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Interferons are the first lines of defense against viral pathogen invasion during the early
stages of infection. Their synthesis is tightly regulated to prevent excessive immune
responses and possible deleterious effects on the host organism itself. The RIG-I-like
receptor signaling cascade is one of the major pathways leading to the production of
interferons. This pathway amplifies danger signals and mounts an appropriate innate
response but also needs to be finely regulated to allow a rapid return to immune
homeostasis. Recent advances have characterized different cellular factors involved in
the control of the RIG-I pathway. This has been most extensively studied in mammalian
species; however, some inconsistencies remain to be resolved. The IFN system is
remarkably well conserved in vertebrates and teleost fish possess all functional
orthologs of mammalian RIG-I-like receptors as well as most downstream signaling
molecules. Orthologs of almost all mammalian regulatory components described to
date exist in teleost fish, such as the widely used zebrafish, making fish attractive and
powerful models to study in detail the regulation and evolution of the RIG-I pathway.
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INTRODUCTION

The antiviral innate immune response in vertebrates is mediated by type I interferon (IFN) and its
actions as an autocrine signal for the infected cell and as a paracrine “early warning” signal to
neighboring cells (1, 2). This host response against virus infection is characterized by the induction
of a rapid non-specific antiviral state that blocks virus replication and spread. The IFN system is
remarkably well conserved in vertebrates which highlights its critical importance (3). Teleost fish
possess functional orthologs of pattern-recognition receptors (PRRs). Toll-like receptors (TLRs)
and C-type lectin receptors (CLRs) detect pathogens in the extracellular or the endosomal
compartments, while retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), Nod-like
receptors (NLRs), and cytoplasmic DNA sensors serve as intracellular PRRs. These sensors are
able to detect distinct viral molecular patterns, such as nucleic acids or viral proteins, collectively
known as pathogen-associated molecular patterns (PAMPs). They synergistically trigger the
activation of multiple signaling cascades that induce the production of IFN and other cytokines,
thereby establishing an antiviral state and shaping an appropriate adaptive immune response.
Among the PRRs, RLRs play a key role in sensing viral RNA in the cytosol and are essential in the
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early induction of IFN (4, 5). The ability of IFNs to restrict virus
replication in mammals is largely mediated through the
induction of hundreds of interferon-stimulated genes (ISGs),
collectively referred as the “interferome” (6). Similarly, up-
regulation of ISGs by IFNs in lower vertebrates has been
extensively reported. Several studies point to the maintenance
of a stable set of core ISGs during evolution (7) and their key
functions for fish defense against viruses (3, 8).
RIG-I-LIKE RECEPTORS: FROM RNA
SENSING TO IFN INDUCTION

The sensing of non-self-cytosolic RNA is mediated by RLRs
which include RIG-I (DDX58) (9), melanoma differentiation-
associated gene 5 (MDA5/IFIH1) (10–12), and laboratory of
genetics and physiology 2 (LGP2/DHX58) (13, 14). Notably,
RIG-I detects viral replication not only in the cytoplasm, but also
in the nuclear compartment (15). In mammals, it is now
recognized that most if not all viral infections from RNA and
DNA viruses can be recognized by RLRs. RIG-I and MDA5 are
DExD/H box RNA helicases comprising three domains; two N-
terminal caspase recruitment domains (CARDs) in tandem
involved in signal transduction, a central helicase domain and
a C-terminal domain (CTD) critical for RNA recognition and
autoinhibition of CARDs (16). LGP2 contains a helicase domain
but lacks CARDs and thus a signal-transducing activity. LGP2 is
a regulator with distinct effects on RIG-I and MDA5. While
LGP2 clearly upregulates the signaling activity of MDA5, its
action on RIG-I-mediated antiviral signaling remains unclear
(13, 17, 18). In fact, LGP2 deficiency has different effects
depending on the nature of the viral infection (19, 20).
Nevertheless, LGP2 can associate with the C-terminus of TNF
receptor associated factors (TRAFs) and can regulate TRAF
activity downstream of RIG-I and MDA5, indicating that
LGP2 can suppress both MDA5‐dependent and RIG‐I‐
dependent signal transduction (21). RLRs are remarkably well
conserved in vertebrates and teleost fish possess functional
orthologs of human RLRs, including RIG-I, MDA5, and LGP2
(4, 22) as well as several downstream molecules (Figure 1A and
Table 1). Although identified in many fish species belonging to
Cypriniformes (e.g. carp and zebrafish), Siluriformes (e.g.
channel catfish) and Salmoniformes (e.g. salmon and trout),
RIG-I has not been reported in certain fish of the superclass
Acanthopterygii (e.g. medaka, tetraodon, pufferfish, stickleback,
sea bream and sea bass). It is still unclear whether the RIG-I gene
has been lost in some fish species as it has been reported for
chicken (105) and Chinese tree shrew (106).

