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Innate and adaptive immune responses against pathogens are known to be carefully
orchestrated by specific cytokines that initiate and down regulate immune cell functions
from the initial infection through tissue repair and homeostasis. However, some cytokines,
including interleukin-27, are expressed at multiple phases of the infection, such that their
pro and anti-inflammatory functions have been difficult to interpret. As elucidation of
specific cytokine functions throughout infection is central to our understanding of
protective vs. susceptible immunity and return to homeostasis vs. prolonged
inflammation leading to septic shock, here we review the literature on IL-27 signaling
and the various functions of this heterodimeric ligand member of the IL-12 cytokine family.
Canonically, IL-27 is produced by antigen-presenting cells, and is thought of as an
immunostimulatory cytokine due to its capacity to induce Th1 differentiation. However,
many studies have also identified various immunosuppressive effects of IL-27 signaling,
including suppression of Th17 differentiation and induction of co-inhibitory receptors on T
cells. Thus, the exact role of IL-27 in the context of infectious diseases remains a topic of
debate and active research. Additionally, as recent interest has focused on clinical
management of acute vs. chronic infections, and life-threatening “cytokine storm” from
sepsis, we propose a hypothetical model to explain the biphasic role of IL-27 during the
early and late phases of immune responses to reconcile its known pro and anti-
inflammatory functions, which could be therapeutically regulated to improve patient
outcomes of infection.
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INTRODUCTION

Interleukin (IL) -27 is a cytokine with remarkably diverse influences on the immune system (1, 2).
IL-27 is composed of IL-27p28 and Epstein-Barr virus–induced 3 (EBI3) subunits, and signals
through a heterodimeric cell surface receptor composed of IL-27Ra and gp130 (1). IL-27 is a unique
cytokine with reported immunostimulatory and immunosuppressive effects on various immune
cells (1, 3–17), and understanding of its precise role during bacterial infections remains incomplete.
Prior studies using a murine sepsis model induced by subcutaneously injected Escherichia coli
demonstrated that IL-27 blockade improves the survival rate (18). Similarly, IL-27 neutralizing
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antibody treatment reduced pulmonary inflammation and
improved mice survival rate in a mouse model of cecal ligation
and puncture (CLP)-induced acute lung injury (19). IL-27
inhibition in a murine model of secondary Staphylococcus
aureus pneumonia following influenza infection also improved
bacterial clearance (20). In contrast, blockade of IL-27 in rodent
models of Clostridioides difficile infectious colitis decreased
bacterial clearance and host survival rates (21). Furthermore,
IL-27 has been shown to be critical to vaccine-elicited T cell
responses (22). Therefore, the purpose of this review is to
summarize the immunobiology of IL-27 in the context of
bacterial infections and propose hypothetical mechanisms of
IL-27-mediated immune homeostasis during these infections.
OVERVIEW OF IL-27 COMPONENTS,
RECEPTORS, SIGNALING PATHWAYS

IL-27 is a heterodimeric cytokine composed of IL-27p28 and
EBI3 subunits (1) (Figure 1). EBI3 was originally identified as a
soluble hematopoietin component related to IL-12p40
preferentially expressed in Epstein Barr virus-transformed B
cells (23). In silico searches of orphan proteins that can bind to
EBI3 led to the identification of IL-27p28, a four-a helical
polypeptide bundle of the IL-6 cytokine family (1). IL-27p28
can bind to Cytokine-Like Factor-1 (CLF-1), and IL-27p28/CLF-1
Frontiers in Immunology | www.frontiersin.org 2
complex enhances IFN-g production in activated NK cells,
inhibits CD4+ T cell proliferation to enhance IL-10 secretion
(24). IL-27p28 is secreted as a soluble cytokine (called IL-30) by
itself in mice, however, in humans, it is secreted as a heterodimer
with EBI3. Muller et al. showed that the absence of a disulfide
bond-forming cysteine pair in IL-27p28 determines whether it is
secreted as a monomeric cytokine or if it is secreted in concert with
EBI3 (25). In addition to IL-27p28, EBI3 can bind to IL-12p35 to
form IL-35 cytokine, which exhibits immunosuppressive functions
through the inhibition of T helper cell type 17 (Th17)
differentiation and the promotion of regulatory T (Treg) cell
proliferation (26, 27)

