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Autism spectrum disorders (ASD) are serious, highly variable neurodevelopmental
disorders, commonly characterized by the manifestation of specific behavioral
abnormalities, such as stereotypic behaviors and deficits in social skills, including
communication. Although the neurobiological basis for ASD has attracted attention in
recent decades, the role of microglial cells, which are the main resident myeloid cell
population in the brain, is still controversial and underexplored. Microglia play several
fundamental roles in orchestrating brain development and homeostasis. As such,
alterations in the intrinsic functions of these cells could be one of the driving forces
responsible for the development of various neurodevelopmental disorders, including ASD.
Microglia are highly sensitive to environmental cues. Amongst the environmental factors
known to influence their intrinsic functions, the gut microbiota has emerged as a central
player, controlling both microglial maturation and activation. Strikingly, there is now
compelling data suggesting that the intestinal microbiota can play a causative role in
driving the behavioural changes associated with ASD. Not only is intestinal dysbiosis
commonly reported in ASD patients, but therapies targeting the microbiome can markedly
alleviate behavioral symptoms. Here we explore the emerging mechanisms by which
altered microglial functions could contribute to several major etiological factors of ASD.
We then demonstrate how pre- and postnatal environmental stimuli can modulate
microglial cell phenotype and function, underpinning the notion that reciprocal
interactions between microglia and intestinal microbes could play a crucial role in
ASD aetiology.

Keywords: neurodevelopmental disorders, inflammation, dysbiosis, microbial metabolites, autism spectrum
disorder (ASD), microglia, microbiome
BACKGROUND

Autism spectrum disorders (ASD) include a range of neurodevelopmental disorders, commonly
characterized by repetitive behaviours, as well as impaired social skills, including verbal and
nonverbal communication (1). These behavioral symptoms develop in early childhood and persist
throughout life. In recent decades, there has been a major surge in ASD incidence globally (2).
Although the precise aetiologies of ASD are complex, and remain to be fully understood, recent
evidence points to abnormal synaptic development and function, and/or aberrant immune
org May 2021 | Volume 12 | Article 6762551
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responses, as potential drivers of ASD symptoms (3–6). Notably,
microglial cells participate in these physiological processes and
have been strongly associated with ASD development (7–10).

Microglia are the main resident immune cells of the central
nervous system (CNS), providing the tissue with innate immune
sensing, inflammatory effector functions and tissue repair. As
such, they are the main producers of proinflammatory mediators
in the context of neuroinflammation (11). Although
immunomodulatory roles for microglia in neuroinflammatory
and neurodegenerative diseases have been widely described,
immune modulation is only one of an extensive array of
discrete microglial functions. During CNS development,
microglia regulate the number and strategic positioning of
neurons and shape neuronal connectivity (10, 12). Moreover,
they support gliogenesis and myelination (10, 12–15). Given
both their immune and developmental functions, it would be
attractive to propose that microglial dysfunction could
contribute to neurodevelopmental disorders; either by
influencing disease development or driving behavioral
symptoms. However, the specific roles that microglial cells play
in ASD pathophysiology are still controversial. Although several
studies show that autistic individuals suffer from ongoing
neuroinflammatory processes, characterized by microglial
activation in several discrete regions of the brain (16–19),
others dispute the significance of this and suggest that
microglia may be intrinsically dysfunctional in their resting
state, following a prenatal disruption to homeostatic brain
development (20, 21). In this review, we explore both well-
established and emerging literature and discuss perspectives on
the role’s microglia may play in the development of ASD; both in
the context of abnormal immune signaling and altered neuronal
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connectivity. Given the vast array of peripheral factors that can
modulate microglial maturation and function, we further discuss
how perturbations in these extrinsic signals, particularly the gut
microbiota, might promote microglial dysfunction in the context
of the neurodevelopmental disorders.
MICROGLIA: ORIGIN AND
PHYSIOLOGICAL FUNCTIONS
IN THE BRAIN

Microglia are a highly specialised population of myeloid cells
that inhabit the healthy CNS parenchyma, representing 5–12%
of all cells in the CNS (22). Unlike the other cell types that
coinhabit the CNS, microglia are not derived from the
neuroectodermal germ layer. Rather, microglial ontogeny has
been traced to erythromyeloid precursors, which differentiate
into microglial progenitors in the yolk sac during embryogenesis
(23, 24). At this stage, differentiation is critically controlled by the
transcription factors Pu.1 and Irf8 with other transcription
factors, such Runx1 and Jun, also providing a supporting role
(21, 23, 24). On day 9.5 after conception (E9.5), microglial
progenitors leave the yolk sac to seed the developing CNS in
one single wave (22–24). Following an initial burst of
proliferation and differentiation, mature microglia then
colonize the parenchyma where they persist throughout the life
of the host (Figure 1). There, within the healthy CNS, microglial
numbers are maintained by gradual self-renewal, independently
from the recruitment of any other hematopoietic myeloid cells or
progenitors (11, 24, 25).
FIGURE 1 | Maternal immune activation and dysbiosis in microglial development. Yolk sac-derived erythroid progenitors differentiate into microglia progenitors, via
Runx1, PU.1-and IRF8-dependent pathways, that then migrate and colonize the developing brain at around embryonic day 9.5. After microglial seeding of the
embryonic CNS parenchyma and subsequent proliferation during prenatal and postnatal stages, factors such as CSF-1, IL-34 and TGF-b promote microglia terminal
differentiation. Maternal chronic inflammatory diseases, maternal infection and exposure to environmental factors, such as pesticides and pollution, can induce
immune activation during pregnancy and dramatic changes in maternal microbiota. These alterations can disrupt the normal prenatal microglia development,
maturation and induce microglial epigenetics alterations, affecting the developing fetal brain and leading to ASD development.
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Within the CNS parenchyma, microglia are imprinted by
local environmental cues. Microglial differentiation and
maintenance are strongly dependent on their expression of
colony-stimulating factor 1 receptor (CSF1R), as well as the
two main CSF1R ligands, CSF1 and IL-34 (Figure 1). Depleting
either of these ligands reduces microglial cell abundance
throughout the CNS. Moreover, the CNS of adult CSF1R-
deficient mice are virtually devoid of all microglia (26, 27). By
driving a microglia-specific gene signature, TGFb signaling
has recently also been shown to be indispensable for microglia
maturation. The marker genes induced by TGFb, which include
Tmem119, Sall1, Tgfbr1, and P2ry12, can readily distinguish
microglia from bone marrow-derived macrophages (28).