RIG-I and MDA5 recognize specific RNA features that are
not typically found in most cellular RNAs in the cytoplasm of
vertebrate cells (107). RIG-I binds preferentially, but not
exclusively, to ssRNAs phosphorylated at the 5’ end, whereas
MDA5 recognizes long dsRNAs. This difference in ligand
preference results in specificity for the recognition of distinct
virus species. In the resting state, CARDs are sequestered, while
upon binding of RNA to CTD and helicase domains, CARDs are
released by a conformational change of the molecule. Exposed
Frontiers in Immunology | www.frontiersin.org 2
CARDs interact with the CARD of the mitochondrial activator of
virus signaling (MAVS) protein (IPS-1, VISA or Cardif) (29–32).
MAVS is an integral protein of the mitochondrial outer
membrane that associates with the mitochondrial membrane
via its C-terminal domain and acts as a key determinant of the
antiviral signaling cascade. Fish MAVS contains similar domains
as those found in mammals, with a N-terminal CARD domain
and a C-terminal transmembrane (TM) region, both of which are
essential for its antiviral function, as well as a central proline-rich
region containing TNF receptor-associated factor (TRAF)-
binding motifs (4, 25). The interaction between RLRs and
MAVS induces the recruitment of adaptor proteins, such as
TRAF3 or TRAF6, and the activation by phosphorylation of
serine/threonine-protein kinases, TANK-binding kinase 1
(TBK1) and inhibitor-kB kinases. Consequently, IRF3/IRF7
and nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-kB) transcription factors are activated, translocate
from the cytosol to the nucleus and induce the expression of
IFNs and inflammatory cytokines.
REGULATION OF RIG-I-LIKE RECEPTORS

