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fergocha@gmail.com

Specialty section:
This article was submitted to
Molecular Innate Immunity,

a section of the journal
Frontiers in Immunology

Received: 11 March 2021
Accepted: 23 April 2021
Published: 05 May 2021

Citation:
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The transcriptional factor NF-kB is a nuclear factor involved in both physiological and
pathological processes. This factor can control the transcription of more than 400 genes,
including cytokines, chemokines, and their modulators, immune and non-immune
receptors, proteins involved in antigen presentation and cell adhesion, acute phase and
stress response proteins, regulators of apoptosis, growth factors, other transcription
factors and their regulators, as well as different enzymes; all these molecules control
several biological processes. NF-kB is a tightly regulated molecule that has also been
related to apoptosis, cell proliferation, inflammation, and the control of innate and adaptive
immune responses during onset of labor, in which it has a crucial role; thus, early activation
of this factor may have an adverse effect, by inducing premature termination of pregnancy,
with bad outcomes for the mother and the fetus, including product loss. Reviews
compiling the different activities of NF-kB have been reported. However, an update
regarding NF-kB regulation during pregnancy is lacking. In this work, we aimed to
describe the state of the art around NF-kB activity, its regulatory role in pregnancy, and
the effect of its dysregulation due to invasion by pathogens like Trichomonas vaginalis and
Toxoplasma gondii as examples.
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INTRODUCTION

According to global statistics, the leading cause of infant mortality and morbidity is premature labor
(1). Worldwide, it is estimated that 1/10 of all pregnancies end preterm (2). According to the annual
summary of vital statistics 2011-2012 of the American Academy of Pediatrics, 11.72% of all
pregnancies in the United States end preterm, representing a 10.5% incidence increase from 1990 to
2012 (3). In developing countries, such as Mexico, the average preterm birth rate is similar to that in
developed countries; however, this percentage can be as high as 40% in the poorest regions (4).
Failure in identifying molecular mechanisms that limit and regulate the trigger of delivery has
hampered its timely diagnosis, prevention, and treatment.
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Labor is the last link between pregnancy and birth. It begins with
the rupture of fetal membranes (chorion and amnion), followed by
coordinated cervical dilation and uterine contractions, the fetus’s
expulsion, and, finally, placental separation. The Nuclear Factor
(NF-kB) partially induces this phenomenon, and thus, its activation
before complete fetal development can cause preterm birth,
increasing the risk for the mother, but especially for the fetus (5).
Several studies have revealed the central role of NF-kB in labor
regulation, controlling diverse pro-inflammatory cytokines that are
upregulated in amniotic fluid, fetal membranes, placenta,
myometrium, and cervix during normal and preterm labor (6–13).
Thus, NF-kB is a cornerstone molecule that regulates the onset of
labor induced by molecular stimuli such as cytokines, growth
factors or hormones, but also by viral, bacterial, fungal, and
parasite products (14–18).
“DELIVERY” OF NF-kB

NF-kBwasfirst described by the group ofDr. T.DavidBaltimore as
a component with nuclear activity (nuclear factor, “NF”) andDNA
binding specificity, especially towards variations of the ten bp
consensus DNA sequence of 5′-GGGRNYYYCC-3′ (in which R
is a purine, Y is a pyrimidine, andN is any nucleotide), knownaskB
sites (19). It was initially demonstrated that NF-kB induced gene
expression of the immunoglobulin kappa light-chain in antibody-
producingB cells (thus the “kB” component of its name) (20). Later,
it was clear that this was a family of proteins composed by two
Frontiers in Immunology | www.frontiersin.org 2
members, theNF-kBand theRel subfamilies associatedwith several
biological phenomena, such as immunity and development, as well
as diseases like cancer and inflammatory disorders (17). These
molecules are also related to pregnancy phenomena, including
normal and preterm delivery (5, 21).
NF-kB FAMILY

The classic NF-kB family is composed by five members: NF-kB1
(p105/p50), NF-kB2 (p100/p52), p65 (RelA), c-rel and RelB (18)
(Figure 1A). These proteins share a conserved N-terminal region
designated as Rel homology domain (RHD), which mediates
dimerization, binding to DNA, translocation to the nucleus, and
interaction with NF-kB inhibitory proteins (IkB’s) (22, 23) (Figure
1B). The active forms of NF-kB are homo- or heterodimers of
various family members (18). Twelve to 15 possible dimers formed
by the NF-kB members’ interaction can bind DNA and, therefore,
can regulate gene transcription (18). The diversity of combinations
formed by NF-kB members contributes to the specificity of several
panels of regulated genes (18, 24, 25). Due to this specificity for
DNA binding sites, dimers have different protein-protein
interactions with target promoters and are activated under
particular physiological conditions (25).

