
Frontiers in Immunology | www.frontiersin.

Edited by:
Markus H. Hoffmann,

University of Erlangen Nuremberg,
Germany

Reviewed by:
Michael Walch,

Université de Fribourg,
Switzerland

Dion Kaiserman,
Monash University,

Australia

*Correspondence:
Niels Bovenschen

N.Bovenschen@umcutrecht.nl

†These authors share first authorship

Specialty section:
This article was submitted to

Inflammation,
a section of the journal

Frontiers in Immunology

Received: 08 March 2021
Accepted: 21 April 2021
Published: 04 May 2021

Citation:
Bouwman AC, van Daalen KR,

Crnko S, ten Broeke T and
Bovenschen N (2021) Intracellular

and Extracellular Roles of Granzyme K.
Front. Immunol. 12:677707.

doi: 10.3389/fimmu.2021.677707

REVIEW
published: 04 May 2021

doi: 10.3389/fimmu.2021.677707
Intracellular and Extracellular Roles
of Granzyme K
Annemieke C. Bouwman1†, Kim R. van Daalen2†, Sandra Crnko1, Toine ten Broeke1

and Niels Bovenschen1,3*

1 Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands, 2 Cardiovascular Epidemiology Unit,
Department of Public Health & Primary Care, University of Cambridge, Cambridge, United Kingdom, 3 Center for
Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands

Granzymes are a family of serine proteases stored in granules inside cytotoxic cells of the
immune system. Granzyme K (GrK) has been only limitedly characterized and knowledge
on its molecular functions is emerging. Traditionally GrK is described as a granule-
secreted, pro-apoptotic serine protease. However, accumulating evidence is redefining
the functions of GrK by the discovery of novel intracellular (e.g. cytotoxicity, inhibition of
viral replication) and extracellular roles (e.g. endothelial activation and modulation of a pro-
inflammatory immune cytokine response). Moreover, elevated GrK levels are associated
with disease, including viral and bacterial infections, airway inflammation and thermal
injury. This review aims to summarize and discuss the current knowledge of i) intracellular
and extracellular GrK activity, ii) cytotoxic and non-cytotoxic GrK functioning, iii) the role of
GrK in disease, and iv) GrK as a potential therapeutic target.
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INTRODUCTION

Granzymes are a family of serine proteases traditionally known for their role in promoting
cytotoxicity of foreign, infected or neoplastic cells. Granzymes induce (apoptotic) cell death
mediated by a collective of cytotoxic lymphocytes (CLs) (e.g. cytotoxic T lymphocytes (CTLs),
natural killer (NK) cells). There are five human granzymes (granzyme A (GrA), GrB, GrH, GrK and
GrM) currently identified, whereas mice have ten known granzymes (GrA-G, GrK, GrM and GrN)
(1). Whilst human granzymes are homologous in amino acid sequence (40%), they vary in their
primary substrate specificity, function(s) and are uniquely expressed in distinct cell types (2, 3).
Upon activation, CTLs and NK cells induce apoptosis via the extrinsic death-receptor pathway or
the granule secretory pathway involving the pore-forming protein perforin and granzymes (4). The
latter are collectively stored in intracellular granules and delivered by CLs to the immunological
synapse after recognition of a target cell (4). Consecutively, aided by perforin, granzymes are
released in the cytosol of target cells, where they cleave intracellular substrates and activate signaling
pathways (4).

Although granzymes are traditionally described as primarily being involved in immune-targeted
cell death, emerging clinical and biochemical evidence suggests additional roles for granzymes (5, 6).
For example, GrB acts in autoimmune diseases by directly cleaving or aiding in the production of
autoantigens (7). Additionally, various granzymes (GrA, GrB, GrM) are reported to induce
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inflammation and interfere in viral replication (3, 8–10) and all
human granzymes target hnRNP K which reduces tumour cell
viability (11). Apart from intracellular activity, granzymes exist in
the extracellular space, thereby having the potential to exert
effects on both sides of the cellular membrane. Illustratively,
GrA, which shares homology and enzymatic activity with GrK,
and GrB can degrade extracellular matrix (ECM) possibly leading
to cell death through anoikis (12). Extracellular granzymes are
particularly upregulated in diseased individuals (e.g. in skin
inflammation, viral and bacterial infections) (9, 13–16).
Combined, this supports the current view that granzymes
possess extracellular roles in addition to their traditionally
described intracellular roles. Similarly, it has been suggested
that GrK has non-cytotoxic roles, including the augment of
GrA-induced pro-inflammatory processes (17, 18).

