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Background: Systemic inflammation in rheumatoid arthritis (RA) is associated with
metabolic changes. We used nuclear magnetic resonance (NMR) spectroscopy-based
metabolomics to assess the relationship between an objective measure of systemic
inflammation [C-reactive protein (CRP)] and both the serum and urinary metabolome in
patients with newly presenting RA.

Methods: Serum (n=126) and urine (Nn=83) samples were collected at initial presentation
from disease modifying anti-rheumatic drug naive RA patients for metabolomic profile
assessment using 1-dimensional "H-NMR spectroscopy. Metabolomics data were
analysed using partial least square regression (PLS-R) and orthogonal projections to
latent structure discriminant analysis (OPLS-DA) with cross validation.

Results: Using PLS-R analysis, a relationship between the level of inflammation, as
assessed by CRP, and the serum (p=0.001) and urinary (p<0.001) metabolome was
detectable. Likewise, following categorisation of CRP into tertiles, patients in the lowest
CRP tertile and the highest CRP tertile were statistically discriminated using OPLS-DA
analysis of both serum (p=0.033) and urinary (p<0.001) metabolome. The most highly
weighted metabolites for these models included glucose, amino acids, lactate, and citrate.
These findings suggest increased glycolysis, perturbation in the citrate cycle, oxidative
stress, protein catabolism and increased urea cycle activity are key characteristics of
newly presenting RA patients with elevated CRP.

Conclusions: This study consolidates our understanding of a previously identified
relationship between serum metabolite profile and inflammation and provides novel
evidence that there is a relationship between urinary metabolite profile and inflammation
as measured by CRP. Identification of these metabolic perturbations provides insights into
the pathogenesis of RA and may help in the identification of therapeutic targets.

Keywords: inflammation, metabolism, rheumatoid arthritis, glycolysis, citrate cycle, urea cycle, oxidative
stress, cachexia
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INTRODUCTION

RA is a systemic inflammatory disease characterised by synovial
inflammation and bone damage. Early RA appears to be a unique
entity, with evidence that it is phenotypically distinct from
established RA (1). Rapid initiation and escalation of treatment
in early RA is associated with improved outcomes (2-4) and as
such, the early stages of RA represent a unique “window of
opportunity” (5). Systemic inflammation associated with early
RA is responsible for significant extra-articular morbidity with
an increased prevalence of stroke, heart failure (6), chronic
obstructive pulmonary disease, asthma and interstitial lung
disease (7) amongst early RA patients compared to matched
controls. Furthermore, there is evidence of systemic changes in
metabolism several years prior to onset of overt disease, which
may be driven by early immune processes (8). Increased
understanding of the relationship between inflammation and
metabolism in early RA is thus important, in particular as
therapies which target metabolic pathways emerge (9-11).

In RA, there is evidence of systemic immune activation and
immune cell infiltration into synovium (12, 13). Synovial fibroblasts
take on an aggressive inflammatory, matrix regulatory, and invasive
phenotype. These fibroblasts, together with increased chondrocyte
catabolism and synovial osteoclastogenesis, promote articular
destruction (14, 15). In addition, inadequate lymphangiogenesis,
which limits cell egress, together with local fibroblast activation,
promotes the establishment of synovial inflammation. Immune cells
involved in this inflammation are metabolically active (16). The
resulting metabolic perturbations can lead to downstream
effects (17).

Several metabolomics analyses of the serum and urine of
patients with rheumatic diseases have been performed to date. A
study of early inflammatory arthritis patients with a symptom
duration of <3 months showed a relationship between CRP and
the serum metabolome as assessed using NMR metabolomics
with lactate and lipids as discriminators of inflammation (18).
PLS-R models showed a relationship between the serum
metabolome and CRP in two separate groups of early arthritis
patients (r*> = 0.671, p<0.001 and r* = 0.4157, p<0.001).
Metabolomics has also been used to assess the relationship
between low-grade inflammation and both the serum and the
urinary metabolome in healthy individuals (19). Inflammation as
measured by hsCRP was associated with multiple changes in
metabolomes associated with oxidative stress and the urea cycle
(19). Although urinary metabolomics has been shown to
distinguish elevated disease activity in those with rheumatic
diseases (20) and to predict responses to anti-TNF therapy in
RA patients (21), urinary metabolomics has not been used to study
the effect of inflammation as measured by CRP on metabolism in
early RA before. However, findings from the serum metabolome
are typically applicable to the urinary metabolome for instance the
prediction of response to anti-TNF therapy in RA patients (21-23)
and distinguishing healthy individuals with elevated inflammatory
markers (19). Nevertheless, the relationship between the urinary
metabolome and inflammation in patients with RA remains an
understudied area.

We hypothesized that a metabolomics approach using
serum, filtered to remove confounding high molecular weight
species, and urine could identify a relationship between
metabolic dysfunction and inflammation in patients with
newly presenting RA.

MATERIAL AND METHODS

Patients

Patients were recruited from the Birmingham Early Arthritis
Cohort (BEACON). BEACON includes patients presenting with
DMARD naive inflammatory arthritis; details have been
reported previously (16). This study focuses on patients with
RA [classified using established criteria (24, 25)] recruited
between January 2013 and September 2015. Patients with an
unclassified arthritis (UA), recruited to BEACON during the
same time period, were used as a non-RA inflammatory arthritis
control group. All samples were defrosted and analysed by
NMR spectroscopy at the same time, minimising magnetic
field drift. Collectively, these considerations allow mitigation
from some confounding factors while allowing assessment
between systemic inflammation and metabolome in RA and a
control inflammatory arthritis population.