IL-27 signals through a heterodimeric cell surface receptor
composed of IL-27Ra (also known as TCCR or WSX-1) and
gp130 (5) (Figure 1). The interacting partner of IL-27Ra is the
gp130 receptor, which is also utilized by several other cytokines
for signaling, including IL-6, IL-11, leukemia inhibitory factor
(LIF), oncostatin M (OSM), cardiotrophin 1 (CT-1), and ciliary
neurotrophic factor (CNTF) (28, 29). Both IL-27Ra and gp130
are differentially expressed in numerous cells including
monocytes, dendritic cells (DC), T and B lymphocytes, NK
cells, mast cells, and endothelial cells (5). The expression levels
of these receptors are also different depending on the activated
state of cells (30, 31), which contributes to their altered
responsiveness to IL-27 (31). For instance, naïve CD8+ T cells
express gp130 and are highly responsive to IL-27, whereas CD8+
FIGURE 1 | Components of IL-27 and IL-27 receptor. IL-27 is a heterodimeric cytokine composed of IL-27p28 and EBI3. The IL-27 receptor is a heterodimeric cell
surface receptor composed of IL-27Ra and gp130. IL-27 signaling occurs primarily through a JAK/STAT pathway, which varies depending on immune cell types.
IL-27 also signals through MAPK pathways.
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memory T cells are unresponsive to IL-27 due to decreased
gp130 expression (31).

IL-27 signaling occurs primarily through the Janus kinase
(JAK) - signal transducers and activators of transcription (STAT)
pathway, with variations depending on immune cell types: mast
cells (STAT3) (5), monocytes (STAT1, STAT3, and NF-kB) (32),
macrophages (STAT1 and STAT3) (33), naïve CD4+ T cells
(TYK2, JAK1, KAK2, STAT1, STAT2, STAT3, STAT4, and
STAT5) (34) and naïve B cells (STAT1 and STAT3) (35).

IL-27 is mainly produced by antigen-presenting cells such as
monocytes, macrophages and dendritic cells (1, 36–38). Other cell
types including myeloid-derived suppressor cells (39), CD4+ and
CD8+ T cells (40), osteoclasts (41), and activated B cells (42) are
known to secrete varying levels of IL-27 as well. Microbial
stimulation of Toll-like receptor (TLR) promotes the expression
of IL-27 in these cells (37, 43, 44). For instance, TLR4 stimulation
by lipopolysaccharide (LPS) increases expression of IL-27p28
through myeloid differentiation factor 88 (MyD88)/NF-kB c-Rel,
MyD88/IFN regulatory factor (IRF)1, and Toll/IL-1R-related
domain-containing adaptor-inducing IFN (TRIF)/IRF3 signaling
pathways (37, 43, 45) (Figure 2). Type I and II IFNs also upregulate
IL-27p28 expression by activating IRF1 (36–38), and type I IFN is
required for sustained expression of IL-27p28 via activation of
STAT1/IRF1 and formation of IFN-stimulated gene factor 3
(ISGF3) complex (45). The upregulation of EBI3 is induced by
TLR stimulation via activation of NF-kB p50/p65 and PU.1 (46).

Several inhibitory factors of IL-27p28/EBI3 production have
been reported including extracellular ATP that acts on the
Frontiers in Immunology | www.frontiersin.org 3
purinergic receptor of DCs (47) and C5a/C5aR on LPS-
stimulated macrophages (48). A recent study demonstrated
that prostaglandin E2 binds to the EP2/EP4 receptor and
inhibits IL-27 production by downregulating IL-27p28
expression through the cAMP/IRF1 signaling pathway (49).
The autonomic nervous system is also involved in the
regulation of IL-27 production. Catecholamines via b2
adrenoceptor activation antagonize phosphorylation of JNK
and suppress IL-27p28 production in LPS-stimulated
macrophages (50) (Figure 2).
EFFECT OF IL-27 ON INNATE IMMUNE
SYSTEM