In comparison to GrA (a tryptase) and GrB (an asp-ase), little
is known about the molecular functioning of the only other
tryptase in the granzyme family; GrK (19). Human GrK was first
discovered in 1988 after purification from human peripheral
blood mononuclear cells (20). GrK is expressed by CTLs, natural
killer T cells (NKT), gd T cells and CD56bright+ NK cells (21–23).
Similar to its closest homolog GrA, GrK displays tryptase-like
activity cleaving substrates after basic Arg or Lys (24). Since GrA
and GrK are both tryptases and have some substrates in
common, GrK has long been viewed as a redundant enzyme
for GrA. However, this concept is now debated due to the unique
substrates and functionality of GrK (25). The GrK gene (GZMK)
is closely linked to GZMA on chromosome 5, likely originating
from gene duplication (1, 26). Human GrK is synthesized as
inactive pre-pro-granzyme (zymogen) containing a signal
dipeptide directing pre-pro-GrK to the endoplasmic reticulum
(ER) (27). Removal of the dipeptide [e.g. by granular cathepsin
(28)] results in conformational change and subsequent catalytic
activation (29). Mature GrK exists as a monomer with four
disulfide bridges and no free cysteine (Cys) residues. The three-
dimensional structure highly relates to trypsin and other related
granzymes (27). GrK contains a heparin-binding site, an
activation domain with proteolytic activity and a nonspecific
substrate-binding template strand (24, 30). Various GrK
substrates have been reported, including nucleosome assembly
protein SET, heterogeneous nuclear ribonucleoprotein (hnRNP)
K, b-tubulin and a-tubulin (25, 31). Inter-alpha inhibitor 1
(IaIp), which circulates in the plasma of healthy individuals, is
a physiological GrK inhibitor (32). Similar to the other
granzymes, the traditional role of GrK is debated and
(extracellular) functions of GrK in promoting inflammation
and infections are emerging.

Both intra- and extracellular GrK target physiological
substrates (Table 1), dependent or independent on its catalytic
activity. Furthermore, GrK is released in plasma of patients
suffering from e.g. autoinflammatory diseases, suggesting a
potential role in the biological impact of the diseases. Yet, little
has been described on the potential non-cytotoxic and
extracellular functioning of GrK thus far. Therefore, this
review aims to comprehensively describe the diverse roles of
Granzyme K and its potential as therapeutic target.
Frontiers in Immunology | www.frontiersin.org 2
INTRACELLULAR GRK ACTIVITY

Cytotoxicity
Pioneering research on rat GrK initially classified GrK as a DNA-
fragmenting protease and identified it as fragmentin. This was a
result of the observation that GrK induced YAC-1-derived DNA
to be cleaved in oligonucleosome-sized fragments resulting in the
formation of severe chromatin condensation (42). The first in
vitro study on the apoptotic capacity of human GrK combined
with perforin suggested that it induces non-apoptotic cell death
via provoking mitochondrial dysfunctioning and generation of
reactive oxygen species (ROS) (43). Further in vitro studies
showed that cleavage of several intracellular GrK substrates
results in cytotoxicity (Figure 1), including proteins of the SET
complex, BH3 interacting-domain death antagonist (Bid),
vasolin-containing protein (VCP) and p53.

Early studies on human GrK showed that GrK activates caspase-
independent apoptosis by cleaving the nucleosome assembly
protein (NAP) SET in its recombinant and native form or in
intact cells in vitro (33). This results in the disruption of SET and
loss of inhibition of GrK-activated DNase (GAAD) functioning.
Consequently, the GAAD NM23H1 nicks chromosomal DNA,
resulting in chromatin condensation and apoptotic nuclear
morphology comparable to GrA (33). GrK also targets other SET
complex proteins including DNA-binding protein HMG2 and
redox factor-1/apurinic apyrimidinic endonuclease 1 (Ape1), an
endonuclease antagonizing ROS generation (33, 35). The initial
suggestion that GrK and GrA show redundant specificity and
function is supported by the observation that both granzymes
cleave SET, Ape1 and HMG2 with similar degradation fragments
(Table 1) (33). As a physiological substrate of GrK, Ape1 cleavage
facilitates intracellular accumulation of ROS. This may be the first
step in GrK-mediated cell death as ROS accumulation takes part in
a positive feedback loop wherein disruption of mitochondria leads
to additional ROS release, also known as ROS-induced ROS release
(44). GrK reportedly induces ROS accumulation in vitro, supporting
this hypothesis (34, 43, 44).

Other potential pathways triggering GrK-induced apoptosis
depend on mitochondrial damage and ER stress, both resulting in
ROS accumulation (36, 37). Like GrB, human GrK is shown to
degrade recombinant and native Bid to truncated Bid (tBid) in vitro,
enabling it to disrupt the outer mitochondrial membrane (34). This
leads to release of pro-apoptotic cytochrome c and endonuclease G,
suggesting GrK caspase-mediated apoptosis. These results are in
contrast with earlier findings suggesting rat GrK does not trigger
cytochrome c release in vitro (45). This may be explained due to
granzyme orthologues not completely sharing substrate specificity
(46). Furthermore, VCP is an important component of the
endoplasmic-reticulum-associated protein degradation (ERAD)
pathway that eliminates misfolded proteins and has ATPase
activity. In vitro GrK can bind and cleave VCP, as well as other
ERAD components Ufd1 and Np14 (36). The resulting inhibition of
ERAD leads to the accumulation of misfolded proteins and ER
stress (36). Adaptive responses to limit ER stress include nutrient
starvation and transcriptional activation of RNases which degrade
misfolded proteins (47). When the adaptive response is not
May 2021 | Volume 12 | Article 677707
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sufficient to overcome ER stress, the cell will undergo apoptosis (47).
ER stress, as well as tBid-mediated disruption of the outer
mitochondrial membrane, may lead to additional accumulation of
ROS (34). Lastly, p53 is a physiological target of GrK, processing
p53 to three pro-apoptotic fragments: p13, p35 and p40 (37). Once
cleaved into their active form, these products cause mitochondrial
Frontiers in Immunology | www.frontiersin.org 3
disruption and upregulation of p21, PG13 andMDM2 transcription
(37). Intracellular GrK-challenged tumor cells are killed in a p53-
dependent manner (37).