The study was approved by the Black Country Research Ethics
Committee and all patients gave written informed consent. The
study was conducted over two sites: City Hospital, Sandwell and
West Birmingham NHS Trust, Birmingham and Queen Elizabeth
Hospital Birmingham, University Hospitals Birmingham NHS
Foundation Trust. The following data were collected at baseline:
age, gender, symptom duration, current medications, tender (26)
and swollen (27) joint counts. Blood and urine were collected at
presentation and processed as described below.

Serum Samples

Samples of sera (RA; n=126 and UA; n=41) and urine (RA; n=83
and UA; n=25) were collected from patients at baseline, prior to
initiating DMARD therapy. Blood was collected at presentation
in vacutainer tubes containing clotting accelerator (Greiner Bio-
one) and subsequently centrifuged at 600g for 10 minutes. Serum
was removed and stored at minus 80°C until analysis. Serum
samples were thawed at 4°C and centrifuged at 15,000 at 4°C for 5
minutes. To remove proteins, 200l from the middle of the sample
was placed into a Nanosep® Omega 3000 Da (Pall Lifesciences,
UK) molecular weight cut-off (MWCO) and centrifuged at
10,000g at 4°C for 15 minutes. Immediately prior to use, to
remove the preservative glycerol, the filters were washed 6 times
in distilled water at 37°C by centrifugation at 3000g for 15 minutes
(28). The resulting filtrate was diluted in a 1 + 3 ratio with NMR
buffer containing 1.6mM Difluorotrimethylsilylmethylphosphonic
acid (DFTMP, Manchester Organics, Manchester, UK), 400mM
phosphate, 40% D,0, 0.4% azide and 2mM 3-(Trimethylsilyl)-1-
propanesulfonic acid-d6 sodium salt (DSS-d6, all from Merck,
Southampton, UK). An aliquot (60ul) was removed to glass
champagne vials (Cole-Parmer, Saint Neots, UK) and stored
at -80°C until analysis.
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Urine Samples

Mid-stream urine samples were collected from patients at
presentation to the clinic, centrifuged at 600g for 10 minutes
and stored at minus 80°C. Samples were prepared using a
standard protocol that has been used in other studies of urine
(29). After thawing, urine samples (1ml) at 4°C were centrifuged
at 15,000g for 5 minutes. A cleared sample (0.5ml) was mixed at
1:3 ratio with the 4x NMR buffer as for the serum above. The pH
was adjusted (twice over a period of 30minutes) to pH 7.0. The
samples were centrifuged at 15000g for 5 minutes and a sample
(60ul) was removed to glass champagne vial and frozen at -80°C
prior to NMR spectroscopy.

NMR Spectroscopy

Samples were defrosted and transferred to 1.7mm NMR tubes
(Bruker Biospin, Coventry, UK) using an Anachem Autosampler.
After capping the tubes and wiping with dust-free paper, one-
dimensional 'H spectra were acquired at 300K using a standard
1D-"H-Nuclear Overhauser Effect spectroscopy (NOESY) pulse
sequence with water saturation using pre-sat in a Bruker
AVANCE II 600 MHz NMR spectrometer (Bruker Corp., USA)
equipped with a 1.7 mm cryoprobe. Spectral width was set to 12
ppm and the scans were repeated 128 times. Samples were loaded
into racks and held at 6°C in the SampleJet sample handing device
until processed. Two-dimensional 1H J-resolved (JRES) spectra
were also acquired to aid metabolite identification (30).

Spectra were read and processed with Metabolab software
(Version 2018.x; Birmingham, UK) (31). Each spectrum was
phased according to the DSS-d6 peak, then aligned and
corrected for baseline offset. The spectra were truncated to a
range of 0.6 - 8.6 ppm (parts per million) and the water peak
removed. Spectra were divided into chemical shift “bins” of 0.005
ppm and the spectral area of each bin integrated then scaled with
probabilistic quotient normalization (PQN) to account for
differences in sample dilutions (24) and normalised with a
generalised log transform (A = 1e*®) to equalize the weightings
of smaller and larger peaks. Data were then compiled into a matrix
where each row represented an individual sample before statistical
analysis. Binning of spectra was performed as opposed to
individual metabolite identification and quantification. This
approach allows multivariate analysis on the entirety of the
metabolomic data as opposed to on only the limited number of
metabolites that can be definitively identified from the NMR
spectra (25, 32).

Statistical Analyses

Principal Components Analysis

The data bins from groups of spectra were mean centred and
then assessed by PCA using Soft Independent Modeling of Class
Analogy (SIMCA) version 14 (Umetrics) (33). PCA is an
unsupervised multivariate mathematical analysis that extracts
components in order of decreasing variance from multivariate
datasets, enabling an understanding into the causes and effects
behind these relationships.

Supervised Multivariate Analysis: Orthogonal Partial
Least Square Discriminant Analysis (OPLS-DA) &
Partial Least Square Regression (PLS-R) Analysis
Whilst PCA describes the relationship between possibly correlated
variables in a single large multivariate matrix (matrix X) of data
using PCs, partial least square is a multivariate analysis which
attempts to describe the relationship between two different
matrices of data using a latent variable (LV) approach to
modelling the covariance in these two spaces. OPLS-DA was
used to perform supervised clustering of samples using SIMCA
version 14 (Umetrics) (33, 34). The OPLS-DA models were cross-
validated using Venetian blinds (34), a method which reassigns
randomly selected blocks of data to the OPLS-DA model to
determine the accuracy of the model in correctly assigning class
membership. The application of such methods to clinical studies is
well established and guards against over fitting the model (35).
A PLS-R finds a linear regression model by projecting a
predicted variable, which is created following application of an
algorithm using latent variables to describe the covariance between
the X and Y matrix, and the continuous variable in the Y matrix.
Data bins were also subjected to PLS-R using the PLS Toolbox
(version 5.8) (Eigenvector Research) in MatLab (release 2018b;
MathWorks). This method identifies which metabolites can
predict a continuous variable. This analysis yields an 1% a
measure of the cross-validated goodness-of-fit of the linear
regression, while permutation testing performed by multiple
analyses using random data subsets, was used to assess the
significance of this prediction. Models can be further optimised
using a forward selection approach, which identifies a proportion
of the metabolome that correlates with the continuous variable.