Monocytes, Macrophages, and
Dendritic Cells
IL-27 is acknowledged to have pro-inflammatory effects on
monocytes, macrophages, and DCs (Figure 3). IL-27
stimulation alone leads to phosphorylation of STAT 1, STAT3
and enhances expression of inflammatory cytokines (IL-1b,
TNF-a, IL-12p35, and IL-18) and chemokines (IP-10, MIP-1a,
and MIP-1b) in primary human monocytes (5, 32). TLR7 and
TLR8 activate different signaling cascades in monocytes, leading
to distinct cytokine production and influence IL-27 expression in
monocytes (51, 52). TLR8 increases expression of IL-27 in
human monocytes, whereas TLR7 doesn’t directly increase
FIGURE 2 | Induction of IL-27p28 & EBI3 expression. TLR stimulation increases expression of IL-27p28 through MyD88/NF-kB c-Rel, MyD88/IRF1 and TRIF/IRF3
signaling pathways. IFN-a/b/g also upregulates IL-27p28 expression by activating IRF1. IFN-a/b is required for sustained expression of IL-27p28 via activation of
IRF1 and formation of ISGF3 complex. Upregulation of EBI3 is also induced by TLR stimulation via activation of NF-kB p50/p65 and PU.1. There are also several
inhibitors of IL-27 production. C5a, PGE2 and catecholamines inhibit IL-27p28 expression, and extracellular ATP inhibits both IL-27p28 and EBI3 expression via P2
receptor signaling.
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IL-27 expression via induction of the transcription factor FOSL1
(52). However, several studies have demonstrated that TLR7/8
agonist resiquimod (R848) is a potent inhibitor of Th2 cell-driven
inflammatory responses, which ultimately suppresses IL-27 in
monocytes and macrophages (53–55). In addition, IL-27 increases
TLR4 and TLR5 expression in THP-1 cells and phorbol
12-myristate 13-acetate (PMA)-stimulated THP-1 cells (17).
IL-27 also acts as a costimulatory molecule with LPS, causing
enhanced production of inflammatory cytokines (IL-12p40,
TNF-a, and IL-6) in human peripheral blood mononuclear cells
(PBMC), primary human monocytes, THP-1 cells, and PMA
differentiated THP-1 cells (17). Similarly, Kalliolias et al.
observed that primary human monocytes pretreated with IL-27,
upon LPS stimulation, showed a marked increase in inflammatory
TNF-a, IL-6 production, and a decrease in immunosuppressive
IL-10 (10).

Nitric oxide (NO) is a source of reactive nitrogen species,
which is important for killing of intracellular pathogens.
Addition of IL-27 increases inducible NO synthase (iNOS)
expression, and NO production in LPS stimulated mouse
peritoneal macrophages. This process is signaled via activation
of STAT1, p38 mitogen-activated protein kinase (MAPK), and
NF-kB (13). Reactive oxygen species (ROS) is also crucial for
eradicating intracellular pathogens, and IL-27 can enhance ROS
production in primary human macrophages and dendritic cells
upon PMA stimulation (56).
Frontiers in Immunology | www.frontiersin.org 4
IL-27 also affects antigen-presentation function. In THP-1
cells, IL-27 stimulation causes increased expression of major
histocompatibility complex (MHC) class I and II molecules,
along with costimulatory CD80/86 and CD54, which aid in
antigen presentation to immune cells (57). Primary human
DCs differentiated in the presence of IL-27 exhibited two-fold
higher expression levels of MHC II during Staphylococcus aureus
infection. Increased IL-12 production was also observed in these
cells, in addition to surface expression of dendritic cell-specific
intercellular adhesion molecule-3-grabbing non-integrin (DC-
SIGN), CD40, and macrophage-1 antigen (MAC-1), all of which
leads to enhanced T cell proliferation and activation (14).

The aforementioned studies highlight the immunostimulatory
activity of IL-27. In contrast, several studies have also elucidated
the immunosuppressive effects of IL-27 on antigen-presenting
DCs and macrophages. IL-27 treatment decreased TNF and IL-
12p40 production in murine peritoneal macrophages upon IFN-g
and LPS stimulation or Mycobacterium tuberculosis infection (6).
Similarly, IL-27 suppressed IL-12p40 production in LPS-
stimulated murine bone marrow derived macrophages (58).
Kalliolias et al. showed that IL-27 enhanced the production of
proinflammatory cytokines (IL-1b, IL-6 and TNF-a) in human
macrophages upon various TLR ligands stimulation. Interestingly,
they also demonstrated that IL-27 suppressed responses of human
macrophages to IL-1b and TNF-a via downregulation of their
receptor expression on macrophages (59). Karakhanova et al.
FIGURE 3 | Effects of IL-27 signaling on innate immune responses. IL-27 signaling promotes proliferation and differentiation of hematopoietic stem cells. It also
suppresses osteoclastogenesis. IL-27 signaling suppresses Th2 cytokines (IL-5 and IL-13) production and proliferation of ILC2 cells. IL-27 in concert with IL-15/IL-18
enhances proliferation of NK cells and production of IFN-g, granzyme B and perforin by them. IL-27 promotes production of inflammatory cytokines and chemokines
by monocytes. When DCs are differentiated from monocytes in the presence of IL-27 they show higher expression of MHC class II, DC-SIGN, CD40 and MAC-1.
They also have increased production of IL-12. IL-27 enhances expression of PD-L1 on DCs, which show a reduced proliferation capacity and IFN-g production.
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showed that human DCs treated with IL-27 enhanced
programmed death-ligand 1 (PD-L1) surface expression leading
to a reduced capacity to stimulate proliferation of DCs and IFN-g
producing T cells (11). Similarly, murine DCs from IL27Ra-/-