Proteins p65, c-rel, and RelB contain transcriptional
activation domains (TADs) in their C-termini, required for
NF-kB dimer translocation to the nucleus (24). In contrast,
family members p50 and p52 lack TADs, but can form
A

B

FIGURE 1 | Schematic diagram of NF-kB and IkB family members. (A) The proteins p100 and p105 are the precursors of p52 and p50; they lack transactivation
domain (TAD), which bind to other proteins such as transcription factors coregulators. Black arrowheads are pointing to C terminal proteolytic cleavage sites
originating p52 and p50. NF-kB family proteins contain sequences required for DNA binding, dimerization, and nuclear localization, called Rel Homology Domain
(RHD). (B) Typical and Atypical members of the NF-kB inhibitors (IkB) family are characterized by the presence of Ankyrin Repeats (AR) and their ability to bind and
sequester NF-kB dimers in the cytoplasm (typical members) or recruit them to specific gene promoters in the nucleus (atypical members). RHD, Rel homology
domain; TAD, transactivation domain; GRR, glycine-rich region; AR, ankyrin repeats; PEST, proline-, glutamic acid-, serine threonine-rich sequence; NLS, Nuclear
Localization Signal; NES, Nuclear Export Signal.
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heterodimers with TAD carrying proteins, modifying the
specificity for kB sites; repressing transcription by blocking kB
binding sites in homodimers or promoting recruitment to other
proteins containing TADs (26). Proteins p50 and p52 are
generated by the proteolytic processing of their respective
precursors, p105 and p100 (27). The latter are constitutively
processed, although p105 is more efficiently cut. Most cells
exhibit high levels of p50, whereas the levels of p52 are steadily
lower (28, 29). Despite the diversity of NF-kB dimer
combinations, the most prevalent NF-kB heterodimer is
formed by p50 and p65, which is typically bound to one of its
inhibitors in the cytoplasm of non-stimulated cells (30).
NF-kB REGULATORS

As soon as it was described, it was inferred the capability of NF-
kB to interact with other molecules in the cytoplasm. The
presence of NF-kB was demonstrated in the cytoplasm of non-
stimulated cells by treating cell cytoplasmic fractions with
dissociating agents, such as the weak detergent sodium
deoxycholate (31). This observation suggested a non-covalent
interaction with an inhibitory molecule responsible for
maintaining NF-kB in an inactive state (31, 32). Later, these
molecules capable to bind NF-kB in the cytoplasm [NF-kB
inhibitor alpha (IkBa), NF-kB inhibitor beta (IkBb) and NF-kB
inhibitor epsilon (IkBϵ)] were described and considered as classical
Frontiers in Immunology | www.frontiersin.org 3
regulators of NF-kB activity (33–35) (Figures 1B and 2). The
IkBs characteristically present ankyrin repeat domains, which
interact with the RHD in NF-kB, limiting nuclear localization
and DNA binding (33, 34, 36). The precursor proteins p105 and
p100 also contain ankyrin repeats, and they function as IkB
proteins (37–39). These considered non-classical IkBs, are
importantly involved in determining the formation of new
dimers of NF-kB via the processing and assembly of large
complexes with IkB activity (39). Crystallographic and
mechanistic studies have revealed that IkBs, specifically IkBa,
acts on the dimer p50/p65, masking the nuclear localization
sequence (NLS) of the p65 subunit. Although p50 NLS is still
exposed in the IkBa/p50/p65 trimer, the presence of the nuclear
export sequence (NES) present in IkBa and p65, results in an
active nucleus to cytoplasm, and cytoplasm to nucleus shuttle of
this complex (40). Because the export process is more efficient
than the import process, cellular localization of IkBa bound to
NF-kB is preferably in the cytoplasm of non-stimulated cells
(40). IkBb lacks NES and masks both NF-kB (p50/p65) NLS, and
thus, this complex remains sequestered in the cytoplasm of non-
stimulated cells (41).