Identification of Metabolites & Pathway Analysis

Bins of interest, which may represent biomarkers, were
identified for each statistically significant analysis. Weightings
for each bin in PLS-R analysis models were assigned using
regression coefficients Potential biomarkers were identified using
+/- 2 standard deviations of the mean regression coefficient of the
entire dataset (36). NMR spectra were annotated using Chenomx
NMR suite (Chenomx, professional version 8.5) (37) programme.
The Human Metabolome Database version 4.0 (38) and published
lists of metabolites detectable by NMR spectroscopy of serum (25)
and urine (32) were also used for labelling spectra.

Functional interpretation of the biomarkers implicated by the
models was undertaken using MetaboAnalyst version 4 (39). A
combination of both enrichment analysis and pathway analysis
was used. Both analyses rely upon the identification of a metabolite
as a biomarker, however they do not account for the direction of
change of the metabolite. The enrichment analysis is an “over-
representation” analysis. This tests whether a group of compounds
involved in a pathway is enriched compared by random hits using
a reference metabolome (40), thus are represented more than
would be expected by chance. A hypergeometric test is used to
generate a p value, which represents the probability of observing at
least a specific number of metabolites from a certain metabolite set
in a compound list. Pathway analysis incorporates both over
representation analysis as discussed above and pathway
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topological analysis to determine which pathways are more likely
to be involved by considering the pathway structure.

RESULTS

The baseline characteristics of patients included in the serum and
urinary metabolomics analyses are shown in Table 1. PCA was
used to generate an unbiased overview to investigate differences
in metabolite profiles. OPLS-DA and PLS-R were used to
perform supervised multivariate analyses. For both the PCA
and OPLS-DA, a comparison was made between those
individuals with low and high CRP values comparing patients
in the lowest and highest CRP tertile groups. PLS-R analyses
included all patients.

Relationship Between Serum Metabolite
Profile and CRP

PCA showed no separation between patients in the lowest CRP
tertile and the highest CRP tertile groups (Figure 1A). However, a
supervised analysis using OPLS-DA showed a strong separation
with 1 + 1+0 LV (Figure 1B; p=0.033). To investigate this further,
the relationship between the serum metabolite profile and CRP
was assessed using the regression analysis PLS-R. Using all 590
bins, a PLS-R analysis of metabolite data (Figure 1C) showed a
statistically significant relationship between the serum metabolite
profile and CRP (r* = 0.29, 7 LV, p<0.001). Forward selection was
carried out to produce a model containing the top 36 NMR bins
(Figure 1D). This enhanced the relationship between metabolite

profile and CRP (r* = 0.551, 6 LV, p=0.001) compared to the
original PLS-R. Spectral fitting to identify metabolites was
performed using Chenomx (see Figure 2) and a published list of
metabolites (25, 32). Potential metabolites identified by this model
are shown in Table 2. Univariate analysis did not reveal a
relationship between the concentrations of the metabolites
identified in the bins with the three greatest regression
coefficients (see Table 2) and CRP, except for citrate
(Rg=-0.302, p<0.001).

Functional metabolomics analysis based on the biomarkers
identified by PLSR analysis showed alanine, aspartate and
glutamate metabolism, arginine and proline metabolism, pyruvate
metabolism and glycine, serine and threonine metabolism are
altered in the serum of RA patients with elevated CRP (Figure 3).
Over-representation analysis (Figure 4) in pathway-associated
metabolite sets indicated that amongst the multiple pathways
which were implicated, methylhistidine metabolism, the urea
cycle and the glucose alanine cycle were the most overrepresented
in the serum of patients with elevated CRP. These results suggested
that perturbed energy and amino acid metabolism in the serum are
key characteristics of RA patients with elevated CRP.

Relationship Between Urinary Metabolite
Profile and CRP

PCA was used to generate an unbiased overview to identify
differences between patients in the lowest CRP tertile and the
highest CRP tertile (Figure 5A). There was no discernible
separation between these groups. However, a supervised analysis
using OPLS-DA (Figure 5B) showed a strong separation with

TABLE 1 | Baseline characteristics of serum & urine metabolomics analysis of RA patients.

RA patients included in sera
metabolomics analysis (n = 126)

RA patients included in urinary
metabolomics analysis (n = 83)

Age, median (IQR) 55 (47-62) 48 (565-60)
years

Missing (%) 0 0
Sex, no. (%) females 88 (69.8) 55 (66.3)
Missing (%) 0 0
Symptom duration, 20.5 (11-47) 24 (12-45)
median (IQR) weeks

Missing (%) 0 0
CRP, median (IQR) 8 (3-16.3) 8 (3-16)
mg/L

Missing (%) 0 0
DAS28CRP (IQR) 5(4.3-5.8) 4.9 (4.2-5.7)
Missing (%) 2(1.6) 2 (2.4)
RF positive, no. (%) 76 (60.3) 51 (61.4)
Missing (%) 0 0
ACPA positive, no. 66 (52.4) 45 (54.2)
(%)

Missing (%) 0 0
NSAIDs, no. (%) 49 (38.9) 41 (49.4)
Missing (%) 0 0
Steroids, no. (%) 7 (5.6) 18 (21.7)
At baseline 3(2.4) 3(3.6)
Within last 3 months 4(3.2) 15 (18.1)
Missing (%) 0 0

UA patients included in sera
metabolomics analysis (n = 41)

UA patients included in urinary
metabolomics analysis (n = 25)