As tissue-resident macrophages, microglial cells are
responsible for the continuous immunosurveillance of the
CNS. Inflammatory insults induced by invading pathogens or
local injuries trigger their production of immune mediators (29–
31). These pathways also facilitate increased phagocytosis of
cellular debris and/or pathogens (32). Previously, microglia were
thought to be inactive during homeostasis and only activated in
response to pathological insults. However, in addition to their
“canonical” innate immune functions, recent findings suggest
that microglia are intimately involved in CNS development
through organising neuronal patterning and fine-tuning
synaptic connections (13, 22).

During embryogenesis, microglia are the first glial cells to
populate the developing CNS. In this early neurodevelopmental
phase, they control neurogenesis by releasing neurotoxic or
neurotrophic factors that orchestrate the survival ,
differentiation or apoptosis of neuronal progenitors (33–35).
The survival-enhancing role of microglia is supported by
findings showing that proliferation and survival of these
progenitors is higher when they are co-cultured with microglia
than when cultured alone (34). On the other hand, microglial
respiratory bursts generate superoxide ions, which trigger the
apoptosis of Purkinje cells in the postnatal cerebellum (33). Thus,
through the selective release of neurotoxic or neurotrophic
factors, microglia can shape the neuronal landscape.

In addition to modulating neurogenesis, microglia play
important roles in the development and differentiation of
neuronal circuits. From an early stage in postnatal
neurodevelopment, microglia eliminate redundant neurons
that do not establish functional circuits. Moreover, microglia
modulate immature neuronal circuits by engulfing and
eliminating dendritic spines at the synapse (10). This process,
known as synaptic pruning, is critically important for the normal
formation of synapses. Its disruption results in several neuronal
abnormalities; including impaired functional connectivity,
modifications to dopaminergic circuits, and an imbalance of
the excitation-to-inhibition ratio in the cortex (9, 10, 36).
Importantly, abnormal synaptic pruning in the CNS of the
neonate, or even the developing fetus, could be important in
the aetiology of ASD, as discussed later.

Finally, there is now cumulating evidence that microglial cells
modulate synaptic plasticity, and subsequently, learning and
memory (37–39). This is not only important during early
developmental stages as depleting microglia from the CNS of
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adult mice also results in impaired synaptic plasticity and deficits
in learning and memory (13, 40–42). Similar phenotypes are
observed when microglia are unable to produce brain-derived
neurotrophic factor (BDNF), as shown using conditional and
inducible BDNF depletion under the CX3CR1 promotor (42)

Thus, although microglia have several well-defined roles in
neuroinflammation, it is becoming increasingly evident that they
also shape neuronal survival and connectivity during
development, interpret changes in the local milieu and
modulate circuit formation accordingly (11, 43).
MICROGLIA IN ASD

To date, microglial cell participation in ASD and other
neurodevelopmental disorders has been only speculated. While
the causes of ASD are incompletely understood, some of the
main symptoms, such as impairment in multisensory processing
and integration, have been linked to defects in neurogenesis and
the strategic positioning of neurons during CNS development,
abnormal synaptic pruning and an altered neuronal excitation/
inhibition ratio (44). Additionally, systemic and central
inflammation may also be intrinsically involved in the
pathogenesis of ASD and several other neurological disorders
(45, 46). Considering both the physiological roles microglia play
in regulating neurogenesis, neuronal migration and synaptic
pruning, and their immunomodulatory roles in the CNS, it
seems entirely plausible that aberrant microglial function may
be a driving force in the pathogenesis of ASD.