Under homeostatic conditions, IFNs are expressed at very low
and often undetectable levels. Given the critical role of the RIG-I-
mediated IFN induction pathway, a tight regulation is essential to
maintain the immune homeostatic balance and to ensure proper
termination of the antiviral response in order to avoid extensive
tissue damage, chronic inflammation, and autoimmune diseases.
Moreover, since most RIG-I pathway components are ISGs and
that their overexpression leads to constitutive IFN production, it
is clear that cells must regulate them not only at the
transcriptional level, but also at post-transcriptional and post-
translational levels. These distinct regulatory mechanisms act on
each sensor and downstream molecule to control antiviral
signaling. Regulation at the post-transcriptional level includes
alternative pre-mRNA splicing leading to functionally distinct
proteins (108), long non-coding RNAs (lncRNAs), and micro
RNAs (miRNAs) that both serve as important regulators of RLR
signal transduction (5). Some lncRNAs have even been shown
to directly bind to RLRs. Post-translational modifications
(PTMs) involve the covalent linkage of new functional groups
to amino acid residues which in turn fine tune protein
properties by regulating protein folding, stability, location, and
interaction with other molecules. Several regulatory mechanisms
mediated by PTMs have been described (109). Among them,
phosphorylation and ubiquitination are the best characterized.
Other PTMs such as ISGylation (conjugation with the IFN-
inducible ubiquitin-like protein ISG15), SUMOylation,
methylation, acetylation and deamidation have also been
reported to control the RIG-I pathway. In addition, several
RLR-binding proteins have been identified as important
modulators of RLRs for RNA binding (acting as co-receptors),
oligomerization, ubiquitination or affecting subcellular
localization (5). In addition, spatiotemporal dynamics of
MAVS in mitochondria, in mitochondrial-associated
endoplasmic reticulum membranes (MAMs), and in
April 2021 | Volume 12 | Article 679242
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FIGURE 1 | Regulation of RIG-I-mediated signal transduction by a conserved set of cellular proteins in vertebrates. (A) Schematic representation of RIG-I pathway
including the main downstream components for signal transduction leading to promoter activation and expression of type-I interferon. A set of cellular regulators that
are evolutionarily conserved between fish and mammalian species are placed next to their targets. The effect of each regulator is symbolized by (–) for inhibition
(in red), by (+) for activation (in blue), or by (+/-) for ambivalent (in green) reported functions on the RIG-I pathway, based on the literature (mainly from studies with
mammalian orthologs; see Table 1). Other cytosolic sensors or co-receptors involved in the RIG-I pathway are boxed in orange. *Although TRIM25 promotes the
degradation of MAVS, this step is required for IRF3 phosphorylation by TBK1 (23). (B, C) Fathead minnow orthologs of mammalian regulators were amplified from
total RNA extracted from EPC cells, cloned into the eukaryotic expression vectors pcDNA1.1/Amp (Invitrogen) and fully sequenced. Nucleotide sequences of each
regulator were deposited in GenBank (see Table 1 for accession numbers). To test their effect on the RIG-I pathway, EPC cells were transfected with the indicated
plasmids (1 mg) together with a luciferase reporter construct driven by the promoter of IFN1 derived from EPC cells (1 mg) and the RIG-I Nter-eGFP inducer and
internal transfection control construct 0.5 µg in (B) or 1 mg in (C), as previously described (24). Twenty-four hours after transfection, the cells were lysed for luciferase
assays. Luciferase activity was measured and normalized to eGFP fluorescence. No significant variation in eGFP expression was observed between each condition.
The percentage of fold-induction were calculated as the ratio of stimulated (+ RIG-I Nter) versus unstimulated (− RIG-I Nter) conditions and compared to the
induction control (RIG-I Nter + empty vector). Means of at least three independent experiments are shown together with the standard errors. The color coding used
for the histograms is the same as the one used in panel (A) For statistical analysis, a comparison between groups was performed with a one-way ANOVA and
Tukey’s multiple comparison tests using GraphPad Prism (GraphPad, San Diego, CA). Groups that are not significantly different from each other are denoted ns
(P > 0.05), whereas those that are significantly different are denoted *(P < 0.05), **(P < 0.01), ***(P < 0.001) or ****(P < 0.0001). (D, E) EPC cells were transfected
with the indicated plasmids (2 mg each) or an empty vector (pcDNA1.1/Amp) as a control, as previously described (25). All transfection mixtures were adjusted with
an empty vector to contain an equal amount of plasmid DNA. Twenty-four hours after transfection, cells were infected with a fish novirhabdovirus, viral hemorrhagic
septicemia virus (VHSV) at an MOI of 1 and incubated at 15°C. Cell monolayers were stained with crystal violet 3 days postinfection (D). The culture supernatants from
infected cells were collected at different times postinfection and the viral titer was determined by plaque assay (E). Each time point is represented by two independent
experiments, and each virus titration was performed in duplicate. Average values are shown. The standard errors were calculated and the error bars are shown.
Asterisks indicate significant difference (*p < 0.05; ****p < 0.0001) as determined by two-way ANOVA and Tukey’s multiple comparison tests. ns, not significant.
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peroxisomes regulates RLR-mediated signaling (110). Therefore,
the integrity of these subcellular compartments together with
their own regulation indirectly act on RLR function (111, 112). A
few examples of such mechanisms have been described in fish
cells, mainly miRNA-mediated regulation and alternative
splicing isoforms of RLR components (113, 114).