These results identify various intracellular GrK substrates in
vitro, including SET, Bid, Ape1, VCP and p53 leading to
cytotoxicity in caspase-independent ways through DNA damage,
TABLE 1 | Intracellular and extracellular substrates of GrK and suggested biological impact.

Substrate GrA
substrate?

(Extra) cellular
location

(Suggested) biological impact Reference

Intracellular substrates
SET complex +(89) Nucleus NM23H1-induced DNA nicks, chromatin condensation and apoptotic morphology. (25, 33)
Bid -(89) Mitochondria Disruption of the outer mitochondrial membrane and release of cytochrome c and endonuclease G. (34)
Ape1 +(89) Nucleus Inhibits its redox activity facilitating intracellular ROS accumulation and enhancing GrK-induced cell

death.
(35)

VCP ER Inhibition of ERAD components and initiation of ER stress leading to ROS accumulation and cytotoxicity. (36)
p53 Nucleus,

mitochondria
Cleavage products p13, p35 and p40 induce transcription of p21, PG13, MDM and mitochondrial
disruption, leading to ROS accumulation and cytotoxicity.

(37)

Importin 1a/b Nucleus Inhibition of viral replication by preventing NP/viral RNA complex formation. (38)
b-tubulin Cytoskeleton Potential novel cell death pathway and terminating viral production in infected cells during NK cell attack. (25)
hnRNP K +(12) Nucleus Potential novel cell death pathway and/or terminating viral production in infected cells during NK cell

attack.
(25)

Extracellular
substrates
PAR-1 Cell membrane Activation of PAR-1 mediating endothelial activation and release of pro-inflammatory cytokines. (39, 40)
LPS -(90) ECM Removal of LPS molecules from micelles and transfer to CD14 and TLR4, promoting cytokine

expression.
(41)
May 2021 | Volume 12 | Art
Bid, BH3 interacting-domain death agonist; Ape1, Apurine/apyrimidine endonuclease 1; VCP, Vasolin-containing protein; ER, Endoplasmic Reticulum; ROS, reactive oxygen species;
ERAD, ER associated protein degradation; ECM, Extracellular matrix; NK cell, Natural Killer cell; NP, Nuclear protein; LPS, Lipopolysaccharides; PAR-1, Proteinase-activated receptor 1.
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FIGURE 1 | Intracellular and extracellular substrates of granzyme K (GrK). (A) Cytotoxic granules containing perforin and granzymes enter the cell. GrK binds or
cleaves substrates SET, Bid, Ape1, VCP, p53, hnRNP K and b-tubulin which promote apoptosis. (B) GrK inhibits replication of influenza A through cleavage of
importin-1a and -b, thereby hindering nuclear uptake of importin-1a and -b. (C) GrK cleaves and activates PAR-1. Downstream phosphorylation of ERK1/2 results in
a pro-inflammatory cytokine response (e.g. IL- 1b, MCP-1, IL-6, IL-8) and increased expression of adhesion molecules (e.g. ICAM-1, VCAM-1, E-selectin). (D) GrK
facilitates binding between LPS and CD14. CD14 binds to TLR4 which leads to a pro-inflammatory cytokine response. Ia, importin-1a; LPS, lipopolysaccharides;
PAR-1, Protease-activated receptor 1; TLR4, Toll-like receptor 4. Red spheres: granzyme K. Figure created with Biorender.com.
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mitochondrial damage and ROS accumulation (Figure 1).
Importantly, next to sharing some substrates with GrA (Table
1), GrK has thus shown to possess its own unique functions
cleaving specific substrates in addition to being a functional GrA
back-up.

Non-Cytotoxic Roles
In contrast to in vitro studies on human and rat GrK (42), in vitro
mice studies report no cytotoxicity of mouse GrK (mGrK) (17).
Analyzing the same markers of apoptosis as in previous studies
(phosphatidylserine externalization, mitochondrial membrane
integrity and ROS accumulation), mGrK concentrations up to
600 nM (with delivery agent) and 1200 nM (without delivery
agent) did not induce apoptosis in mouse embryonic fibroblasts
and EL4 cells (17). Similar results were obtained in vivo using
GrK-deficient (GrK-/-) mice (48). When comparing the apoptotic
potential of GrK-/- mice with WT mice, no essential role in
cytotoxicity for GrK was found (48). Hence, the apoptotic
potential of GrK has remained controversial (48).

