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Recently, mRNA vaccines have become a significant type of therapeutic and have created
new fields in the biopharmaceutical industry. mRNA vaccines are promising next-
generation vaccines that have introduced a new age in vaccinology. The recent
approval of two COVID-19 mRNA vaccines (mRNA-1273 and BNT162b2) has
accelerated mRNA vaccine technology and boosted the pharmaceutical and
biotechnology industry. These mRNA vaccines will help to tackle COVID-19 pandemic
through immunization, offering considerable hope for future mRNA vaccines. Human trials
with data both from mRNA cancer vaccines and mRNA infectious disease vaccines have
provided encouraging results, inspiring the pharmaceutical and biotechnology industries
to focus on this area of research. In this article, we discuss current mRNA vaccines
broadly in two parts. In the first part, mRNA vaccines in general and COVID-19 mRNA
vaccines are discussed. We presented the mRNA vaccine structure in general, the
different delivery systems, the immune response, and the recent clinical trials for mRNA
vaccines (both for cancer mRNA vaccines and different infectious diseases mRNA
vaccines). In the second part, different COVID-19 mRNA vaccines are explained. Finally,
we illustrated a snapshot of the different leading mRNA vaccine developers, challenges,
and future prospects of mRNA vaccines.

Keywords: mRNA vaccines, mRNA-1273, BNT162b2, mRNA vaccine developers, COVID-19
INTRODUCTION

SARS-CoV-2 has rapidly created a worldwide pandemic, leading to significant health challenges and
economic burdens for every country while also causing severe morbidity and mortality. To date, no
approved proper treatments or therapeutic choice is available for this virus. Thousands of clinical
studies have been registered to discover effective treatments. Simultaneously, this situation has
created an urgent need for vaccine development. Vaccines are the most promising solution to fight
against the pandemic. Several vaccine candidates are being developed to reduce morbidity and
mortality and stop the pandemic. In total, 321 vaccine candidates have been documented from the
global R&D setting for the development of COVID-19 vaccines (1). In the developmental phase of
the COVID-19 vaccine, a broad range of vaccine approaches is being used, including traditional
org July 2021 | Volume 12 | Article 6793441
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approaches and next-generation approaches. Several traditional
approaches have been used to develop COVID-19 vaccines, such
as live coronavirus vaccines, inactivated virus vaccines, and
subunit vaccines (2). Similarly, next-generation vaccines for
COVID-19 can be divided into protein- or peptide-based
vaccines and nucleic acid-based vaccines (3). Nucleic acid-
based vaccines are categorized into DNA vaccines and RNA
vaccines. Previous studies have shown that conventional vaccine
strategies, such as live attenuated vaccines, inactivated vaccines
or subunit vaccines, may protect against a range of infectious
diseases in the long term (4). In the case of the COVID-19
vaccine, vaccine candidates must be developed more rapidly and
in large quantities. Additionally, vaccine candidates must be
more effective in the fight against the pandemic. Therefore,
mRNA-based vaccines are a more promising choice compared
to conventional vaccine strategies because mRNA vaccine
candidates have the capacity for rapid development with high
effectiveness. These vaccine candidates also have the potential for
low-cost manufacturing and safer administration. Therefore,
mRNA vaccines have revolutionized the vaccinology field by
addressing all of the current challenges (5, 6).

The mRNA vaccine development approach is developing
quickly (Figure 1). Significant research investment in this field
has allowed mRNA to become a potential candidate in the
immunization landscape. Several major technological
innovations have been developed in this area, and pre-clinical
research data have been developed and accumulated during the
last several years (5, 7). The first successful experiment was
published in 1990. In this research, Wolff et al. successfully
injected mRNA reporter genes into mouse skeletal muscle cells,
and protein production was observed, documenting the first
attempt at mRNA in vivo expression. This experiment
demonstrated a successful method for mRNA vaccine
development (8). Subsequently, several studies were performed
on mRNA-based therapeutic development (Figure 2).
Vasopressin mRNA was injected into a rat model to
understand the uptake, transport, and expression of this
mRNA (9). Several other significant innovations were
Frontiers in Immunology | www.frontiersin.org 2
performed that addressed problems in mRNA vaccine
development. One of the important milestones was the
assimilation of pseudouridine into mRNA, which provides
biological stability and increased translational capacity (10).
Another important discovery was optimizing the mRNA
coding sequences. In this work, Thess et al. performed
sequence engineering of erythropoietin (EPO) mRNA (11).
However, codon optimization is not required for mammalian
viruses and tumour antigens.

Simultaneously, high-performance liquid chromatography
(HPLC) purification of mRNA was performed to identify the
contaminants, leading to the generation of pure and therapeutic
grade mRNA (12). The first mRNA vaccine entered into a Phase
I trial with 13 study subjects in 2011, using a prostate-specific
antigen RNA-based vaccine. In this study, mRNA-based
prostate-specific antigens were transferred into dendritic cells,
which were able to induce in vitro T cell-mediated antitumour
immune responses (10, 11). Subsequently, several mRNA
vaccines have been registered in clinical trials in recent years.
Along with the other mRNA vaccine, two COVID-19 mRNA
vaccines were developed very rapidly to fight against
the pandemic.