In order to explore the degree of conservation of these
regulatory mechanisms among vertebrates, we cloned and fully
sequenced 22 genes of fathead minnow (Pimephales promelas)
encoding orthologs of human proteins described as important
regulators of the RIG-I pathway (Table 1). Fathead minnow is a
relevant fish species for at least two reasons: 1) EPC cells
Frontiers in Immunology | www.frontiersin.org 4
(Epithelioma Papulosum Cyprini; ATCC CRL-2872), the most
widely used fish cell line in virology, is derived from this fish
species (115), and 2) fathead minnow belongs to the family
Cyprinidae together with the zebrafish (Danio rerio), an animal
model offering great potential for the study of human and fish
viral diseases and the development of antiviral drugs (116–118).
This list of 22 fish orthologs is far from exhaustive and only
represents a small fraction of proteins described as modulating
RIG-I-mediated IFN expression (109, 119). Nevertheless, these
orthologs are of importance because they correspond to human
proteins acting on the RLR pathway via three key modes of
action: phosphorylation, ubiquitination, and RLR-binding.
TABLE 1 | Pimephales promelas RIG-I pathway components and orthologs.

RIG-I Pathway Components of Pimephales promelas

Full Name Symbol
(Synonym)

Target/
Partner

GenBank # Homo sapiens
GeneID

Danio rerio
GeneID

Selected
References

DExD/H-box helicase 58 DDX58 (RIG-I) MAVS FN394062 23586 100333797 (9, 25, 26)
DDX58 CARD domains RIG-I Nter MAVS FN178456
Interferon induced with helicase C domain 1 IFIH1 (MDA5) MAVS MG799354 64135 565759 (10–12, 27, 28)
Mitochondrial antiviral signaling protein MAVS (IPS1, CARDIF,

VISA)
TRAF3
TBK1

FN178455 57506 562867 (25, 29–33)

TANK binding kinase 1 TBK1 IRF3/7 LT174673 29110 692289 (24, 34–38)
Interferon regulatory factor 3 IRF3 IFN

promoter
MN781134 3661 564854 (39–44)

Interferon regulatory factor 7 IRF7 IFN
promoter

MN781135 3665 393650 (34, 45–47)

Interferon 1 promoter region IFN1 promoter _ HE856618 IFNa/b promoter DQ8559521 (48–50)
Interferon 1 IFN1 IFN

receptor
FN178457 IFNa/b 360134 (2, 25, 51, 52)

RIG-I Pathway Regulators/Co-receptors/Receptors of Pimephales promelas
DExH-box helicase 58 DHX58 (LGP2) RIG-I MW591879 79132 100148871 (13, 17, 19, 21, 27, 49,

53–55)
DEAD-box helicase 6 DDX6 RIG-I MW591868 1656 564633 (56, 57)
Ring finger protein 135 RNF135 (RIPLET) RIG-I MW591864 84282 101882927 (58–63)
Tripartite motif containing 25 TRIM25 RIG-I LT174676 7706 393144 (23, 64–66)
OTU deubiquitinase, ubiquitin aldehyde
binding 1

OTUB1 RIG-I
TRAF3

MW591878 55611 436684 (67–69)

Protein phosphatase 1 catalytic subunit
alpha

PPP1CA (PP1A) RIG-I
IRF3/7

MW591866 5499 407980 (70, 71)

Protein activator of interferon induced
protein kinase A

PRKRA (PACT) RIG-I MW591865 8575 557370 (18, 72)

DEAD-box helicase 23 DDX23 MAVS MW591869 9416 334283 (73)
DExH-box helicase 9 DHX9 MAVS MW591876 1660 568043 (74–76)
DEAH-box helicase 15 DHX15 MAVS MW591867 1665 321931 (77–79)
YOD1 deubiquitinase YOD1 (OTUD2) MAVS MW591873 55432 550411 (80)
Polo like kinase 1 PLK1 MAVS MW5918742 5347 280649 (81)
OTU deubiquitinase 1 OTUD1 MAVS