This controversy has also been reported for GrA. Despite early
studies demonstrating GrA induces cell death in vitro (49, 50),
others identified GrA as a pro-inflammatory granzyme, unable to
induce apoptosis in vivo in mice and humans (51). For GrB,
nanomolar concentrations were sufficient to induce apoptosis in
Jurkat cell-free extracts, suggesting high cytotoxicity (52). In studies
proposingGrA’s andGrK’s cytotoxic activity however,micromolar
concentrations are required, suggesting lower cytotoxicity thanGrB
(53). Whilst granzymes are conserved in various organisms,
differences in granzyme substrate specificity and function among
species may explain this conflicting data. Further in vivo studies on
human GrK using physiological GrK levels are needed to establish
its cytotoxic potential.

GrK also targets intracellular non-cytotoxic substrates such as
importina1 or b in vitro, destabilizing their association to generate
the ternary import complex for transportation of cytoplasmic
cargos (a1/b dimer) (38) (Figure 1). Proteomic studies
furthermore identified intracellular substrates b-tubulin, the
microtubule network protein, and the pre-mRNA-binding
protein hnRNP K (25) (Table 1). Both proteins play important
roles in cellular physiology making them relevant for cell survival.
Cleavage of b-tubulin may impair tubulin polymerization, whereas
cleavage of hnRNP K may inhibit or rescue the translation of
proteins involved in cell death. Cleavage of these proteins raised the
potential of a new cell death pathway inducedbyGrKdifferent from
GrA (25). hnRNP K downregulation was shown to promote a
mixture of exon inclusion and exon skipping events affecting
various apoptotic proteins (54). However, thus far, the
physiological role of b-tubulin and hnRNP K cleavage remains
unclear (25).

GrK is suggested to augment GrA-induced pro-inflammatory
processes by cleaving the same substrates differentially - based on
the high display of GrK substrate specificity (17) (Table 1). This
may be through stimulation of target cells to secrete pro-
inflammatory cytokines. mGrK induces pro-inflammatory
interleukin-1b (IL-1b) maturation and secretion in LPS-
sensitized peritoneal macrophages (PEMØ) in vitro (17). In
this research, it was not established whether this effect was
Frontiers in Immunology | www.frontiersin.org 4
dependent on intra- or extracellular modulation by mGrK.
However, nanomolar, physiological concentrations of mGrK in
combination of perforin were sufficient to induce IL-1b release
(>30 nM), whereas only high, non-physiological concentrations
of mGrK alone induced IL-1b release (600 and 1000 nM) (17).
Hence, mGrK may induce IL-1b release of primed PEMØs
dependent on intracellular modulation. To date, no additional
intracellular substrates of GrK have been described. All in all,
several non-cytotoxic intracellular targets and functions have
been described for GrK. These include importin a1 or b, b-
tubulin and hnRNP K.
EXTRACELLULAR GRK ACTIVITY

GrK circulates in the extracellular space in different forms. In
healthy individuals, GrK can form complexes ranging from 150-
250 kDa (inactive multimer), whereas its free form is 26 kDa
(monomer) (14). Multiple mechanisms have been suggested to
result in extracellularGrK release. These include i) escape from the
immunological synapse, ii) granzyme release post degranulation,
iii) degranulation induced by chemokines or iv) cytokines and v)
granzyme release following integrin-ECM proteins interaction
(55). Extracellular GrK, when administered in the absence of a
delivery agent such as perforin, is not considered cytotoxic in vitro
(39, 40, 56). Furthermore, GrK, among other cell types, is
expressed by CD56bright+ NK cells, and classically activated
macrophages, which either express none or negligible levels of
perforin (21, 56). The presence of GrK in the extracellular space
and its synthesis in the absence of perforin suggests GrK has
additional functions in addition to its classically described
perforin-mediated intracellular activity. Under physiological
conditions, little in vivo evidence of GrK-mediated extracellular
cleavage of substrates exist. Yet, accumulating in vitro evidence
points to the roles of GrK in endothelial activation and the
induction of a pro-inflammatory cytokine response.

Endothelial Activation
Following an infection the endotheliumundergoes changes, defined
by the expressionof cell-surface adhesion and endothelial leukocyte
adhesionmolecules, to participate in the inflammatory response - a
process known as endothelial activation. GrK activates the
endothelium through modulation of transmembrane receptors.
Through cleavage, GrK activates a member of the protease
activated receptor (PAR) family, PAR-1 in vitro, which is
considered an important activator of endothelium (39, 57). PAR-
1 is activated by cleavage of its N-terminal by proteases. GrK-
mediated endothelial activation is abrogated by interference of the
neutralizing antibody for PAR-1, ATAP-2, suggesting GrK-
mediated endothelial activation is dependent on cleavage and
activation of PAR-1 (39, 40, 57). Differential responses from the
endothelium are induced depending on the cleavage site of the
receptor, conferred by the co-receptor and protease utilized (e.g.
thrombin cleavage of PAR-1 induces a pro-inflammatory response
in cells, whereasAPC induces an anti-inflammatory response) (58).