In this review, we discuss all forms of mRNA vaccines from
COVID-19 to cancer. First, we discuss the preparation of mRNA
vaccines in general. Second, we discuss the different delivery
systems for mRNA vaccines. Third, we discuss the immune
response landscape of mRNA vaccines in general. Fourth, we
discuss recent clinical trials of mRNA vaccines. Fifth, we discuss
different COVID-19 mRNA vaccines. Finally, we illustrate the
different leading mRNA vaccine developers as well as the future
prospects of mRNA vaccines.
IN VITRO SYNTHESIS OF mRNA AND
ENGINEERING SEQUENCES FOR mRNA
VACCINE DEVELOPMENT

In general, mRNA vaccines code the antigen of interest, which
contains 5′ and 3′ untranslated regions (UTRs). However, two
types of mRNA vaccine constructs are available: nonreplicating
mRNA (NRM) vaccine constructs and self-amplifying mRNA
(SAM) vaccine constructs. In both cases, there was a universal 5′
cap, 5′ untranslated regions (UTRs), an open reading frame
(ORF), 3′ untranslated regions (UTRs) and a 3′ poly(A) tail
(Figure 3) (5, 7, 13). The ideal structure is described below.

Ideal Structure of mRNA
Vaccine Constructs
5´Cap Structure
CAP structure is an indispensable part of the eukaryotic mRNA.
All eukaryotic mRNA has a cap structure, containing an
evolutionarily conserved N7-methylated guanosine associated
with the first nucleotide of the RNA (14). In the mRNA, the
m7GpppN structure is added at the 5´ end as an mRNA cap with
numerous functions (15). The cap protects the mRNA from
quick degradation. Also, it helps the binding of the initiation
FIGURE 1 | The number of publications in PubMed in the mRNA vaccine
area from 2018 to 2020. The PubMed search was performed using the
“mRNA vaccine” keyword on 10th Jan 2021.
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factor eIF. There are three types of CAP structures: Cap 0, Cap 1,
and Cap2 (16). Cap 0 [m7G(5’)pppN1pN2p] can recruit eIF and
helps to prevent mRNA degradation. Cap 0 also helps to
stimulate interferon (IFN) mediated responses (17). Cap 1
[m7G(5’)pppN1mpNp] is usually created by the methylation
of the 2′-hydroxyl group of the Cap 0. Cap 1 is commonly found
in cytoplasmic viruses. Cap 2 [m7G(5’)pppN1mpN2mp] can be
generated with an additional 2′-O-methylation of the Cap 1
(6, 14). However, the cap 2 function is still unclear though it has
been known that approximately half of all mRNAs possess cap 2.
Frontiers in Immunology | www.frontiersin.org 3
Another cap has also been observed, i.e., m6Am cap. It is
reported that cap 0 intermediate and other cap structures are
available in eukaryotic mRNAs (18, 19). The cap structure is
located on the 5´ end and impacts even protein production (6).
In eukaryotes, there are two types of caps: Cap 0 and Cap 1
structures. Following the natural mRNA sequence, adding a
regular cap [7-methylguanosine (m7G) cap] is required with
the 5´ end of the mRNA sequence, which is an m7GpppN
structure (7, 20). Therefore, an analog of a synthetic cap is
added to the mRNA during the mRNA vaccine development.
A

B

FIGURE 3 | Critical parts of mRNA vaccine construct (A) Critical parts of mRNA vaccine constructs in general (B) Critical parts of two specific types of mRNA
vaccine constructs [Non-replicating mRNA (NRM) vaccine and Self-amplifying mRNA (SAM) vaccine].
FIGURE 2 | Timeline of the research breakthrough and progression of mRNA vaccine.
July 2021 | Volume 12 | Article 679344
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5´ Untranslated Regions
The structures, length, and regulatory elements are significant for
mRNA, and these factors regulate the translational efficiency
of mRNA.

Coding Sequence
The coding sequence of the mRNA vaccine is crucial. Therefore,
the coding sequences are modified through codon optimization,
which improves the expression of the CDS.

Codon usage is a significant factor that influences protein
translation. However, codon optimization is performed during
mRNA vaccine CDS design, which can replace rare codons with
synonymous codons. In this case, abundantly available codons
are used, which are frequent cognate tRNAs accessible in the
cytosol. However, this method can augment the production of
protein from mRNA (21), and the accuracy of this model has
been questioned (22). Another method can be used during
mRNA vaccine development that can enhance steady-state
mRNA through the enrichment of G:C content (guanine and
cytosine content) in vitro (23).

3´ Untranslated Regions
The 3’ UTR is a significant part of the mRNA structure that also
helps regulate the translational efficiency, similar to 5’ UTRs.