IRF3
MW591870 220213 100537398 (82, 83)

DEAD-box helicase 3 DDX3 MAVS
TBK1

LT174679 1654 566947 (24, 75, 84–88)

TNF alpha induced protein 3 TNFAIP3 (A20) TBK1 LT984694 7128 564497 (89–91)
Elongation factor Tu GTP binding domain
containing 2

EFTUD2 TBK1 LT174678 9343 393480 (24, 92)

Protein phosphatase, Mg2+/Mn2+
dependent 1A

PPM1A TBK1 LT174675 5494 30704 (24, 93–95)

Protein phosphatase, Mg2+/Mn2+
dependent 1B

PPM1B TBK1 LT174674 5495 100003481

DEAD-box helicase 19 DDX19 TBK1 MW591875 55308 192339 (96)
Optineurin OPTN TBK1 MW591877 10133 336159 (97–101)
Rapunzel 5 RPZ5 IRF7 MW591871 No ortholog 100003142 (24, 102)
Ubiquitin specific peptidase 22 USP22 IRF3 MW591872 23326 692275 (103, 104)
April 2021 | Vo
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REGULATION BY KINASES AND
PHOSPHATASES

Phosphorylation is a reversible PTM of proteins in which
serine, threonine or tyrosine residues are modified by a kinase
by the addition of a covalently bonded phosphate group (109).
Phosphorylation results in a structural conformation change
of a protein, often modifying its function to become activated
or deactivated. The reverse reaction of phosphorylation is
called dephosphorylation, and is catalyzed by phosphatases.
Phosphorylation regulates almost all components of the RLR
pathway. In resting cells, RIG-I is negatively regulated by
phosphorylation by several kinases keeping RIG-I in a non-
activated state. When viral RNAs are detected, the CARDs of
RIG-I are rapidly dephosphorylated by protein phosphatase 1
(PP1A), thus activating the sensor (70). However, PP1A is also
able to dephosphorylate IRF3/7 leading to an inhibition of RIG-
I-mediated signal transduction at a downstream level (71). Fish
PP1A is highly conserved and share 90% sequence identity at the
amino acid (aa) level with its human ortholog. To determine fish
PP1A action on RIG-I-mediated IFN expression, we tested its
ectopic overexpression in a cell-based luciferase reporter system
(Figure 1B). As previously published (48), the expression
of a constitutively active form of RIG-I (RIG-I Nter; in which
the C-terminal repressor domain maintaining the protein in an
inactive state is deleted) significantly activates the IFN1 promoter
of EPC cells. As a control, the co-expression RIG-I Nter with
A20, a negative feedback regulator of the RLR signaling (89),
drastically reduced the induction. In contrast, co-expression of
PP1A with RIG-I Nter significantly increase IFN1 promoter
activation, indicating that fish PP1A share a common function
with its mammalian orthologs by enhancing RIG-I activity.
MAVS activation is also regulated by phosphorylation (120).
Polo-like kinase 1 (PLK1) has been reported to negatively
regulate MAVS (81). PLK1 does not directly phosphorylate
MAVS but, rather, requires phosphorylation of MAVS for
docking and disrupting the MAVS–TRAF3 interaction. Fish
PLK1 is well conserved (71% aa sequence identity) and also
exerts a negative regulatory role on MAVS (Figure 1C). The
last example is TBK1. As a critical kinase involved in IFN
expression, the activity of TBK1 must be tightly regulated.
Because TBK1 activation occurs by trans-autophosphorylation,
phosphatases play a critical role in the control of TBK1 activity.
Two Ser/Thr protein phosphatases, PPM1A and PPM1B, have
been reported to target TBK1 and MAVS for dephosphorylation
and to down regulate signaling mediated by cytosolic
nucleotide sensing in fish and mammalian species (Figure 1C)
(24, 93–95).
REGULATION BY UBIQUITIN LIGASES
AND DEUBIQUITINASES