GrK administration is not cytotoxic to endothelial cells and
leads to PAR-1-dependent increased expression of the adhesion
May 2021 | Volume 12 | Article 677707
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molecules intercellular adhesion molecule-1 (ICAM-1), E-
selectin and vascular cell adhesion molecule-1 (VCAM-1) via
mitogen-activated protein kinase (MAPK) p38 phosphorylation
(39), which facilitate the recruitment and adhesion of circulating
leukocytes (59) (Figure 1). Additionally, in vitro studies indicate
that endothelial activation is enhanced upon GrK administration
to tumor necrosis factor a (TNF-a)-pretreated human umbilical
vein endothelial cells (HUVECs), suggesting GrK augments
TNF-a-mediated endothelial activation (39). In addition to
expression of adhesion molecules, GrK-mediated PAR-1
activation leads to production and secretion of cytokines,
thereby promoting inflammation (39).

Pro-Inflammatory Cytokine Response
Several granzymes have been reported to modulate the pro-
inflammatory cytokine response [e.g. GrA (200-600 nM), GrB
(25-100 nM)] (8, 41, 51). In addition to the prior mentioned
intracellular modulation of mGrK resulting in release of
inflammatory cytokine IL-1b, extracellular human GrK has
been reported to cause a pro-inflammatory cytokine response
in vitro. This response is observed in monocytes, human lung
fibroblasts, HUVECs, human keratinocytes and skin fibroblasts
(39, 40, 56, 60). The release of pro-inflammatory cytokines from
these cells is dependent on PAR-1 activation and downstream
extracellular signal-regulated kinase 1/2 (ERK1/2) and MAPK
p38 phosphorylation and independent on nuclear factor-kB (NF-
kB) (39, 56, 60) (Figure 1). HUVECs, human keratinocytes, skin
fibroblasts and pulmonary fibroblasts shown an enhanced
expression of IL-6 upon GrK administration, which may
influence inflammation through leukocyte differentiation (39,
40, 56). Likewise, monocyte chemoattractant protein 1 (MCP-1)
secretion is enhanced in HUVECs and pulmonary fibroblasts
when treated with GrK, stimulating inflammation by attraction
of leukocytes (39, 40). Lastly, GrK treatment induces enhanced
IL-8 release from human lung fibroblasts (39, 40). These
cytokines all promote inflammation by development,
recruitment and activation of immune cells (61, 62). Therefore,
Frontiers in Immunology | www.frontiersin.org 5
next to intracellular functioning, the potential ofGrK to activate the
endothelium and induce a pro-inflammatory cytokine response
through PAR-1 point towards a role for GrK in inflammatory
diseases. GrK stimulates a pro-inflammatory cytokine response in
both human and mice, suggesting an essential role of GrK in the
production of cytokines and control of inflammation during
evolution. This is further supported by the notion that the
GZMA/K locus exists in representative species tracing back to
cartilaginous fish (63).
GRK IN DISEASE

Similar to other proteases, intracellular and extracellular granzyme
levels are increased during several diseases, indicating the
significance of progressive granzyme research. Emerging evidence
on the pro-inflammatory potential of granzymes further underlines
the suggested role of granzymes in disease (8). As this is a newly
emerging field, most research consists of in vitro studies providing
insight into the role of granzymes indisease, includingGrK.Human
research demonstrates free GrK levels are elevated in several viral
and bacterial infections, sepsis (14, 60), burn wounds (56) and
airway infections including allergic asthma and acute
bronchopneumonia (64) (Table 2).

Viral Infections
Cytomegalovirus (CMV) is a herpesvirus affecting primates,
including humans (66). As a non-life threatening virus,
most infected people do not notice CMV, whereas in
immunocompromised patients (e.g. AIDS patients) a CMV
infection causes symptoms including diarrhea and fever (66).
In human plasma, GrK levels are elevated in patients suffering
from CMV infection (23). Moreover, GrK levels are elevated in
plasma samples from Dengue fever patients compared to healthy
controls (23). Plasma-derived cytotoxic T lymphocytes of mice
infected with Chikungunya virus have increased expression of
GrK (67). Furthermore, GrK-/- mice have reduced foot swelling
TABLE 2 | Intracellular and extracellular GrK in human disease.

Disease Status Extra- or intra-
cellular

Description Reference

Viral infection
Influenza A virus Intracellular GrK cleaves importin 1a or b in vitro, inhibiting viral replication of influenza A. (38)
Dengue virus Extracellular Soluble GrK levels are elevated, suggesting an anti-viral role of GrK in vivo. (23)
Cytomegalovirus Extracellular Soluble GrK levels are elevated, suggesting an anti-viral role of GrK in vivo. (23)
Bacterial infection
Pseudomonas aeruginosa Extracellular GrK synthesis occurs after 24h incubation of whole blood with P. aeruginosa. (65)
Sepsis Extracellular Free GrK (monomer) is only found in septic patients, compared to the inactive (multimer)

form in healthy controls.
(14)

Experimental endotoxemia Extracellular GrK levels are elevated upon LPS injection. (65)
Lung disease
Airway inflammation (Allergic asthma &
Bronchopneumonia)

Extracellular GrK levels are elevated compared to healthy controls, leading to CCL3 release and
recruitment of T cells to the site of inflammation.

(62)

Other
Thermal injury Extracellular/

intracellular
GrK impairs wound healing in mice by promotion of inflammation and inhibiting
epithelialization.