Vargas et al. were the first to show an inflammatory
phenotype in post-mortem brains from ASD individuals. In
this pioneer work, neuropathologic analysis showed increased
microglial activation, characterized by elevated expression of
MHC class II, throughout the cerebral and cerebellar cortices
in individuals with ASD. Moreover, increased expression of pro-
and anti-inflammatory factors, such as such as CCL2, IL-6 and
TGF-b, were observed in both the brain and cerebrospinal fluid
(CSF) (16). Similar studies have reported increased expression of
TNF-a, IL-6, IL-8, GM-CSF, and more recently, IL-18 and IL-37,
in post-mortem brain tissue and CSF of children with ASD,
suggesting a heightened immune response with associated
localized brain inflammation (47–49). Consistent with this
apparent microglial and astrocyte immune dysregulation,
genome-wide analysis of brain tissue from ASD individuals
showed enrichment of markers related to activated microglia
and expression of genes associated with “immune and
inflammatory” gene ontology categories, compared to
neurotypical controls (50, 51). These changes in microglial
activation markers in ASD brains were also accompanied by
changes in microglial morphology, density and spatial
localization (18, 52, 53). Not only do microglia have an
increased density throughout the cerebral and cerebellar
cortices of ASD patients, but they exhibit cell body
enlargement, as well as process retraction and thickening.
Filopodia also extend from the processes of ASD-associated
microglia (18, 54). The putative microglial dysfunction
detected in post-mortem samples has now been further
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confirmed using In Vivo Positron Emission Tomography (PET).
In this study, which focused on young adults with ASD, a
radiotracer specific for activated microglia and astrocytes was
used to show a marked activation of these cells in several discrete
regions of the brain (17).

The combination of neuropathological analyses of post-
mortem human brain samples and PET scanning of live
human ASD patients has provided compelling evidence to
suggest that aberrant microglia and astrocyte immune
activation is a common hallmark of ASD. However, due to the
small number of samples evaluated, variations in genetic
backgrounds, l i festyle choices , medication use and
socioeconomic status, more studies are required. In the case of
post-mortem studies, the cause of death could also impact brain
inflammation. Moreover, it remains to be established whether
microglial activation is a secondary effect of aberrant brain
development or whether microglia play a causative role in the
initiation or manifestation of ASD. For that reason,
environmental and genetic rodent models are widely employed
to explore the range of contributions microglia make to ASD
pathogenesis, including their effects on neuronal migration,
neurotransmission, brain anatomy and inflammation.

In rodents, genetic manipulation of microglia can profoundly
alter CNS function, culminating in behavioral abnormalities
resembling those found in ASD. For example, mice lacking the
gene encoding CX3CR1 exhibit ASD-like behaviours, including
social deficits (9, 10). Also known as the fractalkine receptor,
CX3CR1 is a chemokine receptor that facilitates direct contact
between microglial cells and CX3CL1 (fractalkine)-expressing
neurons; an interaction known to suppress microglial cell
activation and IL-1b production following peripheral immune
stimulation (55). Signaling through the fractalkine/CX3CR1 axis
is required for the optimal recruitment of microglia to specific
CNS locations during embryogenesis (56). As such, Cx3cr1-
deficient mice have fewer microglia present in the CNS during
early postnatal development, resulting in altered synaptic
pruning and subsequent deficits in neuronal connectivity
throughout life (9, 10). Similar to CX3CR1, microglial
expression of immunoglobulin superfamily-member,
triggering receptor expressed on myeloid cells 2 (TREM2), is
fundamental for synaptic pruning during prenatal
neurodevelopment (57). TREM2 signalling transduction has a
central role in promoting microglial activation (11) and variants
in TREM2 have been linked to different types of neurological
diseases, including multiple sclerosis, Parkinson’s and
Alzheimer’s diseases (58–62). Recent studies in mice show
that the absence of this receptor results in defective
remodelling of neuronal synapses, dysregulated excitatory/
inhibitory neurotransmission, impaired neuronal connectivity
and behavioral defects reminiscent of ASD (57). The expression
of TREM2 was also significantly reduced in post-mortem brain
tissue from individuals with ASD compared to neurotypical
controls. This ASD-associated reduction in TREM2 expression
was most prominent in samples collected from patients with
severe symptoms, showing a negative correlation between
TREM2 levels and ASD severity (57).
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Recent studies have also shown that elevating protein
synthesis, induced exclusively in microglia via overexpression
of the translation initiation factor eIF4E, is sufficient to impair
synaptic formation and drive the manifestation of ASD-like
behaviors in young mice (63). Indeed, mutations that
inactivate negative regulators of translation, such as in PTEN
(phosphatase and tensin homolog), TSC1/2 (tuberous sclerosis
complex 1/2), and FMR1 (fragile X mental retardation protein),
are thought to cause ASD in a proportion of patients (64–68). Xu
and collaborators suggested that defects in these ubiquitously
expressed genes can alter microglial cell function sufficiently to
drive ASD. In addition to an increased phagocytic potential,
these microglia exhibit reduced mobility and impaired synaptic
pruning, culminating in higher synapse density and higher
excitatory neurotransmission compared to wild type mice,
ultimately driving the development of ASD-like behaviors (63).
Similar to the phenotype observed in mice that overexpressed
eIF4E, the frequency, phenotype and function of microglia in the
prefrontal cortex, hippocampus and striatum of Pten-deficient
mice was substantially altered when compared with their
wildtype littermates (63, 69, 70). Collectively, these studies add
further weight to the hypothesis that aberrant microglial cell
functions may help to drive the pathophysiology and behavioural
symptoms associated with ASD.