mice showed enhanced expression of costimulatory CD80/86
upon LPS stimulation leading to increased proliferation of IFN-g
producing T cells (9). Mascanfroni et al. also demonstrated that
IL-27 signaling in murine DCs suppressed the generation of Th1
and Th17 cells via induction of the immunoregulatory molecule
CD39, which depleted extracellular ATP and down-regulated
inflammasome activation (60). In summary, through the many
studies discussed here, we can reasonably conclude that
IL-27 has predominantly elicited pro-inflammatory effects on
monocytes. However, this is not necessarily the case with other
antigen presenting cells such as DCs and macrophages.
Nonetheless, further studies are necessary to clarify IL-27’s
immunomodulatory role in these cells (Figure 3).

Innate Lymphoid Cells
Innate lymphoid cells (ILC) have recently been recognized as innate
immune effector cells that are derived from the common lymphoid
progenitors (61). Unlike, other innate cells and antigen presenting
DCs, these cells: 1) lack phenotypic myeloid makers, 2) don’t have
the typical lymphoid morphology, and 3) lack recombination
activating gene (RAG)-dependent rearranged antigen receptors,
typically found on B and T cells (62). ILCs have been classified
based on functional criteria. One of group 1 ILCs, also known as
natural killer (NK) cells, plays an important role in immune system
regulation through IFN-g production and cytotoxicity (62). IL-27,
alone or in concert with other DC-derived cytokines (IL-15 and IL-
18), has been reported to have a pro-inflammatory effect on NK
cells (15, 63, 64). IL-27 stimulation increased IFN-g production in
primary human NK cells thorough activation of STAT1 and
promoted activation of NK cells (upregulation of CD25 and
CD69) (15). More recently, it was demonstrated that IL-27
treatment in concert with IL15/IL-18 enhanced proliferation of
human NK cells and production of IFN-g, granzyme B, and
perforin (63). Group 2 ILCs (ILC2) that produce type 2 cytokines
(IL-4, IL-5, and IL-13) play an important role in helminth
infections and allergic diseases (61). A recent study showed that
IL-27 treatment suppressed type II cytokine production and
proliferation of murine ILC2 cells during lung inflammation
induced by Alternaria alternata, a major fungus associated with
ILC2-mediated asthma (65) (Figure 3). These studies suggest that
IL-27 is important for upregulation of type 1 cytokine responses in
Group 1 ILCs and negative feedback mechanisms for type 2 innate
pro-inflammatory responses. Further studies are needed to
investigate IL-27’s role in regulating Group 3 ILCs.
EFFECT OF IL-27 ON ADAPTIVE
IMMUNE SYSTEM

CD4+ T Cells
IL-27 has diverse effects on T cell proliferation, differentiation,
and activation (2, 66) (Figure 4). It promotes proliferation of
Frontiers in Immunology | www.frontiersin.org 5
naïve CD4+ T cells, and together with IL-12, mediates Th1
differentiation and IFN-g production in naïve CD4+ T cells
(1, 4). Stimulation of CD4+ naïve T cells by IL-27 promotes
upregulation of Th1-specific transcription factor T-bet and IL-
12Rb2, both of which are essential for IL-12-mediated Th1
differentiation (3), suggesting a positive regulatory role in IL-
27’s responsiveness to naïve CD4+ T cells. Interestingly, IL-27
also induces Th1 differentiation using T-bet-independent
mechanisms via intercellular adhesion molecule (ICAM)-1/
lymphocyte function-associated antigen (LFA)-1/extracellular
signal-regulated kinase (ERK)1/2-dependent signaling
pathways (67). On the other hand, IL-27 negatively regulates T
cell growth and survival by affecting IL-2 production by CD4+ T
cells through the expression of suppressor of cytokine signaling
(SOCS) 3 (7, 8). These studies suggest that temporal changes in
IL-27 production can both positively and negatively regulate
Th1 development.

IL-27 suppresses Th2 cell differentiation by suppressing the
expression of GATA-3, a transcription factor essential for Th2
response (3, 68). Further, IL-27 suppresses Th2 cytokine (IL-5
and IL-13) production from differentiated Th2 cells by
diminishing GATA-3 expression (68). IL-27 also suppresses
Th-17 responses by inhibiting IL-17, an essential inducer of
pro-inflammatory cytokines and chemokines leading to
migration of neutrophils (69–73). IL-27 downregulates the
expression of Th17-specific transcription factor retinoid-related
orphan receptor (ROR)a, RORgt, and inhibits IL-17 production
from CD4+ T cells (70).