(56)
May 2021 | Volume 12 | Art
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compared to GrK+/+ mice, suggesting a pro-inflammatory role
for GrK (67). The enhanced production and secretion of GrK in
these diseases underlines the potential of GrK to play a role in the
immune defense against viral infections. Whether GrK
modulates the response to these viral infections and the
molecular mechanisms involved remain to be explored.

Influenza A is a recurring virus characterized by fever and
coughing which causes epidemics in birds and mammals (68).
When challenged with influenza A, WT mice display long-term
expression of GrK by antigen-specific CTLs (69). Moreover, GrK
was detected at high frequencies in CD8+ T cells derived from
GrA-/-/GrB-/- mice after challenge with influenza A (70).
Influenza A is a negative-strand RNA virus replicated by RNA
polymerase in the host cell nucleus through recognition of the
nucleoprotein (NP) and viral RNA complex (38). Prior to
complex formation, RNA polymerase and NP are transported
from the cytoplasm to the nucleus by binding to importin 1a or
b (38). Human GrK associates to importin 1a and cleaves
importin 1a and b following incubation with K562 cell lysates.
Therefore, GrKmay inhibit viral replication by cleaving importin
1a or b, preventing NP/viral RNA complex formation and
preventing RNA polymerase recruitment in vitro (38). The
finding GrK may inhibit viral replication by its proteolytic
capability has yet to be confirmed for humans and mice in vivo.

Furthermore, GrK possibly aids in the clearance of LCMV
infection in mice (17). LCMV is a rodent virus which is a widely
accepted model to study viral infections. GrA and GrB knockout
mice models suggest that GrA and GrB are not imperative for
LCMV clearance in mice, in contrast to perforin (17). This,
together with the finding that GrK is expressed ex vivo by
LCMV-infected mouse-derived CD8+ T cells, led to the
hypothesis that GrK might control LCMV clearance in mice
(17). LCMV-derived CD8+ T cells expressing GrK but not GrA
and GrB are not cytotoxic (17). Accordingly, administration of
recombinant GrK is not cytotoxic to EL4 cells in vitro (17).
However, recombinant GrK induces production of mature
proinflammatory IL-1b in pre-activated PEMØs (macrophages)
(17). Similarly, LCMV-derived immune cells and GrA-/-/GrB-/-

CD8+ cells induce release of IL-1b in LPS-primed PEMØs in the
presence of gp33, a LCMV-immunogenic peptide (17). IL-1b
may be an important mediator in LCMV infections since mice
treated with IL-Ra, a IL-1b receptor antagonist, fail to clear the
LCMV infection (17). Combined, these results suggest that
clearance of LCMV infection is (at least partly) dependent on
GrK-mediated non-cytotoxic mechanisms (17). However, the
suggestion that GrK is a key player in LCMV clearance is
challenged by an in vivo study on GrK-/- mice, which show no
impaired LCMV clearance upon intraperitoneal injection with
LCMV compared to WT mice (48). Moreover, elimination of
Ectromelia virus (ECTV) is not impaired in GrK-/- mice. This
suggests GrK does not play an essential role in the anti-LCMV or
anti-ECTV immunity (48).

Bacterial Infections
Intake of pathogenic bacteria derives from different kinds of
sources such as food or water consumption, air, living vectors, or
indirect contact. Infections with gram-negative or gram-positive
Frontiers in Immunology | www.frontiersin.org 6
bacteria activate a variety of molecular pathways and symptoms
observed in an infected individual (e.g. fever, inflammation,
swell ing) dependent on the bacterial and cell wall
characteristics (e.g lipopolysaccharide (LPS) from the outer cell
membrane of gram negative bacteria). More serious bacterial
infections can result in septic shock, characterized by organ
failure and ultimately lead to death if left untreated.

In sepsis and human experimental endotoxemia, a model for
systemic infection, levels of soluble GrK, GrA and GrB, are
elevated (14, 60, 71). The elevation of GrK in sepsis is
accompanied by a reduced expression of IaIp, the natural
inhibitor of GrK, which indicates an increase in the activity of
GrK (inverse correlation) (32, 65, 72). Subsequent research
showed GrK release in whole blood cultures is restricted to P.
aeruginosa, a gram-negative bacterium (73). This suggests that
the gram-negative bacterial cell wall, in particular LPS, plays a
pivotal role in triggering GrK secretion.

In vitro research confirmed this hypothesis. GrK, and its
catalytically inactive mutant, GrK-SA, have been shown to bind
and modulate LPS – suggesting that LPS binding is independent
from GrK’s catalytic activity (60). LPS consists of a lipid that
inserts the molecule in the membrane, a core peptide and the O-
antigen. Studies focusing on recombinant LPS revealed GrK
potentiates LPS by binding to the O-antigen, the outermost
part of LPS (60). Recombinant LPS molecules exist in plasma
as micelles, with protruding O-antigen faces towards the
extracellular space (60). GrK facilitates both removal of
individual LPS molecules from micelles by binding to its O-
antigen, and their transfer to CD14. LPS and CD14 form a
complex that binds to toll-like receptor 4 (TLR4) on the cell
membrane, leading to an inflammatory cytokine response (60).
Specifically, it was shown in vitro that this leads to TNF-a release
from human primary monocytes (60).