Other models of autism in which risk genes are depleted in
rodents to model symptomatic ASD variants, such as Rett
syndrome and fragile X syndrome, are also related to
microglial-dependent synaptic modulation. In Fmr1-deficient
mice, a model of fragile X syndrome, microglia are increased in
terms of size and abundance compared to those from wild-type
littermates, and these physiological changes were associated with
reduced microglial-mediated synaptic pruning (63, 71). As it is
caused by loss-of-function mutations in the gene encoding
methyl-CpG binding protein 2 (MECP2), Rett syndrome is
modeled using variations of Mecp2-deficient mice. The specific
deletion of Mecp2 in murine microglial cells triggers an
overproduction of glutamate, altering neuronal morphology
and impeding the formation of synapses (72). Abnormal
microglia–synapse interactions, and increased expression of
inflammatory genes in macrophages and microglia, were also
observed in mice lacking Mecp2 (13, 73). These studies imply a
pathological role for microglial cell dysfunction in ASD,
apparently without the context of neuroinflammation.
However, since both resting and activated microglia are able to
secrete cytokines, neurotoxic and neurotrophic factors, as well as
other soluble factors that have been implicated in ASD, it is
possible that microglia use these mediators to influence a diverse
range of neuronal functions and sculpt synaptic connections (19,
20, 74).

In addition to genetic factors, environmental factors also
modify microglia function, affecting brain development,
synaptic connectivity and CNS immune responses (75).
Indeed, the behavioural abnormalities that are observed in
mouse models in which environmental risk factors are the
driving forces behind ASD development, such as the maternal
immune activation (MIA) model, are similar to those induced by
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genetic modification (75, 76). The MIA model, in which
pregnant mice are challenged with polyinosinic-polycytidylic
acid [Poly(I:C)] or lipopolysaccharide (LPS) during embryonic
development (E9–12), was developed based on numerous
epidemiological studies that have linked prenatal infection in
humans to the development of several neurological disorders,
including ASD, in the offspring (13, 77).

MIA remotely triggers the induction of multiple cytokines in the
fetal brain of rodents, subsequently leading to abnormal
neurodevelopment. Due to their rapid ability to respond to
inflammatory signals and their role in modulating neuronal
function and connectivity, microglial cells have been implicated in
driving this disorder (78). However, contradicting results cloud the
ability to draw clear conclusions on how and when MIA shapes
microglial functions in the developing offspring. While some studies
showed increased expression of microglial activation markers in
adult offspring exposed to MIA in utero, others did not uncover any
postnatal differences in microglial phenotype as a consequence of
MIA. The most consistent microglial changes were found during
pre- or perinatal developmental stages, suggesting that transient
perturbations in microglial function might have life-long effects on
neuronal patterning, functional connectivity and behaviour (79–82).
Supporting this hypothesis, studies using genome-wide chromatin
accessibility assays revealed a series of temporally distinct
developmental stages, both pre- and perinatal, during which the
susceptibility of microglia to immune mediators and other
environmental cues was increased (21, 24). Microglia from
newborns exposed to maternal immune activation showed an
untimely downregulation of genes that are typically expressed
during this early stage of development, such as Spi1 (the gene
encoding Pu.1) and Irf8, and instead exhibited a transcriptional
phenotype more akin to that of adult microglia (21, 24). Although
these alterations were transient, the authors suggested that
accelerated microglial maturation could have sufficient
detrimental consequences in the developing brain to induce and
maintain neurological disorders that continue long after the
microglia phenotype is restored (21).

Together, these data strengthen the notion that microglia can
play a fundamental role in driving neurodevelopmental
disorders, including ASD, via their effects on neuroimmune
pathways, synaptic remodelling, neuronal survival and
connectivity. Understanding the main factors that induce
microglial dysfunction and identifying developmental
timepoints when the CNS is most susceptible to the impacts of
microglial dysregulation would help to identify novel therapeutic
targets and prophylactic strategies to better treat or prevent ASD.
ENVIRONMENTAL FACTORS
INFLUENCING ASD: FOCUS ON
MICROBIOTA-MICROGLIA MODULATION

Although genetic factors can majorly influence the risk of ASD
development, epidemiological and preclinical studies estimate
Frontiers in Immunology | www.frontiersin.org 5
that 50% of ASD pathophysiology is driven by non-heritable
factors, suggesting that environmental factors may play an
equally prominent role (83, 84). However, while progress has
been made towards gaining an understanding of the genetic
components that drive ASD, environmental risk factors are less
understood. Several recent studies suggest that prenatal,
perinatal and postnatal factors act synergistically to induce the
development of ASD (85). Maternal diet and lifestyle, as well as
exposure to infection, environmental chemicals and drugs
during critical periods of CNS development, can induce
various congenital malformations, culminating in a latent and
long-term impact on brain function, and enhancing the risk of
ASD development in the offspring (86–90). Many environmental
components that are vertically transmitted via mother-to-child
interactions can influence brain development during peri- and
postnatal periods, whilst horizontally transferred external
factors, i.e. those that are not dependent on the maternal
interface, have the capacity to interfere with the maintenance
and progression of ASD symptoms (91, 92).