Ubiquitination is the covalent and reversible addition of
ubiquitin to lysine residues on a protein substrate (121).
Frontiers in Immunology | www.frontiersin.org 5
Ubiquitin is itself an 8.5 kDa protein composed of 76 amino
acids. Ubiquitination is catalyzed by three distinct classes of
enzymes: ubiquitin-activating enzymes (E1), ubiquitin-
conjugating enzymes (E2) and ubiquitin ligases (E3), on which
lies most of the substrate specificity. Lysine residues can be
modified with a single ubiquitin (monoubiquitination) or chains
of ubiquitin (polyubiquitination). Different types of ubiquitin
chains are thus generated based on the seven lysine residues
present on ubiquitin. Among them, K48-linked ubiquitin chains
target protein for proteasome degradation while K63-linked
ubiquitin chains mediate protein-protein interactions.
Ubiquitination is a reversible and dynamic event, since the
conjugated ubiquitin chains can be cleaved by a family of
ubiquitin-specific proteases, termed deubiquitinases (DUBs).
More than 600 and 100 genes encoding putative E3 ligases
and DUBs, respectively, have been annotated in the human
genome, indicating the ubiquitous importance and specificity
of these PTMs in the control of cellular processes. In the
RLR pathway, most of the sensors, adaptor proteins, and
kinases are ubiquitinated to efficiently activate or repress
IFN production.

RIG-I is finely regulated by ubiquitination which is critical for
its activation and degradation. Tripartite motif containing 25
(TRIM25) was the first identified enzyme to catalyze the
conjugation of K63-linked ubiquitin chains to RIG-I CARDs (64,
65). Ring finger protein 135 (RNF135/RIPLET), another ubiquitin
ligase, is also involved in K63-linked polyubiquitination at multiple
sites in CARDs and CTD leading to the activation of RIG-I
(58–60). Whether RNF135 promotes TRIM25 binding on RIG-I
in a sequential ubiquitination process or RNF135 by itself,
without involvement of TRIM25, is essential for RIG-I
activation is still unclear (61, 62). However, TRIM25 is also
capable of promoting K48-linked ubiquitination and
degradation of MAVS. The proteasomal degradation of MAVS
is required to release the signaling complex into the cytosol,
allowing IRF3 phosphorylation by TBK1 (23). Zebrafish orthologs
of TRIM25 and RIPLET have also been reported as positive
regulators of RIG-I (63, 66). Figure 1B shows that fish RNF135
has an enhancing effect on the activity of RIG-I CARDs, whereas
TRIM25 has no effect. Nevertheless, TRIM25 co-expression with
full-length RIG-I is required to protect EPC cells against a viral
infection and to inhibit viral production (Figures 1D, E),
highlighting that fish RNF135 and TRIM25 are both positive
regulators of the RLR pathway.

Several DUBs of ovarian tumor proteases (OTUs) and
ubiquitin-specific proteases (USPs) families, have been described
as important regulators of RLR pathway. Among them,
mammalian and fish A20 has been shown to be a strong
inhibitor of the RLR signaling (Figures 1C, D) (89–91). In
addition, the function of OTUB1, OTUD1, YOD1, and USP22
fish orthologs was investigated (Table 1). They all have significant
inhibitory effects on signal transduction by RIG-I CARDs
(Figure 1C). Fish OTUD1 has the strongest effect, likely by
mediating the targeted degradation of the MAVS/TRAF3/
TRAF6 signalosome as well as by reducing the DNA binding
capacity of IRF3, as described in mammals (82, 83). YOD1, which
April 2021 | Volume 12 | Article 679242
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acts at a later step along the pathway to abrogate the formation of
prion-like aggregates of MAVS (80), has a limited effect on IFN
promotor induction at an early time point post-stimulation. In
contrast, mammalian OTUB1 and USP22 were reported with
opposite regulatory effects on the RLR pathway (67–69, 103, 104).
The inhibitory effect observed after ectopic expression of the fish
orthologs may be a result of the inherent bias associated with the
overexpression of enzymatically-active protein, mislocalization
and inadequate cell type and does not allow to distinguish the
opposite functions previously described in mammals.
REGULATION BY RLR-BINDING
PROTEINS