51 (42-60) 51 (38.5-60)
0 0
26 (63.4) 16 (64)
0 0
21 (12-42) 28 (14.5-50.5)
0 0
6 (3-21) 5(3-11.5)
0 0
3.4 (2.7-4.5) 3.3 (2.7-4.4)
0 0
7 (17.1) 7 (29)
0 0
12.4) 0()
0 0
22 (53.7) 11 (44)
0 0
13 (31.7) 14
2(4.8) 0(0)
11 (26.9) 14
0 0

RA, Rheumatoid arthritis; IQR, Interquartile range; CRP, C reactive protein; DAS28CRP, Disease activity score 28 using C reactive protein; RF, rheumatoid factor; ACPA, anti-citrullinated

protein antibodly.
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FIGURE 1 | Multivariate analysis of RA patients’ serum metabolite profile. For the PCA & OPLSDA, patients were split into tertiles according to CRP values, with
data shown for the highest and lowest tertile: (A) PCA plot of metabolic data derived from RA patients’ (n = 84) sera (green = CRP <5 and blue = CRP>13; 19 PC,
r? = 0.673) showing no separation between the two groups. (B) OPLS-DA plot of metabolic data derived from RA patients’ (n = 84) sera (green = CRP <5 and blue =
CRP>13; 1 + 1+0 LV, p value= 0.033) showing a strong separation between the two groups. PLS-R analysis showed a relationship between serum metabolite profile
and CRP. Using the full 590 serum metabolite binned data (n = 126) (C) there was a correlation between metabolite data and CRP on PLS-R analysis (* = 0.29, 7 LV,

p < 0.001). Using forward selection, 36 bins were identified which correlated with inflammation and a subsequent PLS-R analysis using these bins (D) showed a stronger
correlation between serum metabolite profile and CRP ( = 0.551, 6 LV, p = 0.001).

1+ 0+0 LV (p value<0.001). Using all 900 bins, PLS-R analysis
(Figure 5C) showed a correlation between urinary metabolite
profile and serum CRP (r* = 0.095, 1 LV, p=0.008). Using a
forward selection approach, a PLS-R using 144 urinary NMR bins

NN

3

1 0

FIGURE 2 | Spectral fitting to identify metabolites. NMR spectra were
annotated using Chenomx NMR suite (Chenomx, professional version 8.5).

(Figure 5D) produced the most optimal correlation with CRP
(r* = 0.429, 3 LV, p<0.001). Metabolites identified by this model
are shown in Table 3. Univariate analysis assessing the relationships
between CRP and the concentrations of the metabolites identified
in the bins with the three greatest regression coefficients (see
Table 3) showed a relationship between CRP and 3-
aminoisobutyrate (Ry=0.504, p=0.001), alanine (R,=0.302,
p=0.004), cystathionine (R,=0.579, p<0.001), phenylalanine
(Re=0.593, p<0.001), cysteine (Ry=0.442, p=0.003), and 3-
methylhistidine (Rg=0.383, p<0.001) respectively.

Figure 6 shows that alanine, aspartate and glutamate metabolism
and beta-alanine metabolism were the most impacted metabolic
pathways. Figure 7 shows the enrichment analysis using
metabolites identified by PLS-R analysis of RA patients’ urinary
metabolite data and CRP. Beta-alanine metabolism, glycine and
serine metabolism, homocysteine degradation and methylhistidine
metabolism were the only overrepresented metabolic pathways
that reached statistical significance.

Further analyses assessed the correlations between metabolic
data derived from RA serum/urine and ESR (Supplementary
Figure 1), autoantibody status (Supplementary Figures 2A, B)
and symptom duration (Supplementary Figures 2C, D). PLS-R
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TABLE 2 | Metabolites responsible for the relationship seen in PLS-R analysis between CRP and serum metabolite profile.

Order Metabolite Chemical shift of peak (ppm) Regression coefficient
1 Citrate 2.534, 2.5048, 2.6511, 2.5106, 2.6745, 2.5282, 2.6394, 2.6453, 2.6886, 2.6637 VULV
1 Glutamine 2.534, 2.5048, 2.5106, 2.5282, 2.3643, 2.3701, 2.0846, 3.6813 UK ¥ SN
2 Lactate 1.2585, 1.2349, 1.1116, 1.3633, 1.4921 NI

2 Threonine 1.2585, 1.2349, 1.3633, 3.6111 Tt

2 Isoleucine 1.2585, 1.2349, 1.4921, 0.89505, 3.6813 T

3 Glucose 5.1799, 2.7916, 3.1948, 5.174, 2.8911, 2.7858, 3.6111, 3.336, 3.3418, 3.6813, 2.8741, 3.1253 MUY
4 Pyruvate 2.5048, 2.5106, 2.6687 Ll

5 Aspartate 2.7916, 2.6511, 2.6745, 2.6394, 2.6453, 2.7858, 2.6886 LY
5 Methylguanidine 2.7916, 2.8911, 2.7858, 2.8741 MM