The Role of the Gut Microbiota in ASD
Development and Maintenance
Intestinal microbes are intimately involved in integrating the
various environmental factors, such as diet, environment, sex,
age and genetic background, which subsequently impact host
immune responses (93). Remarkably, gastrointestinal (GI)
dysfunction is one of the most prominent comorbidities in
ASD patients, with 23-70% of the individuals developing
symptoms associated with the GI tract, including abdominal
discomfort, irritated bowel syndrome, chronic diarrhea and/or
constipation (32, 94). Moreover, variations in the composition
and richness (diversity) of the gut microbiota have been observed
in children with ASD compared to neurotypical controls, with
several reports of increased proportions of Clostridium, Suterella,
Ruminococcus and Lactobacillus and lower abundances of
Bifidobacterium, Akkermansia, Blautia and Prevotella (95–100).

Based on the apparent dysbiosis observed in ASD
individuals, numerous cross-sectional studies have investigated
whether exposure to antibiotics during different developmental
stages could play a causative role in triggering the onset of
ASD (101–106). Although current data are conflicting and
inconclusive, the most consistent data obtained from the larger
cohort studies indicate that the use of specific classes of
antibiotics during early life may marginally increase the risk of
ASD development (103, 104, 107).

The studies described above have been useful in identifying
associations between ASD and the GI tract, particularly with
dysbiosis of the gut microbiota. In an open-label trial, fecal
microbiota transplant (FMT) therapy from neurotypical control
donors to ASD patients significantly increased bacterial diversity
and improved irritability, communication skills and sociability
(108, 109). Thus, the gut microbiota may contribute to the
behavioural symptoms associated with ASD.

In mice, the induction of dysbiosis – for example using dietary
modulation, antibiotics or gnotobiotic models – can aggravate
both genetic and environmental models of ASD (110). Germ-free
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(GF) mice have significant social impairments compared to
specific pathogen-free (SPF) mice, as do mice that receive
antibiotics postnatally (111–113). Moreover, transferring
dysbiotic gut microbiota from ASD donors was sufficient to
induce further social deficits and increase repetitive behaviours
in GF mice, compared to mice that received an FMT from
neurotypical control donors (114). These data demonstrate that
ASD-like behaviours can be transferred by the microbiota of
ASD patients.

Dysbiosis of the commensal microbiota has also been observed
in the offspring of mice exposed to the MIA model, apparently
contributing to barrier permeability and behavioural changes. In
particular, MIA-exposed offspring had reduced levels of
Bacteroides fragilis in the gut compared to controls. Importantly,
reintroducing Bacteroides fragilis to the GI tract of these mice was
sufficient to restore GI function and improve the neurological
symptoms related to ASD (115, 116). Together, these data
demonstrate that the commensal microbiota may be crucial for
the programming and presentation of neurotypical behaviours.

It is important to consider that the studies outlined above
predominantly focus on how the microbiota of the individual
impacts the progression of ASD. While ASD symptoms were
alleviated following FMT from neurotypical donors, the effects
were transient and do not constitute a cure. As ASD is established
early in development, including during embryogenesis, it seems
likely that environmental factors experienced by a mother during
gestation may play an equally, if not more important role. It is
therefore not surprising that in rodent models of ASD, the
maternal gut microbiota has also been implicating in remotely
conditioning neurodevelopment, subsequently leading to ASD-
like behavioural changes in the offspring. In mice, the presence of
bacteria that can drive Th17 cell induction, such as segmented
filamentous bacteria (SFB), is required to induce ASD
development in the offspring of dams exposed to MIA (117,
118). Moreover, while the maternal microbiota is essential for
normal fetal neurodevelopment (119), dysbiosis induced in
response to altered diet and stress during pregnancy has also
been increasingly linked to aberrant brain development and
behavioural abnormalities in murine offspring (110, 119, 120).
Thus, the vertical transfer of microbial molecules or microbially-
induced intermediates, may alter brain function in the developing
offspring, ultimately triggering the development of ASD-
like behaviours.

A conclusive link between the maternal microbiota and ASD
development in human patients has yet to be established. However,
mothers of children with ASD often present with compositional
differences in their gut microbiota, including increased levels of
Proteobacteria, Alphaproteobacteria, Moraxellaceae, and
Acinetobacter, when compared to mothers of healthy, neurotypical
children (121). Moreover, meta-analyses of large cohort studies
suggest prenatal exposure to different classes of antibiotics could
contribute to the development of ASD (122, 123). However, data
linking prenatal antibiotic exposure to ASD development in the
offspring are highly controversial, and these studies neglect to
evaluate the impact that antibiotic treatments have on the
composition of the maternal microbiota during pregnancy.
Frontiers in Immunology | www.frontiersin.org 6
As further evidence that the maternal microbiota can impact
neurodevelopment of human offspring, epidemiological studies
show a clear association between maternal infections,
particularly those occurring during the first trimester of
pregnancy, and ASD development in the offspring. Prominent
maternal infections associated with ASD development in
children include viral pathogens, such as herpes simplex virus
type 2, cytomegalovirus and rubella, as well as the Toxoplasma
gondii parasite (124–127). The impact of these microbes on the
developing fetus may by driven by the vertical transfer of pro-
inflammatory cytokines, induced in response to infection.
Indeed, children born to mothers with chronic inflammatory
diseases, such as obesity, diabetes, autoimmune diseases and
asthma, also have an increased risk of neurodevelopmental
disorders (128). However, it should be noted that many of
these chronic inflammatory diseases and infectious pathogens
are also accompanied by shifts in the composition and diversity
of the gut microbiota, suggesting that the vertical transfer of
microbial molecules may also impact fetal development (129,
130). Thus, dysbiosis may be one of the driving forces by
which inflammatory diseases can increase the risk of
neurodevelopmental disorders.