Besides the classical proteins IkB, other non-classical IkB
proteins share ankyrin repeats (Figure 1B). Unlike classical IkBs,
these are not generally expressed in unstimulated cells, but are
preferably induced after cell activation by several stimuli, like IL-
1b or TLR ligands in a spatiotemporal fashion, controlling gene
transcription of secondary response genes (Figure 3) (42).
FIGURE 2 | NF-kB classic activation. After recognition of IL-1R or TLR ligands, MYD88 promotes activation of the IKK complex, which mediates IkB
phosphorylation. IkB⍺ phosphorylated, in turn, is ubiquitinated and delivered to the proteasome where it is degraded. NF-kB released in the cytoplasm can now
translocate to the nucleus and promote transcription of several primary response genes. Most of these genes are related to inflammation such as TNFa, IL-1b, IkBz
and IkBNS.
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BCL-3

Bcl-3 was the first cloned protein belonging to the family of non-
classical IkBs.Bcl-3was initially identifiedas anoncogenepresent in
chronic lymphocytic leukemia (43). Bcl-3 was described as an
inhibitor of the NF-kB activity, specifically bound to
heterodimers containing the p50 subunit (44, 45). Subsequent
studies revealed that Bcl-3 could also act as a transcriptional
coactivator of p50 homodimers (46). It has been described that
Bcl-3 is able to bindp50 andp52homodimers, which lackTADs. In
contrast to p50 and p52, Bcl-3 poses a distinctive TAD region. The
binding of Bcl-3 to p50 or p52 provides the complex with
transcriptional activity (47, 48). Binding of Bcl-3-p52-p52 or Bcl-
3-p50-p50 complexes to their respective promoters can control the
expression of the cyclin D1 and the epidermal growth factor
receptor (EGFR) (49). A large study reported Bcl-3-p50-
homodimer-dependent genes associated with disuse muscle
atrophy; such genes are Trim63 (MuRF1), Fbxo32 (MAFbx), Ubc,
Ctsl,Runx1,Tnfrsf12a (Tweak receptor) andCxcl10 (IP-10) (50). In
contrast, Bcl-3 also stabilizes homodimers of NF-kB bound to
DNA, repressing its transcriptional activity (51). In this context,
Bcl-3 has been involved in processes of tolerance to LPS (51). It is
known that treatment of immune cells with IL-10 decreases the
DNA binding of NF-kB and induces Bcl-3 expression (52). The
DNA binding activity of NF-kB and the consequent production of
TNF-a are diminished in macrophages of the colonic lamina
propria -significant IL-10 producers- stimulated with LPS.
Moreover, Bcl-3 deficient macrophages show defects in
suppressing the production of TNF-a but not IL-6, which is a
cytokine also regulated by NF-kB. This suggests that Bcl-3 is
involved in the suppression of the innate immune response by
regulating the expression of specific genes such as TNF-a (52).
Frontiers in Immunology | www.frontiersin.org 4
Regarding pregnancy, Bcl-3 is overexpressed in human placentas of
severe early-onset preeclampsia cases (53). Recently, Bcl-3 has been
reported in normal uterus of mice, where its subtle expression
correlates with low production of TNF-a (54).
IkBz