Airway Inflammation
In lung diseases such as chronic obstructive pulmonary disease
(COPD) (a progressive inflammatory lung disorder characterized
by shortness of breath and coughing), hypersensitivity
pneumonitis (rare immune system disorder affecting resulting
in hypersensitivity to inhaled dust) and allergic asthma (resulting
from exposure to allergens e.g. pollen), roles for GrA and GrB
have been reported. Less is known about the endobronchial
expression and release of GrK in lung disease. In a study
involving non-smoking and smoking subjects with or without
asthma, bronchopneumonia or COPD, bronchoalveolar lavage
fluid (BALF) of acute bronchopneumonia patients showed a 18-
fold increase of GrK compared to healthy controls (64). Similarly,
in allergic asthma patients an elevation in soluble GrK levels as
well as GrK expressing CD8+ T cells in BALF could be observed
upon allergen challenge (24 and 72 hour after exposure) (64).
Recruitment of GrK expressing CD8+ T cells might be dependent
on chemokine c-c motif ligand (CCL)3, a chemokine which is
elevated in the BALF of asthma patients following allergen
challenge (64). Further, in vitro studies demonstrate that
extracellular GrK induces cytokine secretion of IL-6, IL-8
(CXCL8) and monocyte chemotactic protein-1 (MCP-1)/CCL2
and proliferation of human lung fibroblasts through a PAR-1
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dependent mechanism (40). This suggests GrK may play a role in
airway remodeling by augmenting inflammation (40, 64).

Inflammaging
Aging and age-related illnesses share similar mechanistic
processes converging on inflammation (74). Affecting the
immune system, aging results in a chronic low-grade
inflammation (inflammaging) that contributes to the
pathogenesis of age-related illnesses. Interestingly, a recent
study of Mogilenko et al., 2021 identified a subset of clonal
GrK+ CD8+ T cells as conserved hallmark of inflammaging in
both mice and humans. In mice of advance age nearly half of all
circulatory CD8+ T cells acquire an age-associated GrK+ CD8+ T
phenotype indicating the potential impact on aging physiology
through GrK secretion. Furthermore, in a healthy human cohort
clonal GrK+ CD8+ T cells increased with age. Like in mice, the
cells display elevated EOMES expression levels and a distinct
epigenetic landscape. Together, the results suggest that GrK+

CD8+ T cells as well as GrK itself can be potential targets to
address age-associated immune dysfunction (75).

Thermal Injury
Healing of thermal injury and burn wounds is often accompanied
by inflammation, leading to painful contractures and excessive
scarring (76). In humans, levels of extracellular GrK are elevated in
acute burn tissues following thermal injury compared to normal
tissue (day 2-30 after injury). This is predominantly observed in
macrophages (56). Furthermore, afterGrK-/-micewere subjected to
thermal injury (grade 2), they showed improved matrix
organization, wound closure, dermal maturation, enhanced re-
epithelization and tensile strength in comparison with WT mice.
The GrK-/- mice also exhibit reduced expression of pro-
inflammatory IL-6, IL-1b, MCP-1, ICAM-1 and VCAM-1 (3
days after injury), suggesting a delayed pro-inflammatory
response (56). Accordingly, a reduced infiltration of M1
macrophages was observed in burn injury of GrK-/- mice
compared to WT mice (56). Cell migration of keratinocytes
significantly decreased and impaired re-epithelialization was
observed in GrK+ mice compared with GrK-/- mice (56). In vitro
exposure to GrK in keratinocytes, but not skin fibroblasts,
demonstrated impaired wound healing (56). Combined, GrK may
delay thermal injury-related wound healing by the promotion of
pro-inflammatory cytokine expression and impaired re-
epithelization. This potential GrK role is reminiscent of GrB,
which delays skin wound healing in mice through activation of
the pro-inflammatory cytokine response and degradation of
extracellular matrix components (77). Consequently, therapeutic
targetingofGrKmayrelievediseaseburdengiven thepotential roles
of GrK in infections (viral or bacterial), airway inflammation and
thermal injury.
GRK AS A THERAPEUTIC TARGET

Since granzymes are associated with several diseases and appear
extracellularly, they are considered promising therapeutic targets
Frontiers in Immunology | www.frontiersin.org 7
(8). Several fusion proteins of GrB against solid tumors are in
development as therapeutic agents, such as GrB conjugated to
VEGF or TNF-a (78). Similarly, inhibition and administration of
GrK could provide novel ways to overcome disease.