Collectively, the correlative data linking maternal immune
activation and/or dysbiosis to ASD development in humans,
combined with the causative role of SFB in driving the murine
MIA model, suggests that dysbiosis of the maternal microbiota
during gestation may contribute the risk of ASD in children.

The Gut Microbiota Modulates
Microglial Function
Microglia are highly sensitive to environmental changes, not just
locally, but on a global scale. On the most basic level, microglia are
readily activated in response to systemic inflammation or circulating
LPS, specifically in CNS regions with fenestrated capillaries,
including the choroid plexus and the circumventricular organs
(131, 132). If the insult is great enough, systemic LPS challenge
can trigger the activation of microglia that rapidly spreads from the
circumventricular organs into the brain parenchyma, mediated by
the autocrine and paracrine effects of microglial TNFa and IL-1b
production (132–134). Whilst the gut microbiota will not induce
systemic inflammation under homeostatic conditions, it has been
well-documented that ASD is associated with barrier defects in the
GI tract (135–137), often referred to as a “leaky gut”, and impaired
blood-brain barrier (BBB) integrity (115, 136, 138). Thus, it is
possible that inappropriate trafficking of bacterial cell wall
components through the intestinal barrier to the CNS, through a
permissive BBB, could contribute to abnormal microglial activation
and associated neurological symptoms.

Microglia can sense peripheral changes in more subtle ways,
and it is becoming increasingly apparent that they respond to
distal changes in the gut microbiota composition, in the absence
of overt inflammation or endotoxemia. The absence of a
microbiome certainly has profound and lasting effects on
microglial cell phenotype and function. Microglia development
can be modulated by the maternal microbiota in a sex- and time-
dependent manner (Figure 1). Embryonic microglial cells
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isolated from the offspring of GF dams exhibited marked and
sex-specific differences in transcriptional profiles, increased
density and ramification of embryonic microglia in different
brain regions and altered chromatin accessibility compared to
those from the offspring of SPF dams (139). Transcriptional
differences were first apparent in the microglia of GF offspring at
E14.5, with 19 differentially expressed genes differentiating GF
and SPF microglia at this time. By E18.5, the transcriptional
profile of microglia from male, but not female, GF embryos was
profoundly distinct from their SPF counterparts, with a total of
1216 genes differentiating between male embryonic microglia
from GF and SPF mice, compared to the 20 genes that
differentiated between microglia from the two groups of
females (139). Interestingly, most of these genes were
upregulated in microglia from SPF compared to GF embryos.
Not only does this work provide compelling evidence that the
maternal microbiota can shape microglial cell development and
maturation during pre- and perinatal stages, but the sex-specific
differences highlighted in this study could account for the male
bias associated with ASD development. However, it is still
debated whether there is a biological mechanism accounting
for the sex-specific differences associated with ASD prevalence.

The presence of an intact, complex microbiota is also required
for normal microglial cell phenotype, morphology and
functionality in adulthood. Microglia are more abundant in the
brains of adult GF compared to SPF mice. Moreover, they are
more proliferative, and exhibit altered cell morphology,
characterised by longer dendrites with increased numbers of
segments, branches and terminal points (140). Phenotypically,
they are less mature, with increased expression of Spi1, CSF1R
and F4/80, and are therefore less equipped to respond to immune
challenges, as demonstrated by their tempered cytokine
production following LPS stimulation ex vivo or lymphocytic
choriomeningitis viral (LCMV) infection in vivo. Microglia from
GF mice also have a reduced ability to expand in response to
LCMV compared to microglia from adult SPF mice (140). Thus,
microbial signals may be required for normal microglial
maturation, priming them to respond to inflammatory insults
later in life; see Table 1 for a summary of some bacteria and
associated metabolites shown to affect microglia.

Recolonizing mice with a complex microbiota or feeding
them short-chain fatty acids (SCFA) can rescue the abnormal
microglial maturation associated with GF mice (140). SCFA are
bacterial metabolites derived from microbial fermentation. All
Frontiers in Immunology | www.frontiersin.org 7
the three main SCFAs, propionate, butyrate and acetate, are able
to cross the blood brain barrier (BBB) during steady-state
through monocarboxylate transporters, and are detectable in
the CSF in humans (150). Altered concentrations of SCFA are
observed in faecal samples from children with ASD, and ASD-
associated bacteria, such as Clostridia and Bacteroidetes, are
important producers of propionate and its derivates (151–154).
Further supporting a role for propionate in neuropathology, the
administration of high amounts of propionate, by different
routes, can dramatically increase microglial cell activation, thus
increasing the local production of inflammatory cytokines that
induce bystander damage and the development of ASD-like
behaviours in mice (148, 150). On the other hand, butyrate
promotes the transcription of genes involved in neuronal
inhibitory pathways, thus improving social behavior in the
BTBR mouse strain, an idiopathic model of ASD (155).
Considering that butyrate shows anti-inflammatory effects in
microglia, and that microglia act as important modulators of
neuronal inhibitory/excitatory pathways in ASDmodels, it seems
entirely plausible that the beneficial role of butyrate is at least
partially mediated through microglial cell-modulation
(156–158).