The IkBz protein is another non-classical IkB, which exhibits
greater homology to Bcl-3 than to other IkBs. The first report of
this molecule was presented in a paper that sought to identify
upregulated genes upon cells challenged with LPS (55). Unlike the
classical IkBs, IkBz is neither constitutively expressed nor
controlled by inducible degradation, but post-transcriptionally
regulated by microRNA (miR)-124a (56, 57). Kitamura et al.
found that IkBz was positioned in the nucleus upon the
challenge with LPS, where it stimulated the production of IL-6
(55). Soon later, it was determined that IkBz was also induced by
IL-1 but not by TNF-a in mice, and similar to the former study, it
was localized in the nucleus (58). In contrast to the first reports, it
was shown that IkBz could be considered a new negative NF-kB
regulator, acting in the nucleus by association either the p50 or the
p65 subunit (56, 58, 59). IkBz has been linked to the production of
IL-6 in response to the challenge with TLR ligands, preferentially
binding to p50 NF-kB dimers (60–63). IkBz has also been
involved in the production of IFN-g (64), CCL2/MCP-1 (65),
neutrophil gelatinase-associated lipocalin (NGAL) (66), human b
-defensin 2 (66), antibacterial protein lipocalin-2 (Lcn2) (67), and
IL-17A during Th17 polarization (68). Congruently, IkBz
downregulates Foxp3 in T cells, IL-10, CTLA-4, and the class
switch DNA recombinase activation-induced cytidine deaminase
FIGURE 3 | NF-kB non-classical regulators in the nucleus. NF-kB in the nucleus regulates the transcription activity of primary response genes. Non-classical NF-kB
regulators such as IkBz and IkBNS proteins, can interact with NF-kB and recruit it to the promoter of secondary response genes like IL-6 or IFNg, inducing or
inhibiting gene transcription. *IkBNS can act as NF-kB promoter or inhibitor depending on cell type and environment.
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(AID) in B cells, as well as IL-12 and IL-18 in activated -mouse and
human- NK cells (62, 69–72).

Interestingly, it has been reported that the 10-hydroxy-trans-
2-decenoic acid (10H2DA), a major fatty acid component of
royal jelly, presents an inhibitory effect on LPS-induced IL-6
production by downregulating IkBz expression in RAW 264
murine cell line. Although the pathway by which IkBz is
downregulated is unknown, 10H2DA showed to be also an
important expression modulator of second response genes
regulated by IkBz, such as Lipocalin, G-CSF, and IL-6, but not
TNF-a (73). Specifically in pregnancy, IkBz is overexpressed in
human myometrium in spontaneous human labor at term (16).
Interestingly, magnesium sulfate (MgSO4), given to woman at
risk of preterm labor, provides fetal neuroprotection, which can
be explained by its ability to inhibit inflammation during
pregnancy and particularly to reduce the expression of pro-
inflammatory cytokines and their transcription regulator IkBz,
as seen in both human placental explants and a rat model of
pregnancy (74). More recently, our group has reported how
Galectin-1, a lectin able to bind b-galactosides added to other
proteins by glycosylation, reduces the expression and production
of IL-6 in human decidua cells challenged with LPS in vitro,
through downregulation of IkBz expression, its translocation to
the nucleus, and its recruitment to the IL-6 promoter (75).
IkBNS

IkBNS was initially defined as a rapidly induced gene upon
thymocyte TCR stimulation, which inhibited NF-kB DNA
binding activity, but not its translocation to the nucleus,
suggesting that it can negatively regulate NF-kB within the
nucleus (76).

Later, the expression of IkBNS was identified in macrophages
of the lamina propria in the colon, while it was undetectable in
peripheral blood monocytes. IkBNS was shown selectively
recruited to the IL-6 but not the TNF-a promoter, suppressing
LPS-induced IL-6 production (77). IkBNS in macrophages and
DCs was demonstrated to be a regulator for IL-6 and IL-12p40
transcription, cytokines induced by several TLR ligands,
supporting the idea that IkBNS is a negative NF-kB regulator
(77, 78). In apparent contradiction, IkBNS KO mice present a
reduced proliferation of T cells, which was associated with IkBNS
positive control of IL-2 expression through its gene promoter
binding. These results suggest that this non-classic IkB might be
differentially involved in positive and negative regulation of
cytokine expression, depending on the cell type and the
environmental conditions (77–79). IkBNS has been related to
innate-like, early B and plasma cell functions, since IkBNS KO
mice lack B1 cells and impairedmarginal B cell zones development
(80). In this context, Arnold et al. reported that IkBNS is required
for extrafollicular responses to T-independent and T-dependent
immunogens, as well as natural IgM antibodies production (81–
83). More recently, B cell impaired development in IkBNS KO
mice was related to the role of IkBNS as an enhancer of follicular
helper T cells differentiation and function because IkBNS is
Frontiers in Immunology | www.frontiersin.org 5
essential for the induction of Bcl-6 and IL-21 (84). IkBNS, like
Bcl-3, can be induced after stimulation with LPS in regulatory
dendritic cells (rDC) and in a B-10 cell subpopulation, which
induces the production of high levels of IL-10 (85, 86).