IL-27 limits proliferative T cell responses during infections
and in autoimmune conditions to limit tissue damage (74, 75). IL-
27 achieves this by inducing expression of co-inhibitory receptors
such as programmed death-ligand 1 (PD-L1), lymphocyte-
activation gene 3 (LAG-3), T cell immunoglobulin and mucin-
domain containing-3 (TIM-3), cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4), and T-cell immunoreceptor
with Ig and ITIM domains (TIGIT) on T cells (12, 16, 76). PD-
L1 binding to Programmed cell death protein 1 (PD-1) negatively
regulates T cell expression and suppresses its function by binding
to CD80 as a co-inhibitory receptor (77, 78). IL-27 priming of
naïve T cells induces PD-L1 upregulation in a STAT1-dependent
manner, which inhibited Th17 differentiation in trans (12). IL-27
stimulation of Foxp3-expressing regulatory T cells (Tregs)
induces expression of LAG-3, which enhances Treg suppressive
function against naïve CD4+ T cells (16).

Another way IL-27 exerts immunosuppressive effects is
through the induction of a potent anti-inflammatory cytokine,
IL-10. IL-27 can induce Th1, Th2, and Th17 cells to produce IL-
10 in a STAT1/STAT3 dependent manner (79, 80). IL-27
stimulates differentiation of Foxp3- type 1 regulatory T cell
(Tr1) that produces IL-10 by increasing the expression of
transcriptional factor c-Maf (79, 81–83). IL-27 also contributes
to the expansion Tr1 by upregulating autocrine transcription
factor aryl hydrocarbon receptor (AhR), which along with c-Maf,
transactivates IL10 and IL-21.

In summary, IL-27 was initially thought to be a pro-
inflammatory cytokine because of its capacity to induce Th1
May 2021 | Volume 12 | Article 678515
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differentiation; however, many studies have elucidated its diverse
anti-inflammatory effects on CD4+ T cell function (Figure 4).

CD8+ T Cells
IL-27 promotes proliferation of CD8+ T cells (84, 85) by inducing
transcription factors T-bet and Eomesodermin (EOMES) and
increases the production of IFN-g (84, 85). Additionally, IL-27 is
known to increase CD8+ T cells’ cytotoxicity by enhancing
granzyme B and perforin expression (84, 85). IL-27 also acts as
a potent adjuvant activator during vaccination as it promotes the
expansion of antigen-specific CD8+ T cells. For instance, IL-27
production in DCs following immunization with TLR agonists
correlated with induction of antigen-specific CD8+ T cells,
contribution to bacterial clearance during Listeria monocytogenes
infection (86–88) (Figure 4). IL-27/IL-27R signaling have been
also reported to be critical to subunit immunization-elicited T cell
responses. A loss of IL-27Ra in T cells resulted in a >10-fold
reduction in antigen-specific T cell formation in both CD4+ and
CD8+ T cells, and this suppressive effect due to IL-27 deficiency
mediated by STAT1 & STAT3 (22). In summary, many reports
have showed that IL-27 has important roles in proliferation and
activation of CD8+ T cells.

B Cells
IL-27 influences B cells variably depending on the stage of B cell
differentiation (35). IL-27 increases proliferation of naïve and
germinal center B cells, but not memory B cells (35). In mice,
IL-27 promotes Ig class switching to IgG2a in spleen B cells
Frontiers in Immunology | www.frontiersin.org 6
through STAT1/T-bet signaling pathway independently from
IFN-g (89), while IL-27 increases the production of IgG1 by
human spleen and cord-blood naïve B cells (90). IL-27
stimulation of human naïve B cells enhances differentiation
into a germinal center-like phenotype expressing CD38, CD20,
CD95, and CD10 via STAT1 activation (91). Also, IL-27
promotes proliferation of B cells via induction of Pim-1 (92).
In germinal center-driven autoimmunity Roquinsan/san lupus
mouse model, IL-27Ra-/-Roquinsan/san mice showed a
significantly reduced germinal center B cell numbers, and
IgG2a autoantibodies (91). Despite the aforementioned
studies, the functional role of IL-27 on B cells remains
unclear, and further studies are required (Figure 4).
EFFECT OF IL-27 ON INFECTIONS