Aberrant production of p-Cresol, a metabolite produced
mainly by intestinal microbes, has been described in the fecal
samples from children with ASD (142, 159). Interestingly, p-
Cresol has recently been suggested induce the elevation of
microglia-associated CD68 protein in the prefrontal cortex of
mice with p-Cresol sulfate (PCS)-induced neuroinflammation
(144). Although the specific mechanisms remain to be fully
established, these data suggest that imbalances in the
production of microbial metabolites might contribute to ASD
pathogenesis via their effects on microglial cells (Figure 2).
Notably, bacterial metabolites can be transferred from mother
to fetus during gestation (160) and could thus account for the
neurodevelopmental changes associated with maternal dysbiosis.

In addition to the direct effects that bacterial metabolites may
have on the CNS, the immune system is a potential mediator of
the gut-to-brain communication associated with ASD.
Development, maturation and activation of the peripheral
immune system is heavily influenced by the gut microbiota,
particularly during early life (129, 161). Perturbation of the
normal microbiota during this critical window, or even during
pregnancy, can cause long-lasting immune alterations,
conferring susceptibility to several disorders, including
TABLE 1 | Potential links between bacterial species and microglia development and function.

Gut microbiota Bacterial species Metabolites Potential effects on microglia References

Bifidobacterium spp SCFAs Homeostatic expansion of ramified microglia (141)
Blautia hydrogenotrophica, Clostridium
spp.

p-cresol Induce microglial activation and expression of microglia associated CD68 protein (142–144)

Clostridium butyricum Mainly
butyrate

Attenuate microglia activation and microglia-mediated neuroinflammation (145)

Lactobacillus spp. unknown Regulate microglial dystrophy and activation during prenatal periods (146, 147)
Bacteroides spp, Clostridium spp. propionate Induce microglial activation and production of inflammatory mediators (in high

concentrations)
(148, 149)
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neurodevelopmental disorders (130, 162). Indeed, in addition to
gut dysbiosis, children with ASD often present with abnormal
activation of peripheral blood mononuclear cells and increased
levels of systemic inflammatory mediators, including IL-1b, IL-6,
CCL2, IFN-g and IL-17 (163–166). Similarly, genetic and
environmental ASD models show permanent systemic immune
dysregulation and suggest a detrimental role of inflammation in
the aetiology and/or maintenance of ASD (167, 168). For
example, the behavioural deficits associated with the MIA
model can be restored by a bone-marrow transplant from the
offspring of PBS-injected control dams, thus highlighting the
detrimental role the immune system can play in mediating
the ASD-like symptoms associated with this model (167). It
has been widely published that peripheral immune system
Frontiers in Immunology | www.frontiersin.org 8
activation can have a profound impact on brain function and
behaviour (131, 169–171). Given that microglia can sense and
respond to changes in circulating inflammatory mediators, it is
possible that aberrant immune activation could contribute to the
neuropsychiatric symptoms associated with ASD via effects on
microglial cells (Figure 2).

Recent work has elucidated a novel pathway of immune-
mediated microglial cell maturation whereby activated CD4+ T
helper cells migrate to the CNS, facilitating microglial fetal-to-
adult transition (172). Crucially, peripheral activation of
conventional CD4+ T cells by the microbiome is essential to
license their migration to the brain in steady state. An absence of
CD4+ T cells in the brain, as observed in MHC class II-deficient
mice, induces altered neuronal synapses and abnormal behaviour
FIGURE 2 | Microbiota-Microglia modulation in ASD. Microbiota-microglia communication is mediated via multiple direct and indirect mechanisms, including the
production of bacterial metabolites, such as SCFAs (1), direct modulation of the peripheral immune system and cytokine milieu (2), and direct activation of the vagus
nerve (VN) by bacterial compounds and metabolites. During homeostasis, some bacterial metabolites and components of the immune system can activate the VN
or reach the brain via the systemic circulation, directly affecting microglial maturation and functions (1; 2). In some neurodevelopmental disorders, including ASD,
dysbiosis of the gut microbiota can induce loss of gut barrier integrity. Higher intestinal permeability may allow bacterial translocation (3), as well as an imbalance in
circulating bacteria-derived components (4), thus activating immune signaling pathways, including the release of cytokines and other proinflammatory molecules.
Both bacterial components and proinflammatory mediators can cross the blood brain barriers (BBB) or activate the VN, inducing aberrations in the normal
homeostatic functions of microglia, such as surveillance, synaptic pruning and inflammatory states, contributing to ASD symptoms.
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similar to those observed in some ASD models. In these mice,
microglial differentiation was arrested between fetal- and adult-
states. Although this study failed to address what direct effects, if
any, microbial diversity might play on the phenotypes observed,
it provided proof-of-principle that gut dysbiosis could impact
microglial maturation in ASD patients via altered CD4+ T cell
peripheral activation (172).