Inhibition of GrK could be beneficial for diseases in which
elevated GrK is associated with unfavorable disease outcomes.
For example, GrK inhibition could reduce the release of pro-
inflammatory cytokines in allergic asthma. Over the last 25 years,
several inhibitors for GrK have been described including
physiological inhibitors, and specific and nonspecific synthetic
inhibitors (32). Physiological nonspecific inhibitors of GrK
include antithrombin III (ATIII) and a-macroglobulin (a-2M)
(32), mainly inhibiting thrombin, plasmin, cathepsin G and
blood coagulation factors (79, 80). The GrK inhibitory effect of
these compounds is elevated when combined with heparin (27,
32). However, only high, non-physiological concentrations of
ATIII and a-2M reduce the catalytic ability of GrK (32). Up to
date, the only identified specific physiological GrK inhibitor in
human plasma is IaIp (32). IaIp inhibits GrK dose-dependently
as well as inhibiting cytokine production (32, 39, 81). IaIp
contains various chains, one of which is bikunin. Bikunin also
circulates as free form in plasma inhibiting GrK at its S1 pocket
(32). Administration of (human) IaIp in mice, rabbit and rat
models ameliorates survival in LPS or bacteria-induced sepsis
(82–85). Considering that GrK and IaIp levels in plasma of
sepsis patients are elevated, these could be used as molecular
targets or treatment for sepsis patients (72). Synthetic GrK
specific inhibitors include 3,3-diphenylproponyl-Pro-(4-
AmPhGly)P(OPh)2 and D-Phe-Pro-Arg-chloromethyl ketone
(30, 86, 87). Other general synthetic protease inhibitors (e.g.
trypsin inhibitors benzamidine and aprotinin) also inhibit GrK,
as well as GrA activity (32, 87, 88).

In infections with gram-negative bacteria, the unfavorable
pro-inflammatory cytokine response cannot be decreased by an
inhibitor targeting GrKs active site, as GrK induces the pro-
inflammatory cytokine response by binding to LPS and
transferring LPS to CD14. Monoclonal antibodies that interfere
in the interaction between GrK and LPS are proposed as potent
mediators (60). This approach could also be valuable in other
diseases in which GrK plays a pathogenic role independent of its
catalytic activity. To date however, no monoclonal antibodies to
target GrK therapeutically have been reported. Moreover,
targeting proteases that activate PAR-1 to stimulate the
inflammatory response might thus provide an efficient
therapeutic strategy as PAR-1 adopts a dual role in disease,
both protective and pro-inflammatory (39).

Furthermore, GrK could be targeted by attenuating gene
expression. Gene expression can be influenced by small
interfering RNAs (siRNAs) or microRNAs (miRNAs).
Targeted siRNAs are already in use to knockdown granzyme
expression, for example in granzyme C research (89). Next to
siRNAs, miRNAs interfere in the post-translational modification
of newly synthesized granzymes, including GrK. Recently,
miRNA-145 has been reported to be valuable in myocardial
ischemia/reperfusion (I/R) injury mouse models by regulating
the expression of GrK. In this study, the protective role of
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miRNA-145 against I/R injury by regulating the expression of GrK
with the treatment of anesthetic sevoflurane was investigated. In
ischemia, miRNA-145 levels are decreased, whilst mGrK levels are
upregulated. As GrK is a potential target gene of miRNA-145,
miRNA-145 could inhibit GrK expression. Upon treatment with
sevoflurane,miRNA-145 levels areupregulated andGrKexpression
is reduced – relieving I/R injury (90). Interestingly, miRNA-145
significantly elevates functioning of the left ventricle and decreases
the myocardial infarct size suggesting that downregulation of GrK
and upregulation of miRNA-145 may be protective of I/R
injury (90).

GrK administration could be beneficial for diseases in which
GrK expression is associated with favorable disease outcomes (e.g.
recovery). This includes for example influenza A infection.
Administration of exogenous granzymes has been studied
extensively for human GrB in vitro and in mice using
recombinant GrB coupled to the Lewis Y-binding antibody dsFv-
B3 or using an anti-HER2 antibody against HER2 tumors (91, 92).
Through this granzyme-antibody construct, GrB can be effectively
internalized both in vivo and in vitro (92). Illustratively, by
conjugating GrK to an anti-sialic acid antibody, the influenza A
receptor, GrB delivery could be adjusted to GrK.
CONCLUSION

After twenty years of GrK research, new roles are emerging
complementing GrK’s traditionally described role in cytotoxicity.
Most current studies on GrK discussed in this review are either in
vitro (e.g. cell-culture, binding assays) using human or mouse
GrK or in vivo animal studies (e.g. GrK-/- mice). Both in vitro and
in vivo studies identified roles in the modulation of
Frontiers in Immunology | www.frontiersin.org 8
inflammation, inhibition of viral replication and LPS
potentiation. Furthermore, GrK inhibition and stimulation
have been suggested for a variety of disease statuses as
therapeutic targets, including inflammatory disease and cancer.
Whilst no longer being considered an ‘orphan granzyme’ at
present, much of GrK functioning and molecular mechanisms
remain to be discovered.

Targeting GrK therapeutically remains a challenge due to a
lack of in vivo studies involving GrK in disease and GrKs dual
role in pathology (for example in viral replication inhibition and
airway inflammation). To meet the latter difficulty, GrK-SA may
be used as a substitute for active GrK in therapy. This way, the
pathological effect dependent on the active site of GrK should be
reduced, thereby minimizing adverse effects of GrK
administration. Further research is required to i) explore the
controversy around GrKs cytotoxic potential ii) review the
inhibitory effect of GrK on influenza A replication in vivo and
iii) investigate the curative role of GrK(-SA) upon inhibition
(with synthetic or physiological inhibitors) or administration in
thermal injury and airway inflammation.
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