The RLR pathway is regulated by multiple host factors. Protein
activators of PKR (PACT, also known as protein activator of
interferon induced protein kinase A) binds to RIG-I CTD and
enhances RIG-I signaling in part by stimulating RIG-I ATPase
and helicase activities (72). Moreover, recent studies have
indicated that the PACT-LGP2 interaction was necessary to
regulate the responses mediated by RIG-I and MDA5 (18,
122). As for mammals, the role of fish LGP2 in RLR signaling
is unclear. It appears that depending on the nature of the splicing
isoform, LGP2 can have a negative or a positive effect on the
RIG-I pathway (27, 49, 53–55). The dhx58 cDNA amplified from
EPC cells encodes LGP2 protein which exerts a strong inhibition
on signaling mediated by RIG-I CARDs (Figure 1B). Moreover,
a similar inhibition is observed during expression of RIG-I
CARDs together with PACT (Figure 1B). This is in contrast
with PACT’s enhancing function observed in mammals.
However, fish PACT only shares 44% aa sequence identity
with human PACT. Another dsRNA-binding protein, TAR-
RNA-binding protein (TRBP), which shares 39% protein
sequence identity with PACT with a similar structure, has
recently been reported as an inhibitor of RIG-I signaling (123).
Because fish PACT still retains some degree of relatedness to
both human proteins, PACT and TRBP, it cannot be excluded
that PACT acts as a negative regulator of RIG-I in fish.

The involvement of multiple RNA helicases in RLR signaling
has been demonstrated, as recently reviewed by Taschuk and
Cherry (124). For instance, DDX6, DHX9, DDX3, and DHX15
can function as co-sensors of RIG-I or as RLR-independent
sensors of nucleic acids through interaction with MAVS (56, 74,
77–79, 84–86). DHX9, DHX15, and DDX23 have been recently
described as cytoplasmic viral RNA sensors in the lancelet
(amphioxus) (73). However, limitations or contradictions have
been reported concerning their role in IFN and ISGs production.
DDX6 is also described as a suppressor of ISGs (57). DHX9 is an
important viral dsRNA sensor only in myeloid dendritic cells
(74). DHX15 contributes to the activation of NF-kB but not IRF3
in response to RNA virus infection (78). DDX3, for which
multiple roles as a pro- or antiviral factor were identified (84),
has recently been described as an inhibitor of IFN production
during arenavirus infection (87). Fish orthologs are highly
Frontiers in Immunology | www.frontiersin.org 6
conserved and share at least 69% aa sequence identity with
human proteins. Fish DDX3 and DHX9 bind dsRNA (75) and
DHX9 is a potential sensor for DNA virus infection in vivo (76).
Fish DDX3 is a binding partner for the nonvirion (NV) proteins
of two fish novirhabdoviruses, suggesting that DDX3 plays an
important role in either enhancing innate immunity or
promoting virus replication (24). Moreover, the overexpression
of fish DDX3 alone seems to induce the IFN promoter (88). In
our cell-based reporter system, a negative effect on RIG-I
CARDs-mediated signaling was observed for DDX6, DHX9,
DDX3, DHX15, and DDX23 (Figures 1B, C), probably
through a competition for MAVS adaptor or another
mechanism yet to be further investigated. In any case, these
RNA helicases are potentially involved in the innate immune
system of vertebrates. Finally, another RNA helicase, DDX19,
has been shown as a negative regulator of IFN production (96).
Mechanistically, DDX19 does not sense viral RNA but inhibits
the phosphorylation of IRF3 by TBK1. DDX19 is highly
conserved between fish and mammals (sharing 86% aa
sequence identity) and share the same inhibitory effect on the
RLR pathway (Figure 1C).