Finally, both gut bacteria and their metabolites, as well
cytokines and other immune mediators, can directly stimulate
the vagus nerve (VN), which in turn, relays information to the
CNS (173–177). The VN is one of the most prominent aspects
of the parasympathetic nervous system and has been
extensively studied for its involvement in digestion, satiety,
stress response, and regulation of inflammation (178). It also
constitutes one of the main pathways of neuroimmune
communication, driving sickness behaviour in response to
systemic LPS challenge (171). Vagal afferent fibers innervate
all the layers of the intestinal wall (178). Although it does not
extend into the lumen of the GI tract, the VN is exposed to
bacterial components that diffuse across the GI barrier, such
as neurotransmitters, metabolites and major components
of bacterial cell walls. VN neurons express numerous
pattern recognition receptors, as well as receptors for SCFA
and serotonin, allowing them to interact with these molecules
directly (177, 179–181). The gut microbiota may also interact
with the VN indirectly, by altering the inflammatory milieu of
the intestine (Figure 2). Afferent VN fibers also express
numerous cytokine and chemokine receptors (182). As such,
intestinal inflammation induced by dysbiosis can be sensed
by the VN and transmitted to the brain; an effect known
to influence microglial activation and neuroinflammation
(183, 184). Thus, by stimulating the VN, either directly or
indirectly, the gut microbiota may regulate behavior in
patients with ASD (Figure 2). Indeed, experiments in mouse
models have shown that by stimulating the VN, gut microbes,
such as L. reuteri, can improve ASD symptoms (110).
Moreover, Lactobacillus strains can regulate behavioral
and physiological responses in a manner that requires VN
stimulation (173).

Collectively, these data demonstrate some of the complex
pathways by which the gut microbiota can remotely modulate
microglial cell function and associated behavioural changes.
They also provide proof of principle that microbiome-based
therapies could alleviate ASD symptoms via their putative
effect on microglia.

Dysbiosis, Immune Dysfunction and a
Leaky Gut in ASD
Although it is yet to be fully established, a causal relationship
between immune dysfunction, dysbiosis and the barrier defects
associated with ASD patients seems likely, and we propose this as
a major factor in the maintenance of neurological dysfunction in
ASD (Figure 2). Dysbiosis of the intestinal microbiota could
certainly induce both gut permeability and abnormal intestinal
inflammation through interactions with local immune and
mesenchymal cells (185). These interactions classically induce
Frontiers in Immunology | www.frontiersin.org 9
the production of a wide range of pro-inflammatory mediators,
amplifying local inflammatory responses and possibly driving
the GI-related co-morbidities that many ASD patients endure.
As such, the intestine is a likely source of the chronic low-grade
inflammation observed systemically in ASD patients (32, 186).
Supporting these hypotheses, the dysbiosis observed in murine
offspring exposed to the MIA model is accompanied by elevated
levels of colonic IL-6 and a widespread defect in intestinal barrier
integrity, all of which are restored following reconstitution with
B. fragilis (115).

Microglia express numerous cytokine receptors, as well as
toll-like receptors (TLR)-2, -4 and -7 (187–189), as does the BBB
endothelium and the VN. Moreover, BBB permeability is known
to increase in response to circulating cytokines. Thus, in addition
to locally activating the VN, the putative release of inflammatory
molecules and bacterial cell-wall components from the gut into
the circulation of ASD patients could increase BBB permeability,
resulting in widespread microglial cell activation and dysfunction
(11, 190). In addition to the immune pathways described,
dysbiosis and a leaky gut could create imbalances in circulating
bacterial metabolites, which can cross the BBB to interact with
microglia directly (Figure 2).

In summary, although a clear, causative role for the
microbiota–microglia axis in ASD onset or development has
yet to be fully described, the findings highlighted in this review
suggest that progression of ASD may have microbial origins and
thus paves the way for further research into whether therapeutic
microbial manipulation could help stem the tide of increasing
ASD incidence. We believe further study of this to be of
fundamental importance for establishing novel prophylactic
strategies that could prevent ASD.
CONCLUSIONS

We are still unravelling the complex tri-directional relationships
linking the microbiota with microglial function and
ASD development. Here we describe recent evidence
implicating microglia in ASD development, and discuss how
environmental risk factors, particularly gut dysbiosis, could
compromise the immunological and neurological functions of
microglia to drive permanent changes in the brain. We have also
highlighted how perturbations in the gut microbiota during
prenatal and neonatal periods, induced by antibiotics, dietary
changes or infections, could compromise microglial function,
thus altering brain function and increasing the risk of ASD.
Recent studies have begun to clarify the significant influence the
gut microbiota has on microglial phenotype during steady-state,
and in numerous models of neurological disorders. However,
more research is required to identify the precise mechanisms by
which microglia and the gut microbiota collude to drive
neurodevelopmental disorders, particularly in humans. We
hope that future studies, using metabolomics assays and
advanced next-generation sequencing platforms, will reveal
specific microbial communities or molecules associated with
ASD pathogenesis or alleviating symptoms, as well as the
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precise molecular mechanisms involved. This could pave the way
for the identification of novel treatment targets and/or the
rational design of probiotics to treat or prevent ASD.
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