
HCV Human hepatitis C virus
HTLV-I Human T cell leukemia virus type I
LCMV Lymphocytic choriomeningitis virus
MHV68 Murine gammaherpesvirus 68
MHV Mouse hepatitis virus
SeV Murine respirovirus, formerly Sendai virus
SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2
Molecules that modulate
inflammation through GSK3b
regulation
AMBMP [2-Amino-4-(3,4-(methylenedioxy)benzylamino)-6-

(3-methoxyphenyl) pyrimidine]
Apigenin 4´,5,7-trihydroxyflavone
Betulin Lup-20 (28)-ene-3b, 28-diol
BIO 6-bromoindirubin-3´-oxime
BTZs 3j and 6j Benzothiazepinones derivates
6BIGOE 6-bromoindirubin-3&rsquo;-glycerol-oxime ether
CHIR99021 (6-(2-(4-(2,4-Dichlorophenyl)-5-(4-methyl-1H-

imidazol-2-yl)-pyrimidin-2-ylamino)ethyl-amino)-
nicotinonitrile)

DAPT [N-[(3,5- Difluorophenyl) acetyl]-L-alanyl-2-
phenylglycine-1,1-dimethylethyl ester]

Dexmedetomidine EPO
Erythropoietin Gastrodin from Gastrodia elata BI
Gleichenia truncata crude
methanolic extracts

GRA18

Toxoplasma dense granule
protein 18

HSPA12B

Heat shock protein family A
(Hsp70) member 12 B

ISO

11-deoxy-18a-glycyrrhetinic
acid

isoalantolactone

(Continued)
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K313 [1H-indole-2,3-dione 3-(1,3-benzoxazol-2-
y1hydrazone)]

KCa3.1 Calcium-activated potassium channel
LiCl Lithium chloride
LPC Lysophosphatidylcholine
MaR1 Macrophage-derived mediator of inflammation

maresin 1
Nrf2 knockdown Nuclear factor erythroid 2-related factor 2

knockdown
SiRNA Small interfering RNA
miRNA microRNA
rLrp Recombinant leucine-responsive regulatory

protein
RVD1/2 Resolvins D1 and D2
Salidroside (2-(4-Hydroxyphenyl)ethyl b-D-glucopyranoside
p-Hydroxyphenethyl glucopyranoside Rhodioloside
Rhodosin Tyrosol a-(b-D-glucopyranoside)
Sappanone A ((3E)-3-[(3,4-dihydroxyphenyl)methylidene]-7-

hydroxychromen-4-one)
SB216763 ((3-(2,4-Dichlorophenyl)-4-(1-methyl-1H-indol-3-

yl)-1H-pyrrole-2,5-dione)
Syk knockdown Spleen Tyrosine Kinase knockdown
TREM2 Triggering receptor expressed on myeloid cells 2
Xanthohumol ((E)-1-[2,4-Dihydroxy-6-methoxy-3-(3-methylbut-

2-enyl)phenyl]-3-(4-hydroxyphenyl)prop-2-en-1-
one)

ZNRF1 deletion mutant Zinc And Ring Finger 1 deletion mutant
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