Interestingly, IkBNS can drive Foxp3 expression via
association with the Foxp3 gene promoter, stimulating Treg
cell development in the thymus during gut inflammation in
vivo (87). IkBNS has also been involved in generating Th-17 cells
in experimental autoimmune encephalomyelitis (EAE) (88, 89).
All this contradictory evidence indicates that IkBNS function
depends on cell type and microenvironment, which determine its
role as a positive or negative regulator.

Although poorly investigated in reproduction, IkBNS is an
interesting molecule. Our group found it is expressed in pro-
estrus, and poorly synthesized during estrus (while IL-6 is over-
produced), an inflammatory phase in the estrous cycle of mice.
In contrast, IkBNS is overexpressed while IL-6 is downregulated
in metestrus, a cycle phase characterized by the development of
the corpus luteum, increased progesterone secretion, and
decreased estrogen secretion (54).

More recently, we have also reported that in the uterine tissue
of pregnant mice, the regulatory effect of IkBNS over IL-6 is
evident in an L. monocytogenes infection model: IL-6
overexpression was promoted by low expression of IkBNS,
which provoked fetal growth restriction and resorption (90).
ACTIVATION OF NF-kB BY THE IKKS

IKKa, IKKb and IKKy (also called NEMO, NF-kB essential
modulator) compose the IKK complex that phosphorylates Ser
and Thr residues of NF-kB inhibitors, such as IkBa, labeling
them for their ubiquitination and degradation by the
proteasome, allowing in this way the release of NF-kB for its
translocation to the nucleus (reviewed by Echeverria et al. (91)).
Despite the role of other kinases, IKKs are especially important
since they act rapidly, promoting classical IkBs degradation. The
various members of this complex are also under the control of
molecules responsive to PAMPs or DAMPs; for example, NEMO
degradation is promoted by the E3 ubiquitin ligase TRIM29,
which in this way maintains immunological homeostasis after
infection, for example by influenza virus (92).
NF-kB IN PREGNANCY: EXPRESSION IN
FETAL AND MATERNAL TISSUES

As previously discussed, activation of NF-kB implies that its
dimers are released into the cytoplasm and can thus translocate
to the nucleus and bind DNA via the kB motifs of NF-kB-
regulated gene promoters. These kB motifs have been identified
in several genes of pro-inflammatory mediators, such as
adhesion molecules (ICAM-1); enzymes like inducible NO
synthase, phospholipase A2S, cyclooxygenase-2 (COX-2) and
metalloproteinases (MMP-9); cytokines (IL-1b, IL-6, TNF-a);
and chemokines such as IL-8. These genes are widely expressed
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during normal pregnancy and in some gestational disorders
(93–95).

The activity of NF-kB has been indirectly observed by the
increase of pro-inflammatory cytokines such as IL-1b, TNF-a, IL-
6, IL-8, or IFNg in the amniotic fluid, the placenta, the fetal
membranes, the myometrium, the decidua and the cervix (96–
101). Immune cells that infiltrate the fetal-mother interface can
secrete chemokines and cytokines, leading to activation of NF-kB
in the myometrium, the cervical epithelium, and the amnion cells
(99). Many components of the signaling pathway of the NF-kB
have been identified in pregnancy tissues. It has been shown that
in the first-trimester decidua, there is the expression of IkBɑ, IKK
complex, and NIK (102). On the other hand, the expression of
genes regulated by NF-kB is increased by the end of pregnancy, as
well as its DNA binding activity in isolated cytotrophoblasts, in
primary cultures of the amnion, and in nuclear extracts prepared
from the placenta, the amnion, and the choriodecidua (9,
103–106).
NF-kB REGULATION DURING
PREGNANCY