Sepsis
Sepsis is a systemic dysregulated host response caused due to an
infection and is associated with acute organ dysfunction and a
high mortality rate (93). Traditionally, sepsis was considered to
be an initial systemic hyper-inflammatory response to infection.
In 1991, the American College of Chest Physicians and the
Society of Critical Care Medicine defined sepsis clinically as a
systemic inflammatory response syndrome (SIRS) following
infection (93, 94). However, recent studies have shown that
the pathophysiology of sepsis is more complicated with
inflammatory and immunosuppressive responses occurring
FIGURE 4 | Effects of IL-27 signaling on adaptive immune responses. IL-27 signaling promotes proliferation of CD4+ T cells, CD8+ T cells and B cells. IL-27
promotes expression of the T-bet, and induces Th1 differentiation by increasing the expression of IL-12Rb. However, subsequent IL-27signaling suppresses the
production of IL-2, which leads to suppression of Th1 differentiation. IL-27 also suppresses the transcription factors GATA-3 and ROR, as well as Th2 and Th17
differentiation and function. IL-27 signaling induces Tr1 differentiation from T cells, and increases IL-10 production. IL-27 induces co-inhibitory receptors, and
suppresses activated effector T cells. IL-27 also increases the expression of transcription factors T-bet and EOMES in CD8+ T cells, and increases production of
IFN-g, granzyme B and perforin. IL-27 also increases the production of IL-10 in CD8+ T cells. IL-27 increases the expression of Pim-1, which is a gene associated
with cell proliferation and survival in B cells. IL-27 also induces IgG class switching. In humans, IL-27 increases IgG1, and IL-27 increased IgG2a in mice.
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early and concomitantly during an infection (95, 96). In 2016, the
Third International Consensus Definition for Sepsis and Septic
Shock (Sepsis-3) redefined sepsis as a life-threatening organ
dysfunction following a systematic dysregulated host response
to an infection and septic shock as sepsis-associated circulatory,
cellular, and metabolic abnormalities (97). Patients with sepsis-
induced shock have high serum lactate levels (>18mg/dL),
require vasopressors to maintain normal arterial pressure, and
unfortunately, remains the leading of cause of death in intensive
care units in hospitals with a mortality rate of > 40% (97).

Several studies have reported elevated serum IL-27 levels
during sepsis (18, 98–108), suggesting that IL-27 could
potentially be a diagnostic biomarker of sepsis (98, 99, 105–107,
109). By using micro array analysis, Wong et al. have showed that
EBI3, a subunit of IL-27, had the highest predictive strength for
patients with sepsis among the 221 differentially regulated gene
probes (107). In a single-center prospective study, ROC curves of
critical ill patients with positive blood bacteria cultures yields
AUCs of 0.75 for serum IL-27, which was better than AUCs of
0.64 for serum procalcitonin (109).

Interestingly, blockade of IL-27 is beneficial against sepsis (18,
103, 108, 110–112). Mice deficient for the EBI3 subunit of IL-27
were resistant to CLP-induced septic peritonitis, and EBI3-/-

mice displayed enhanced neutrophil migration and oxidative
burst capacity after CLP (112). However, when we interpret the
result of EBI3-/- mice model, we need to be careful and consider
the fact that EBI3 can also pair with IL-12p35 to generate the
inhibitory cytokine IL-35 (26). In a neonatal murine E. coli sepsis
model, IL-27Ra-/- mice showed lower levels of TNF-a, IL-1b and
IL-6, and improved survival rates. Macrophages from IL-27Ra-/-

mice eliminated E. coli with increased efficiency in vitro and did
not induce TNF-a production suggesting that IL-27 indirectly
promotes an inflammatory cytokine response during neonatal
sepsis by directly compromising control of bacteria that induce
the inflammatory response (18). In murine models of
polymicrobial sepsis induced by CLP, and endotoxic shock
induced by lipopolysaccharide (LPS), blockade of IL-27 with
neutralizing anti-IL-27p28 antibodies decreased inflammatory
cytokine levels (IL-1b, IL-17 and IFN-g), and improved the
survival rate (110). Similarly, in a murine model of CLP-
induced lung inflammation/injury, blockade of IL-27 decreased
accumulation of innate cells in the lung and attenuated lung
injury, leading to improved survival rate of mice (19).

Several studies have also demonstrated that IL-27 is a
beneficial cytokine that can prevent sepsis-induced myocardial
dysfunction and death. In an endotoxic shock murine model
induced by LPS, blockade of IL-27 by neutralizing anti-IL-27p28
antibody or using IL27Ra-/- mice increased inflammatory
cytokines (IL-6, IL-12, TNF-a), and biomarkers of myocardial
injury [brain natriuretic peptide (BNP), cardiac troponin (cTn)],
suggesting that IL-27 has anti-inflammatory effects and protect
against sepsis-induced myocardial dysfunction (101). Yan et al.
showed that IL-27p28, alleviates sepsis via modulation of
cytokine profiles produced by Natural killer-like T cells (NKT
cells). In the study, the authors observed that septic mice treated
with IL-27p28 encoding plasmid or recombinant IL-27p28
Frontiers in Immunology | www.frontiersin.org 7
showed improved survival rate, less liver damage, and
suppressed lymphocyte apoptosis. Interestingly, NKT cells
produced much higher levels of IL-10 and lower levels of
inflammatory cytokines (IFN-g and TNF-a) in IL-27p28
treated septic mice (113).