The optineurin (OPTN) is another regulator of the RLR
pathway but its action is controversial. Although OPTN was
initially reported to negatively regulate IFN induction (97), other
studies indicated that OPTN was necessary for optimal TBK1
and IRF3 activation (98, 101). However, recent studies pointed
out a crucial role for OPTN in dampening the IFN response (99,
125). Moreover, chicken OPTN has been reported as an inhibitor
of MDA5-mediated IFN production (100). As shown in the
Figure 1C, fish OPTN has also an important inhibitory effect on
RIG-I-mediated induction of the IFN promoter.

The function of the NV proteins of two novirhabdoviruses in
the inhibition of the host immune response has been described
using an interactome proteomics approach (24). Among the
cellular partners of NV, PPM1B was shown to be specifically
recruited to terminate RIG-I-mediated IFN induction. In
addition to DDX3, two other proteins were identified to be
likely involved in the RLR pathway: the elongation factor Tu
GTP binding domain containing 2 (EFTUD2) and the rapunzel 5
protein (RPZ5). EFTUD2 was discovered to restrict infection by
hepatitis C virus (HCV) through IFN-independent stimulation
of the innate immune response (92). EFTUD2 upregulates RIG-I
expression by pre-mRNA splicing. Fish EFTUD2 is highly
conserved with its mammalian counterpart (89% aa sequence
identity) but its overexpression does not protect fish cells against
rhabdovirus infection in contrast to its human ortholog that
protects human cells against HCV (data not shown).
Surprisingly, overexpression of EFTUD2 has a negative effect
on RIG-I-mediated IFN expression in fish cells (Figure 1C), a
finding that requires further investigation. Unlike most of the
factors described above, RPZ5 has no mammalian or bird
orthologs. Zebrafish RPZ5 has recently been implicated in
blocking RLR-mediated IFN induction by mediating the
degradation of phosphorylated IRF7 (102). In Figure 1C,
we confirm the inhibitory effect of fish RPZ5 on the RIG-I
pathway and its uniqueness among teleost fish.
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CONCLUSIONS AND PERSPECTIVES

The IFN system is remarkably well conserved in vertebrates and
it is remarkable that teleost fish possess most post-transcriptional
and post-translational regulatory mechanisms of the RLR
signaling pathway as described in mammals. Thus, these multi-
level regulatory mechanisms were selected very early on and
maintained throughout the evolution of vertebrates indicating
their crucial role in the control of immune homeostasis for these
organisms. Although numerous regulators have been reported in
mammals, underlying the complexity and the relative
redundancy of these mechanisms, their distinctive roles and
functional differences depending on the cell type considered
(e.g. immune versus epithelial cells), their own regulation, and
their sequential chronology required to orchestrate the RLR
signaling remain elusive, and in some cases, opposite functions
have been reported for a same effector. In teleost fish,
characterization of the components of the RLR pathway and
factors involved in its fine tuning has begun but the overall
picture is still poorly understood and is mainly modeled on the
knowledge acquired from studies based on mammalian systems.
The experimental approaches to study the innate immune
system in fish has long been based on the overexpression in
cell lines of identified genes with the known benefits and
limitations of a such screening method. However, with the
adaptation of the CRISPR/Cas9 genome editing for fish cells
(126, 127), gene knock out studies will be greatly improved
compared to the low efficiency and biases observed with RNA
silencing (128). Moreover, the in vivo relevance of these factors
in antiviral immunity still needs to be addressed since their
description was exclusively done in vitro in non-immune cells.
Since many decades, zebrafish is an important animal model in
biomedical research due to multiple advantages including low
maintenance cost, high fecundity, short generation time, small
size, optical transparency of embryos, and a relatively high
degree of conservation with human genes (Table 1) (129, 130).
Together with the large available collection of transgenic lines
and the relative ease to silence or overexpress specific genes, these
Frontiers in Immunology | www.frontiersin.org 7
advantages make zebrafish a model of choice for studying the
spatio-temporal regulatory mechanisms of the RLR pathway. An
improved understanding of the precise mechanisms of regulation
in different viral and animal species and cell types will enable the
development of novel therapeutic strategies against infectious
diseases, immunological disorders, and cancer.
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