6 Formate 8.4462 1

7 Carnitine 3.1948, 3.336, 3.3418, 3.1253 AN

7 Glycerol 3.1948, 3.6111, 3.336, 3.3418, 3.6813, 3.1253 Wl

7 Betaine 3.1948, 3.336, 3.3418 nm

7 3-methylhistidine 3.1948, 7.0472, 3.336, 3.6813 Wl

7 Arginine 3.1948, 3.336, 1.7482 "l

7 Tyrosine 3.1948, 7.1291, 7.1463, 3.1253 s

7 Cystine 3.1948, 3.336, 3.3418 nm

7 Choline 3.1948 l

8 Methionine 2.6511, 2.6394, 2.6453, 2.0846, 2.6687 Wil

9 3-hydroxybutyrate 1.2349 |

9 Isopropanol 1.2349 l

10 Asparagine 2.8911, 2.8741 ™

11 Phenylalanine 7.3164, 7.3223, 3.1253, 7.4042, 7.4159, 7.3106 Tt
12 Histidine 7.0472, 3.1253 N

13 Proline 2.3643, 2.3701, 3.336, 3.3418, 2.0846 M

13 Succinate 2.3643, 2.3701 "

13 Glutamate 2.3643, 2.3701, 2.0846 "M

14 Valine 1.1116, 3.6111, 0.89505 T

14 Propylene glycol 1.1116 1

15 Alanine 1.3633, 1.4921 Tl

15 Lysine 1.36383, 1.4921, 3.6813, 1.7482, 3.1253 T

16 Glycine 3.6111 l

17 Methanol 3.336, 3.3418 "

18 2-hydroxybutyrate 0.89505, 1.7482 N

18 Leucine 0.89505, 3.6813, 1.7482 Tl

19 Ornithine 1.7482 l

20 Malonate 3.1253 l

20 Cysteine 3.1253 l

21 Tryptophan 7.3106 1

The following metabolites have been ranked by the magnitude of the regression coefficient. The bins that each metabolite was implicated as a biomarker were also listed by descending
order of magnitude of regression coefficient. The regression coefficient field indicates the nature of correlation (1 indicating a positive relationship with CRP and | indicating a negative

relationship with CRP).

analysis showed a correlation between serum metabolite data and
ESR (n=120, r* = 0.15, 5 LV, p=0.013). Likewise, a PLS-R analysis
showed a correlation between urinary metabolite data and ESR
(n=79, r* = 0.19, 5 LV, p=0.014). OPLS-DA showed no separation
between seropositive (for either ACPA or RF or both) and
seronegative RA patients based on either serum (p=1) or urinary
(p=1) metabolic data. Additionally, OPLS-DA showed no
separation between early (symptom duration of <12 weeks) and
established (symptom duration of >12 weeks) RA patients based
on either serum (p=0.556) or urinary (p=1) metabolic data.

In order to assess whether the relationship between the
metabolome and CRP was specific to RA or was seen in non-
RA inflammatory arthritis, serum and urine were analysed from
patients with UA. Similar to the correlations between CRP and
metabolic data derived from RA patients’ serum and urine
samples, a relationship was also seen between CRP and
metabolic data derived from the sera (n=41, r* = 0.7209, 9 LV,

p<0.001) and urine (n=25, ? = 06117, 8 LV, p=0.025) of UA
patients (Supplementary Figure 3).

DISCUSSION

In this study, we applied "H-NMR metabolomics to assess the
relationship between systemic inflammation, as assessed by the
serum CRP, and the serum and urinary metabolome in a group
of DMARD naive newly presenting RA patients. Young et al.
(18) have previously shown a significant relationship between
metabolites identified in unfiltered serum and CRP in two groups
of early inflammatory arthritis patients. The metabolites which
contributed to that relationship included low-density lipoprotein
lipids, lactate, glucose, methylguanidine and amino acids and
their derivatives (taurine, acetylglycine, choline, threonine and
methylhistidine) (18). Furthermore, a relationship between CRP,
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FIGURE 3 | Metaboanalyst pathway analysis of potential biomarkers implicated by PLS-R analysis of CRP and patients’ serum metabolites.

measured using a high sensitivity assay, and metabolites in
plasma and urine of healthy individuals has been previously
seen, with permutations of metabolites related to oxidative stress
and the urea cycle observed (19).

In the present study, filtered serum was used which is devoid
of large proteins and lipoproteins. This was done to avoid the
significant overlap of the broad NMR signals of proteins and
lipoproteins with the metabolites in the spectra (41), which can
lead to difficulty in identifying individual metabolites. Despite
losing information provided by proteins and lipoproteins,
filtration of serum results in spectra with fewer overlapping
metabolites which can make metabolite identification less
problematic. Loss of lipoproteins notwithstanding, PLS-R
analysis of filtered serum identified a significant relationship
between serum metabolites and CRP (1* = 0.551, 6 LV, p=0.001).
The most highly weighted metabolites in the model included
glucose, amino acids, lactate, and citrate. This validates the
previously identified relationship between metabolites and CRP
(18). Furthermore, it shows a definitive relationship between
CRP and metabolites which persist in filtered serum.

Our study also showed a relationship between urinary
metabolites and CRP. Blood concentrations of metabolites are
strictly regulated, while urine metabolite concentrations can vary
widely and can provide complementary information about
systemic metabolism. In addition to filtration, the kidney has
important role in the generation, breakdown, and active
reabsorption and secretion of metabolites, which together
determine urinary metabolite concentrations (42, 43). Urinary
metabolomics has previously been used to predict responses to
anti-TNF treatment in patients with RA (21) and to facilitate
diagnosis (20, 44) in patients with inflammatory rheumatic
conditions. Pietzner et al. demonstrated a serum and urinary
metabolic signature of chronic low grade inflammation

in apparently healthy individuals (19). Our findings extend
this observation showing a relationship between clinically
apparent inflammatory states and the urinary metabolome.
The functional interpretation of biomarkers generated by
PLS-R analysis largely confirmed the findings seen in the
serum analysis, namely increased urea cycle activity, oxidative
stress and protein catabolism.

In addition to showing a relationship between CRP and
metabolic data derived from RA patients’ serum and urine
samples, our study showed a relationship between ESR and
metabolic data derived from RA patients’ serum and urine
samples. Furthermore, we were able to show the relationship
between CRP and metabolome is not specific to RA but is also
present in non-RA inflammatory arthritis. This suggests the
relationship between inflammation and the metabolome is
present independent of the underlying of inflammatory arthritis.
In patients with RA, there were no significant differences in the
metabolome between patients with very early or longer standing
disease or between patients with RA related autoantibodies
compared with patients who were seronegative. These important
RA related disease features thus do not appear to influence the
metabolome. Finally, some metabolites identified as biomarkers in
multivariate models of RA patients’ metabolic data and CRP did
not show a statistically significant univariate correlation between
the metabolite concentration and CRP. This provides further
evidence of the well-established importance of multivariate
analysis in the field of metabolomics (45), as important
relationships between metabolites and variables of interest could
be overlooked through univariate analysis alone.