The relationship between IL-27 genetic polymorphisms
(rs153109/-964A and rs17855750/2905) and sepsis has also
been studied. No difference in the genotype/allele frequencies
were observed between patient with sepsis and healthy controls.
However, the rs153109 A allele was overrepresented in patients
with severe sepsis/septic shock compared with the patients with
mild sepsis. Further, high-risk AA genotype resulted in increased
IL-27 levels in isolated PBMCs after LPS stimulation in vitro.
These data suggest that IL-27 polymorphisms, and subsequently
elevated IL-27 levels, do not influence susceptibility to sepsis but
exacerbate the severity of sepsis (100).

While it is apparent that IL-27 has clear association with
immune dysfunction during sepsis, there is still more to be
learned about the exact role of IL-27 in the context of sepsis.
The aforementioned studies also indicate that IL-27 effect could
be dependent on the infecting bacterial pathogen, the immune
status of the host, and the timing of infection. Better
understanding of pathogen-specific IL-27 responses during
sepsis could be clinically beneficial.

Bacterial Infections
Clostridium difficile
In a murine Clostridium difficile colitis infection model, blockade
of IL-27 by using IL-27Ra-/- mouse enhanced colonic damage,
decreased C. difficile clearance and survival rate. Additionally,
administration of recombinant IL-27 to WT mice caused
increased C. difficile clearance, decreased colonic damage, and
improved survival rate. Furthermore, recombinant IL-27
treatment in WT mice decreased IL-6 and IL-17 levels, but
enhanced production of IL-10 and IFN-g in the cecal tissue
after infection. These results suggests that IL-27 mediates host
defense during colitis C. difficile infection by downregulating
Th17 responses, but upregulating Th1 responses (21).

Staphylococcus aureus
In a S. aureus pneumonia murine model, IL27Ra-/- mice
decreased neutrophil and macrophage recruitment to the
infection site compared to the WT mice. However, there was
also trending lower bacterial burden in IL27Ra-/- mice in lung
compared to WT mice, suggesting that IL-27 influences on
recruitment of innate immune cells indirectly reflected its effect
on control of S. aureus (20). In secondary S. aureus pneumonia
following influenza infection in mice, IL27Ra-/- mice showed
increased levels of IL-17F, decreased levels of IL-10, and
exhibited improved bacterial clearance (20). Influenza infection
has been reported to inhibit Type 17 immunity, which may lead to
increased susceptibility to S. aureus pneumonia (114).
Interestingly, IL-27 also inhibits Type 17 immunity (69, 71, 115,
116), and so could have synergistically enhanced susceptibility to
S. aureus infection following influenza infection via inhibition of
Th17 immunity. The role of IL-27 inmediating immune responses
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during chronic S. aureus infections such as osteomyelitis remains
unknown and an area in need of active research.

Mycobacterium Tuberculosis
Mycobacterium tuberculosis is a unique bacterium known for its
ability to survive inside host macrophages by manipulating host
defense mechanisms (117–119). It remains a global health threat
with an estimated 10.0 million people falling ill annually due to
tuberculosis (World Health Organization, Global Tuberculosis
Report 2019).

IL-27 affects host immune response against M. tuberculosis
infection with elevated IL-27 levels reported in granuloma, lung,
pleural fluid, and sputum during M. tuberculosis infections (6,
120–125). Interestingly, several studies have indicated that
macrophages and T cells primarily produce IL-27 in these
infections (40, 126). In a murine tuberculosis model, IL-27Ra-/-

mice showed improved control of bacterial growth and decreased
bacterial burden in lung and spleen on days 30 through 125
following infection (122). Similarly, Holscher et al. showed that
IL27Ra-/- mice infected with M. tuberculosis showed decreased
bacterial loads in the later stages of infections (beyond 42 days)
compared to WT mice. Interestingly, IL-27 blockade accelerated
mortality in the late infection phase with all mutant mice dying
before day 300 of infection due to chronic hyperinflammatory
responses. In general, the survival rates of WT mice were higher
compared to IL27Ra-/- mice (6). This study suggests that IL-27
both prevents antimycobacterial response and limits chronic
hyperinflammatory response in M. tuberculosis infection.