Substantial evidence supports the notion that pregnancy is
significantly regulated by cytokines and hormones, driving
different pathways that lead to the activation of specific nuclear
factors, including NF-kB, which controls the expression of several
molecules that can promote labor under normal conditions or can
induce preterm birth caused by infectious and non-infectious
disorders of pregnancy (93). Before gestation, NF-kB activity is
Frontiers in Immunology | www.frontiersin.org 6
present in the female genital tract and has an essential role in
regulating innate immune response, because a suboptimal
response could favor a permissive environment for pathogen
colonization, whereas an over-induced response could cause
excessive inflammation and tissue damage (54, 107). Cytokines
produced under NF-kB regulation play a critical role in human
implantation, inducing adhesion molecules’ expression on the
embryo and the maternal surfaces, regulating by these means
the expression of proteases that remodel the extra-cellular matrix,
and promoting the invasion and differentiation of trophoblasts
(108, 109). Once implantation has occurred, excessive activation of
NF-kB can activate an uncontrolled response, potentially
contributing to disorders of fetus development, such as
intrauterine growth restriction, abortion, or preterm birth (10,
103, 110, 111). During pregnancy, NF-kB is negatively regulated in
the maternal peripheral blood T cells (112, 113). Also, hormones
like progesterone (P4), importantly elevated during pregnancy,
can suppress the activity of NF-kB (114). Likewise, cytokines such
as IL-10 have a vital role in downregulating NF-kB at the
maternal-fetal interface and systemically (115, 116). IL-10 is
expressed during the most extended period of pregnancy, both
in humans and mice, and different studies have demonstrated its
ability to downregulate TNF-ɑ, IL-6, and prostaglandins in human
fetal membranes and decidual cells (115–117). Moreover, the
relationship between NF-kB activity, pro-inflammatory
cytokines, and preterm birth was demonstrated in IL-10 KO
mice: the absence of this cytokine resulted in an increased
expression of IL-6 and TNF-ɑ induced by LPS, which caused
the onset of early labor (118).

More recently, the important role of Galectins has been
introduced in reproductive biology, e.g., Gal-1 is abundantly
FIGURE 4 | NF-kB regulation during pregnancy. During pregnancy, two critical changes in the profile of molecules produced at the maternal-fetal interface and the
systemic level must occur. Implantation requires developing an inflammatory phenotype, which depends on the NF-kB´s activity. In uncomplicated pregnancies, the
pro-inflammatory environment has to change towards an anti-inflammatory phenotype during the fetus’s development, downregulating NF-kB. Once the fetus’s
development is complete, anti-inflammatory molecules’ production decreases, and inflammatory molecules’ expression is triggered again. This breaking point where
the phenotype changes from anti-inflammatory to inflammatory initiates labor, inducing molecules such as IL-6, IL-8, TNF-ɑ, Metalloproteinases, and COX2, now
regular contractions and rupture of the fetal membranes begin. As a consequence of the change to an inflammatory environment, the new individual’s birth is
promoted. The primary complications of pregnancy occur when labor begins prematurely; that is, when the profile change occurs before the fetus complete
development, which promotes pre-term pregnancies or even abortion. Therefore, down-regulation of inflammatory molecules is necessary during fetal development,
remarking the prominent role of NF-kB activity regulation in the required inflammatory/anti-inflammatory balance.
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produced in the maternal reproductive tissues in humans and
mouse, suggesting a crucial role in the development of maternal
tolerance to the fetus during pregnancy, by inhibition of TNF-ɑ
and IL-6 expression, induction of IL-10 and promotion of
regulatory T cells (Treg) proliferation (119–121). Interestingly,
it has been demonstrated that Gal-1 regulates pro-inflammatory
cytokine production by blocking NF-kB activation in peripheral
blood monocytes (122). Besides, our group has shown that Gal-1
reduces the effect of LPS on IL-6 production in non-immune
cells from the fetal-maternal interface, such as decidual
fibroblasts; even more, we found that Gal-1 inhibits the
nuclear translocation ability of IkBz and its recruitment to the
IL-6 promoter in LPS treated cells (75).