Figure 8 summarises how the metabolic changes we observed
to be correlated with CRP at clinical presentation relate to
increased urea cycle activity, oxidative stress, increased
glycolysis, and skeletal muscle degradation related to cachexia.
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FIGURE 4 | Enrichment analysis of key metabolites in serum implicated as potential biomarkers by the PLS-R analysis of CRP and patients’ serum metabolites.

A positive correlation was observed between CRP and several
amino acids including glutamate and phenylalanine. This could
represent amino acid mobilization from protein stores such as
skeletal muscle. In support of this, a positive correlation exists
between CRP and 3-methylhistidine. 3-methylhistidine, the
methylated analogue of histidine, is an amino acid which is

present in actin and myosin (46-48). Catabolism of this
complex results in 3-methylhistidine excretion and thus urinary
and plasma 3-methylhistidine has been suggested as marker of
skeletal muscle turnover (49-53). Leucine and valine, which are
amongst the most abundant amino acids in skeletal muscle (54),
also showed a positive correlation with CRP. Unlike other amino

Frontiers in Immunology | www.frontiersin.org

8 September 2021 | Volume 12 | Article 676105


https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

Jutley et al.

Inflammation and Metabolism in RA

A
[}
25
® o ®
15
()
=l W
-5
@
-15 ® O
-25
-30 -20 -10 0 10 20 30 40
t[1]
Cc
60 , e [
3 °
| 00
& 40 ‘ % ° N Y
O | e % e o °
3 | o8 A
B H [ )
2 VPR e v °
o °® o0
o J ® "
0F @ Fit
0 @ 11
p © Predicted CRP
20" . . . . .
0 20 40 60 80 100 120
Measured CRP
urinary metabolite profile and CRP (r* = 0.429, 3 LV, p < 0.001).

t[1] * 1.05983

'BGmorhq-mq-omNI\LouooomN
N OO AdNSTIWMO RN o
R o B B e B B B e O o B )
D
Fit
100 141 L
o © Predicted CRP
5 |© Predicted CRF)
° 0
3 50 X o .
9 °® 8 o |
3 @%O% il ’ ’
i *, o
0
8
® 1 I
0 20 40 60 80 100 120
Measured CRP

FIGURE 5 | Multivariate analysis of RA patients’ urinary metabolite profile. For the PCA & OPLSDA, patients were split into tertiles according to CRP values, with
data shown for the highest and lowest tertile (n = 54): (A) PCA plot of metabolic data derived from RA patients’ urine (green = CRP <5 and blue = CRP>11; 19 PC,
= 0.673) showing no separation between the two groups. (B) OPLS-DA plot of urinary metabolic data (n = 83, green = CRP <5 and blue = CRP>11; 1 + 0+0 LV,
p value < 0.001) showing a strong separation between the two groups. PLS-R analysis showing the relationship between urinary metabolites and CRP. Using the full
900 NMR urinary metabolite bins for RA patients (n = 83) (C) there was a correlation between metabolite profile and CRP (* = 0.095, 1 LV, p = 0.008). Using
forward selection, 144 bins were identified which most strongly correlated with CRP and a subsequent PLS-R using these bins (D) showed a correlation between

acids, a negative correlation is seen between CRP and cysteine,
cystathionine, and methionine. It is possible that these amino acids
are being utilised to produce glutathione. This suggests the
presence of oxidative stress, as glutathione is used to reduce
reactive oxygen species (55, 56).

As a result of protein catabolism there will be an increase in tissue
nitrogen load. Despite the requirement for nitrogen for acute phase
proteins, there appears to be a tendency to increase nitrogen excretion
through upregulation of the urea cycle in proinflammatory states
(57-59). Our findings suggest urea increases and aspartate decreases
as CRP increases, which supports the finding of increased urea cycle
activity during systemic inflammation.

A negative correlation was seen between CRP and citrate.
Immune metabolic reprogramming could be responsible for this.
Activation of innate immune cells, such as M1 macrophages and
dendritic cells, leads to an upregulation of glycolysis and the
pentose phosphate pathway, in addition to downregulation of the
citrate cycle, oxidative phosphorylation and fatty acid oxidation
(60). This increased glycolytic flux may represent a need to
generate more ATP and other intermediates from the citrate
cycle. As the citrate cycle switches from a primarily catabolic to
an anabolic pathway, one consequence is the accumulation of
both citrate and succinate in mitochondria (61). Citrate is
transported to the cytosol and broken down to acetyl-CoA for
both fatty-acid synthesis and protein acetylation, both of which

have been linked to macrophage and DC activation (61).
A positive correlation was seen between CRP and succinate;
this has been reported previously (62). The increase in
succinate, by glutamine-dependent anaplerosis, leads to HIF
lo. activation and ultimately enhanced IL-1B production
during inflammation (63). In addition, succinate mediated
post-translational protein modification (succinylation), also
perpetuates the inflammatory response.

A positive correlation was seen between CRP and glucose and
lactate. Furthermore, a negative correlation was seen between CRP
and pyruvate. Multiple mechanisms are likely to be responsible for
the elevated glucose in proinflammatory states (26, 27, 64-69),
which may serve to meet the demand for highly active immune
cells. Highly active immune cells have high rates of glucose uptake
and rely on glycolysis as their main form of energy production.
Pyruvate is reduced to lactate even in an aerobic environment, via
aerobic glycolysis (also known as the Warburg effect), to produce
ATP rapidly (70). Lactate has significant downstream effects which
propagate the inflammatory response (71-73).