M. tuberculosis continues to survive within human
macrophages through arresting the normal maturation of its
phagosome and IL-27 is associated with Mycobacterium’s
defense against maturation of host phagosome (127). IL-12
treatment combined with anti-IL-27 neutralization decreases
pH of the phagosome by increasing phagosomal vacuolar
ATPase (V-ATPase) concentration causing enhanced
phagosomal acidification and maturation of cathepsin D in the
Mycobacterium-containing phagosomes (127). Interestingly,
treatment of IL-12 with neutralization of IL-27 limited M.
tuberculosis growth in primary human macrophages and
increased inflammatory cytokine (IFN-g, IL-6 and TNF)
production by infected macrophages (128, 129).

M. tuberculosis can inhibit apoptosis and induce necrosis of
host macrophages, resulting in cell lysis and bacterial spread
(119, 130). One study showed that IL-27 subunit EBI3 is
associated with this mechanism. In M. tuberculosis-treated
murine macrophages, EBI3 accumulation increased. Moreover,
the intracellular EBI3 inhibits caspase-3 mediated apoptosis in
M. tuberculosis-treated macrophages (131).

One study showed that stimulation of autophagy in
macrophages compels mycobacteria loaded phagosomes to fuse
with lysosomes resulting in destruction of the pathogen, thereby
suggesting that autophagy is an important host-defense
mechanism against M. tuberculosis infection (132). IL-27 is
believed to inhibit IFN-g induced autophagy by activating
autophagy negative regulatory factors mTOR and Mcl-1 in
human macrophages infected with M. tuberculosis, thus
promoting bacterial intracellular survival (133).
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Asmentioned, IL-27 induces Th1, Th2, Th17, Treg and Tr1 cells
to produce IL-10 (80, 81, 134). Several studies have shown that IL-
10 promotesM. tuberculosis disease progression in mice (135, 136).
Moreira-Teixeira et al. showed that mice deficient in T cell derived
IL-10 exhibited a significant reduction in lung M. tuberculosis
burden during chronic infection. The authors also demonstrated
that IL-10 expression in CD4+ T cells was partially regulated by IL-
27 signaling (137). In summary, M. tuberculosis is a unique
pathogen due to its ability to survive inside host macrophages,
and IL-27 promotes its intracellular survival in many immune cells
including long-lived macrophages. Most interestingly, IL-27
prevents chronic hyperinflammatory host response during M.
tuberculosis infection, a phenomenon that needs to be extensively
examined in other chronic bacterial infection setting.
IL-27-MEDIATED IMMUNE HOMEOSTASIS
DURING BACTERIAL INFECTIONS –

A PROPOSED MECHANISM

The above review has focused on summarizing the immunobiology
of IL-27, and discussions on its immunopathology in various
bacterial infectious diseases. It has become clear that IL-27 is a
crucial immunomodulatory cytokine with both immunostimulatory
and immunosuppressive effects. However, further research is needed
to understand the exact role of IL-27 in immune response against
bacterial infections. Here, we discuss a hypothetical mechanism of
how IL-27 regulates immune homeostasis during bacterial infections
in a time dependent manner. At the onset of infection, IL-27
promotes immune reaction at the infection site by inducing
myelopoiesis, Th1 differentiation and IFN-g production (Figure
5A). At later stages of infection, IL-27 suppresses inflammatory
responses by immune cells to avoid multi-organ failure due to
excessive or sustained inflammation with prolonged antigen
presentation and/or cytokine storm. To control inflammation, IL-
27 1) increases expression of co-inhibitory receptors, 2) decreases
co-stimulator expression by activated dendritic cells, 3) suppresses
production of inflammatory cytokines by activated macrophages
and T cells, and 4) promotes production of IL-10 in T cells, all of
which suppress inflammatory responses by immune cells and avoid
internal organ tissue damage (Figure 5B).
CONCLUDING REMARKS

Bacterial infections remain a serious health burden, leading to
significant human morbidity and mortality. With the emergence
of multidrug-resistant bacteria, immunotherapies are urgently
needed to supplement antibiotic therapies (138–140). Recent
studies have evaluated the therapeutic potential of targeting IL-27
during bacterial infections with mixed and conflicting results. The
various studies summarized here clearly indicate the need to better
understand the context-dependent functions of IL-27 during
bacterial infections. As IL-27 has paradoxical pro-inflammatory
and anti-inflammatory properties, its administration as a
therapeutic treatment may be effective depending on the timing
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of administration, and the progression of the bacterial infections.
Thus, an urgent need exists for better understanding the molecular
mechanisms of IL-27 in the development of infectious diseases to
target IL-27 in a more successful manner.
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