Regulation of NF-kB is crucial during pregnancy, and thus, it
is not surprising this transcription factor has already been
proposed as a key target for preterm labor prevention (123).
Even more, in sillico models have been used to analyze the
inhibitory effect over NF-kB, simulating an anti-inflammatory
treatment to avoid the development of preterm labor, which
remarks the therapeutic implications of NF-kB downregulation
Frontiers in Immunology | www.frontiersin.org 7
(124). Although the exact mechanism of NF-kB regulation
during pregnancy has not been established, it is clear that its
activity should remain suppressed during most normal gestation
time until the end.
NF-kB DYSREGULATION BY PATHOGENS
IN PREGNANCY: EXAMPLES OF
TWO PROTOZOA

During pregnancy, the mother’s immune system is highly
regulated but can effectively respond against pathogens.
Nevertheless, best-adapted pathogens have evolved so they
modulate NF-kB activation, limiting the response against them
and favoring the pathogen survival (125). Trichomonas vaginalis
is a genitourinary tract lumen-dwelling flagellated protozoan that
infects humans (126). It is responsible for trichomoniasis, one of
the most common non-viral sexually transmitted diseases (127).
Infection by T. vaginalis has been associated with adverse
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FIGURE 5 | NF-kB is a master regulator of pregnancy development. NF-kB activation can be caused by different stimuli such as pathogens like the zoonotic
parasite Toxoplasma gondii infection during pregnancy. (A) This parasite is recognized by TLR-2 and TLR-4, triggering the activation of MYD88, which results in
(B) the activation of the IKK complex, inducing IkBa phosphorylation and its degradation by the proteasome. Now, NF-kB free in the cytoplasm (C) can
translocate itself to the nucleus where, as discussed earlier, it can be helped by its non-classical regulators, such as IkBz (D) to promote the expression of pro-
inflammatory cytokines, like IL-6. Overproduction of pro-inflammatory mediators can favor T. gondii vertical transmission to the fetus, and worsen the severity of
clinical features such as intrauterine growth restriction, pre-term, or even abortion (145, 146). (E) On the other hand, several reports have shown that anti-
inflammatory molecules highly produced during pregnancy, like progesterone, can down-regulate NF-kB (F); this hormone can induce TRIM29 (149), which
promotes NEMO degradation, inactivating the IKK complex, and in this way turning off the NF-kB pathway. (G) Progesterone can also promote the expression
of other anti-inflammatory genes (H) perpetuating an anti-inflammatory environment required for pregnancy maintenance. (I) Gal-1, TGF-b, and IL-10 have been
widely described as potent NF-kB inhibitors during pregnancy. (J) Gal-1 in cells from the maternal-fetal interphase can limit IkBz translocation to the nucleus,
inhibiting NF-kB recruitment to the promoters of pro-inflammatory cytokines, such as IL-6 (75). Created with BioRender.com.
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outcomes of pregnancy like low birth weight and preterm labor.
It has been suggested that these adverse outcomes are mediated
by downregulation of TNF-a and IL-12 expression through
blocking NF-kB translocation to the nucleus (128, 129), but it
induces IL-1b production in human prostate epithelium through
activation of ROS (130), and through this mechanism it also
provokes apoptosis of the host cells, including monocytes and
primary cultures of human vaginal epithelial cells by means of
NF-kB downregulation (131–134).

Another pathogen related to pregnancy is Toxoplasma gondii,
the causal agent of toxoplasmosis, a cosmopolitan, water/
foodborne infection that can be transmitted to the fetus which
may cause severe pathological conditions (135, 136). This
protozoan is a strict intracellular pathogen, classified in three
classical strains and the atypical variants, some of them with the
capacity to modulate NF-kB (137). For invasion, T. gondii
secretes proteins from the parasite organelles called rhoptries
(ROP) and dense granules (GRAs) into the cytoplasm of the host
cell, which modulate molecular host signaling and transcription
(138). ROP and GRA proteins have been involved in the control
of NF-kB activation. The GRA15 protein of type II strains
activates NF-kB, leading to a pro-inflammatory environment,
which results in disease manifestations like encephalitis and
colitis. Type II T. gondii strains are more prevalent in human
congenital toxoplasmosis; interestingly, these strains allow the
recruitment of immune cells that can be infected by the parasite
and are useful to disseminate it throughout the fetus body (139–
142). On the other hand, ROP 18 from T. gondii strain I
(GRA15-type I cannot induce NF-kB) can directly interact
with NF-kB p65 and phosphorylate it at Ser-468, targeting p65
for proteasome degradation, this manipulation of the host
immune system facilitates infection (143). Importantly, there is
a low number of reported congenital toxoplasmosis cases due to
type I strains, but these cases commonly present pregnancy
complications, including abortion (141). Congenitally infected
patients may develop pathological conditions such as
hydrocephalus, macro or microcephalus, cerebral calcifications,
retinochoroiditis, and other ocular or central nervous system
alterations, which can manifest even years later in life and most
severe congenital infection cases can cause spontaneous abortion
or stillbirth (144). We have recently shown evidence that T.
gondii congenital transmission and severity of clinical
manifestations in the infected newborns depend on the
Frontiers in Immunology | www.frontiersin.org 8
promotion of an inflammatory non-regulated environment, in
which NF-kB and its regulators are probably involved (145, 146).
CONCLUSIONS