Our analysis has focused on the independent analysis of the
patient urine and serum metabolites and their correlation with
the inflammatory process. Analysis of any relationship between the
serum and urine metabolites was not possible since in this
retrospective cohort we had an insufficient number of paired
samples to allow a valid assessment. Nevertheless, this
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TABLE 3 | Metabolites responsible for the relationship seen in PLS-R analysis between CRP and urinary metabolite profile.

Order Metabolite Chemical shift of peak (ppm) Regression
coefficient
1 3-Aminoisobutanoic acid 1.1431, 1.1376, 1.1303, 1.127, 3.0865, 1.0904, 1.1019, 1.1607, 3.0923, 1.1468, 1.1665, 3.0982, 1.155, R & RN
3.104
1 Propylene glycol 1.1431, 1.1376, 1.1303, 1.127, 1.1468 WL
2 Lysine 1.4943, 1.4885, 1.506, 1.5002, 1.4416 M
2 Azelaic acid 1.4943, 1.4885, 1.506, 1.5002, 2.1733 Ml
2 Sebacic acid 1.4943, 1.4885, 1.506, 1.5002, 2.1733 Ml
2 3-Methyladipic acid 1.4943, 1.4885, 1.506, 1.5002, 2.1733 Ml
2 Suberic acid 1.4943, 1.4885, 1.506, 1.5002, 2.1733 Ml
2 Alanine 1.4943, 1.4885, 1.506, 1.5002, 1.4416 M
2 3-Methyl-2-oxovaleric acid 1.4943, 1.1303, 1.127, 1.4885, 1.0904, 1.1019, 1.5002, 1.4416, 1.0558 Tl
3 L-Cystathionine 3.0865, 3.0923, 3.0982, 2.7353, 2.7294, 2.1733, 2.706, 2.7587, 3.104, 3.8474, 3.8416 R S 5 R
3 Creatinine 3.0865, 2.7879, 3.0923, 2.8172, 3.0982, 2.7353, 2.7294, 3.1567, 2.8406, 2.706, 2.7587, 2.7938, 3.104 LUy
3 Phenylalanine 3.0865, 3.0923, 7.2191, 3.0982, 7.3819, 7.2484, 7.5001, 7.2425, 7.225, 7.3771, 3.104, 7.4123 LUl
3 Cysteine 3.0865, 3.0923, 3.0982, 3.104 Wil
3 3-methylhistidine 3.0865, 7.7518, 3.0923, 3.1567 il
4 2-Ketobutyric acid 1.0904, 1.1019, 2.7879, 2.7587, 1.0558 Ml
4 Methylsuccinate 1.0904, 1.1019, 1.0558 ™l
5 Hippuric acid 7.7518, 7.9918, 7.7768, 7.9332, 7.8513, 7.5001, 7.9976, 7.781 EEEERN)
5 Tryptophan 7.7518, 7.2484, 7.5001, 7.225 M
5 Phenylglyoxylic acid 7.7518, 7.9918, 7.7768, 7.9497, 7.9332, 7.9976, 7.781, 7.947 T
5 Urea 7.7518, 7.9918, 7.7768, 7.2191, 7.3819, 7.9497, 7.9332, 7.2484, 7.5001, 7.9976, 7.781, 7.2425, 7.225, RN RN
7.3771,7.947
5 7-Methylxanthine 7.7518, 7.9918, 7.7768, 7.9332, 7.8513, 7.9976, 7.781, 3.8474, 3.8416 TTITLL
6 Dihydrothymine 1.1607, 2.7879, 1.1665, 3.1567, 1.155, 2.7587, 2.7938 il
7 Quinolinic acid 7.9918, 7.9976 1
7 Carnosine 7.9918, 2.7294, 3.1567, 7.9976, 2.706 it
7 Picolinic acid 7.9918, 7.8981, 7.9497, 7.9332, 7.9976, 7.947 Tt
7 Histidine 7.9918, 7.8981, 7.9332, 3.1567, 7.9976 il
8 Succinylacetone 2.7879, 2.8172, 2.8406, 2.7938, 3.8474, 3.8416 MLl
8 Aspartate 2.7879, 2.8172, 2.8406, 2.7938 M
8 Methylguanidine 2.7879,2.8172,2.7938 "M
8 Citrate 2.7879, 2.8172, 2.73583, 2.7294, 2.8406, 2.706, 2.7587, 2.7938 T
8 5-Aminolevulinic acid 2.7879, 2.7587, 2.7938 ™t
8 Levulinic acid 2.7879, 2.7587 "
9 Malonate 3.0923, 3.0982, 3.104 Wl
10 Symmetric 2.8172 1
dimethylarginine
11 4-Hydroxybenzoic acid 7.7768, 7.781 ™
12 Indoleacetate 7.2191, 7.2484, 7.5001, 7.2425, 7.225 Mt
13 trans-Ferulic acid 7.2191, 7.225 "
13 Tyrosine 7.2191, 7.225 "
13 Ortho- 7.2191, 7.225 "
Hydroxyphenylacetate
13 Indoxy! sulfate 7.2191, 7.3819, 7.5001, 7.225, 7.3771 M1
13 Tryptophan 7.2191 1
13 Phenylacetate 7.2191, 7.3819, 7.2484, 7.2425, 7.225, 7.3771 M
14 Mandelic acid 7.3819, 7.3771, 7.4123 Ml
15 Cinnamic acid 7.3819, 7.5001, 7.3771, 7.4123 Ml
16 Cystine 3.3792, 3.1567, 3.385 W
16 4-Hydroxyproline 3.3792, 2.1733, 3.385 Wl
16 Pantothenic acid 3.3792 l
17 Anserine 2.7353, 2.7294, 2.706 "M
17 Sarcosine 2.7353, 2.7294, 2.7587 M
17 Citramalic acid 2.7353, 2.7587 "
18 Kynurenic acid 7.8981, 7.9332, 7.5001 "t
18 3-Methylhistidine 7.8981, 7.9332 "
19 Benzoic acid 7.9332, 7.8513, 7.5001 "M
20 3-Hydroxyphenylacetate 7.2484, 7.2425, 7.225 "M
21 L-Kynurenine 7.8513, 7.4123 1
22 Ethanolamine 3.1567, 3.8474, 3.8416 Wl
22 Beta-Alanine 3.15667 l
23 Asparagine 2.8406 1
(Continued)
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TABLE 3 | Continued