Labor can be promoted normally, or by exposure to damaging
substances, infectious agents, or genetic predisposition (12, 13,
147, 148). In all cases, it depends on the development of an
inflammatory flux orchestrated by the transcription factor NF-
kB. Its activation begins the cascade of events that culminate with
the onset of labor and the rupture of the fetal membranes, which
depends on the production of pro-inflammatory cytokines,
chemokines, metalloproteinases, and prostaglandin-synthesis
enzymes, among other molecules. In a normal pregnancy, this
final step elicits the birth of a new individual (Figure 4). In
contrast, NF-kB activation before the full development of the
fetus can induce product disease or loss, as well as and collateral
damage to the mother. Some insights on the mechanisms of NF-
kB activation/regulation during pregnancy complications are
shown in Figure 5, in which the balance of pro-inflammatory
stimuli and anti-inflammatory environment determines the
success or failure of the pregnancy. Although there is some
information about NF-kB activity at the beginning and the end
of pregnancy, there is very little information on the dynamics of
its functions and regulation along the most extended period of
pregnancy, so it is expected it will be studied furthermore in the
near future.
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Cancino-Diaz and Rodrıǵuez-Martıńez. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication in
this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.
May 2021 | Volume 12 | Article 679106

https://doi.org/10.1371/journal.pone.0034707
https://doi.org/10.1371/journal.pone.0008502
https://doi.org/10.1128/iai.70.7.3311-3317.2002
https://doi.org/10.1128/CMR.11.2.300
https://doi.org/10.1097/00007435-199707000-00008
https://doi.org/10.1002/pros.23178
https://doi.org/10.1111/j.1365-3024.2008.01037.x
https://doi.org/10.1016/j.exppara.2007.06.010
https://doi.org/10.1074/jbc.M501752200
https://doi.org/10.1155/2017/3904870
https://doi.org/10.1155/2017/3904870
https://doi.org/10.1128/CMR.05013-11
https://doi.org/10.1128/CMR.05013-11
https://doi.org/10.1016/j.ijpara.2008.03.007
https://doi.org/10.1016/j.ijpara.2008.03.007
https://doi.org/10.1016/j.ijpara.2003.12.005
https://doi.org/10.1128/cmr.00005-17
https://doi.org/10.1084/jem.20100717
https://doi.org/10.1155/s1064744997000197
https://doi.org/10.1007/s10096-016-2656-2
https://doi.org/10.4161/viru.22833
https://doi.org/10.1074/jbc.M113.544718
https://doi.org/10.18233/APM39No6pp321-3331730
https://doi.org/10.18233/APM39No6pp321-3331730
https://doi.org/10.3389/fimmu.2020.00390
https://doi.org/10.3389/fimmu.2019.00285
https://doi.org/10.1097/00003081-198809000-00006
https://doi.org/10.1046/j.1365-3016.2001.00008.x
https://doi.org/10.2217/bmt.13.16
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

	NF-κB and Its Regulators During Pregnancy
	Introduction
	“Delivery” of NF-κB
	NF-κB Family
	NF-κB Regulators
	Bcl-3
	IκB&zeta;
	IκBNS
	Activation of NF-κB by the IKKs
	NF-κB in Pregnancy: Expression in Fetal and Maternal Tissues
	NF-κB Regulation During Pregnancy
	NF-κB Dysregulation by Pathogens in Pregnancy: Examples of Two Protozoa
	Conclusions
	Author Contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