Order Metabolite

24 Vanillic acid

24 Uracil

24 4-Pyridoxic acid

24 Cytosine

25 Monomethy! glutaric acid
25 Pimelic acid

25 Methionine

25 Isovalerylglycine

25 Glutamate

25 Methylglutaric acid

25 L-2-Hydroxyglutaric acid
25 Glutamine

26 Isoleucine

27 Dihydrouracil

28 Valine

29 L-Arabitol

29 Serine

29 N-Acetylneuraminic acid

29 D-Maltose

29 Pseudouridine

29 Thymidine

29 Hydroxypropionic acid
29 Alpha-Lactose

29 Adenosine

29 Sorbitol

29 D-Galactose

29 Homovanillic acid
29 D-Xylitol

29 Giluconic acid

29 L-Arabinose

29 Sucrose

29 Dehydroascorbic acid
29 1-Methyladenosine
29 Glyceric acid

Chemical shift of peak (ppm)

2.1738,

7.5001
7.5001
7.5001
7.5001
21733
21738

21733
21733
2.1733
21733
21733
1.4416
2.706
1.0658
3.8474, 3.8416
3.8474, 3.8416
3.8474, 3.8416
3.8474, 3.8416
3.8474, 3.8416
3.8474, 3.8416
3.8474, 3.8416
3.8474, 3.8416
3.8474, 3.8416
3.8474, 3.8416
3.8474, 3.8416
3.8474, 3.8416
3.8474, 3.8416
3.8474, 3.8416
3.8474, 3.8416
3.8474, 3.8416
3.8474, 3.8416
3.8474, 3.8416
3.8474, 3.8416

3.8474, 3.8416

Regression
coefficient

B TR i i el e e e e i T

-

The following metabolites have been ranked by the magnitude of the regression coefficient. The bins that each metabolite was implicated as a biomarker were also listed by descending
order of magnitude of regression coefficient. The regression coefficient field indicates the nature of correlation (1 indicating a positive relationship with CRP and | indicating a negative

relationship with CRP).
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FIGURE 6 | Metaboanalyst pathway analysis of potential biomarkers implicated by PLS-R analysis of CRP and patients’ urinary metabolites.
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FIGURE 7 | Enrichment analysis of key metabolites in urine implicated as potential biomarkers by the PLS-R analysis of CRP and RA patients’ urinary metabolites.

comparison might be useful in future studies since a correlation of a
small number of metabolites has been seen in a large biobank study
of urine and serum from children (74). However, in that study
serum was seen to provide stronger correlates with important
biological features such as age, sex, BMI and ethnicity while urine

metabolites were more strongly influenced by diet. In adults, serum
metabolites have been shown to be less variable than urine
metabolites and so they may provide a more reliable comparator
in disease states (75). However, our previous work (21), has shown
that urine metabolites were able to predict responses to anti-TNF
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FIGURE 8 | Overview of key pathways and metabolites correlating with CRP. The functional analysis of PLS-R analysis of the serum and urinary metabolome of
newly presenting RA patients as assessed by "H NMR spectroscopy. Red metabolites had a positive correlation with CRP and blue metabolites had a negative

therapy in a small cohort of RA patients. Since TNF is a major driver
of the inflammatory process in RA this would support our
observation in the current paper that urinary metabolites do
indeed reflect the inflammatory state in RA patients and as such
may provide easily accessible source of useful biomarkers in RA and
other inflammatory states.

LIMITATIONS

Despite the advantages of using NMR spectroscopy to assess the
metabolome, including minimal, non-destructive sample
preparation, relatively low cost, good direct quantitation and
high reproducibility (76), there are several important limitations.
Firstly, there is low sensitivity for identifying metabolites, leading
to failure to identify metabolites present at a lower concentration.
Secondly, overlapping 'H signals can make metabolite

identification difficult. For example, individual spectral peaks
may be a result of a combination of metabolites rather than a
single metabolite. Thus, it can be difficult to determine which of a
range of possible metabolites represented within that peak is
driving the association between the magnitude of that peak and
the clinical variable under consideration (in this case CRP). Our
use of filtered serum limited the assessment of lipid metabolism,
as large proteins and lipoproteins are removed by filtration.
Other confounders which are known to influence metabolism
were not controlled for including comorbidities, medications,
diet and time of sample collection.

CONCLUSION

The PLS-R models assessing relationships between metabolite
profiles and CRP have provided insight into metabolic
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derangements during inflammatory states such as oxidative
stress, cachexia and impaired glycolytic metabolism. These
findings validate a known relationship between serum
metabolite profile and inflammation as measured by CRP and
shows there is relationship between the urinary metabolite
profile and inflammation. Serum and urine are easily accessible
and easily studied by NMR spectroscopy. The focus of this paper
was to examine the relationship between CRP and the serum and
urinary metabolome of RA patients. Future work should
examine the relationships between the metabolome and other
important clinical variables including levels of pain and fatigue.
Furthermore, future work should assess the impact of anti-
inflammatory therapies assessing whether therapeutic response
is associated with alterations in specific pathways.
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