3´ Poly(A) Tail
The 3´ poly(A) tail is important for translation as it protects
mRNA molecules and it is also a significant part of the mRNA
vaccine structure. The poly(A) tail plays a crucial role in the
translation of mRNA by regulating the stability of mRNA (24).
Therefore, the best possible length of the poly(A) tail must be
included in mRNA through various options, such as using poly
(A) polymerase or from the encoding DNA template (25).

Types of mRNA Vaccine Constructs
Non-Replicating mRNA Vaccine Constructs
The NRM is also called the conventional mRNA vaccine (26, 27).
The NRM vaccine constructs contain conventional mRNA
vaccine sequences, such as the universal 5´ Cap, 5´
untranslated regions (UTRs), an open reading frame (ORF), 3´
untranslated regions (UTRs) and a 3′ poly(A) tail (28, 29). The
significant advantage of the NRM vaccine is simplicity. Another
advantage of the vaccine is the comparatively small size of the
mRNAmolecule. Alternatively, limited activity and stability have
been observed with the NRM vaccine construct in vivo, which is
one of the disadvantages of the vaccine (26). However, the
optimization of the structural elements of RNA molecules can
augment antigen expression and the durability of antigen
expression (Figure 4) (30).

Self-Amplifying mRNA Vaccine Constructs
SAM vaccines are normally constructed and obtained from the
engineered RNA of positive-sense single-stranded RNA viruses,
such as picornaviruses, flaviviruses, and alphaviruses (31, 32).
Alternatively, negative-sense ssRNA viruses have been used to
develop mRNA vaccines to protect against measles viruses and
rhabdoviruses (33). However, the reverse genetics technique is
Frontiers in Immunology | www.frontiersin.org 4
required to construct the mRNA vaccine from negative-sense
RNA genomes. In this case, cell culture-based systems
are needed.

The SAM construct contains all of the components of the
NRM construct. Additionally, there is an extra component in the
SAM construct that encodes an extra replicase component. This
component can direct intracellular mRNA amplification (6, 29).

The replication component of the SAM vaccine is generated
by substituting viral structural genes that are inserted with
antigen-specific genes. Therefore, after delivery, the SAM
vaccine components are capable of high levels of amplification
in the cytoplasm of target cells, causing high levels of antigen
expression (Figure 4) (17). The RNA-dependent RNA
polymerase (RdRP) complex is in the gene of interest for SAM
vaccine constructs as a replicase component (34).

Trans-Amplifying mRNA Vaccine
Another type of mRNA vaccine that has recently been studied is
called trans-amplifying RNA vaccines. In this type, a replicase
can amplify the RNAs “in trans”. The replicase component is
offered “in trans”, meaning that two genes act together but on
dissimilar RNAs. Self-amplifying RNAs or nonreplicating
mRNAs are involved (35). Recently, researchers developed a
trans-amplifying RNA system (taRNA system). In this case,
replicase-encoding RNA is produced first. Then, a trans-
replicon of the antigen of interest is added. Using this
influenza vaccine at low doses, animals were protected with the
virus (36).
DIFFERENT DELIVERY SYSTEM FOR
mRNA VACCINE

Efficient mRNA delivery is a significant factor in the therapeutic
success of mRNA vaccines. A good delivery system helps mRNA
vaccines achieve full therapeutic potential. Naked RNA is prone
to nuclease degradation and has difficulty crossing cross the cell
membrane because it is negatively charged and is a large
molecule. However, several mRNA vaccine delivery strategies
have used different delivery strategies: naked mRNA delivery,
mRNA delivery through viral vectors, mRNA delivery through
polymer-based vectors, mRNA delivery through lipid-based
vectors, mRNA delivery through lipid-polymer hybrid
nanoparticles, and mRNA delivery through peptide-based
vectors (Table 1) (16).

Naked mRNA Delivery
The simplest strategy for the delivery of naked mRNA is
administration through intramuscular (i.m.) injection (16), while
other administration routes include intradermal (i.d.) injection (68)
or subcutaneous (s.c.) injection (27). Additionally, researchers have
administered mRNA through dissolvable microneedles (RNA
patches) (69), which may be an important method for RNA
vaccine delivery. However, there are some disadvantages to naked
mRNA delivery. The plasma half-life is short, and naked mRNA is
prone to ribonuclease degradation. Alternatively, negatively charged
July 2021 | Volume 12 | Article 679344
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mRNA should be neutralized. Otherwise, the mRNA molecule will
not be able to pass through cell membranes (70).

mRNA Delivery Through Viral Vectors
For gene/mRNA delivery, genetically modified viruses have been
used for some time. For the delivery of viral RNA, there has been
a significant amount of interest in genetic engineering (71). An
adeno-associated virus is a viral vector-based delivery system
that carries different therapeutic nucleic acid molecules (72). The
advantage of RNA viruses is that the virus can replicate and be
expressed in the cytoplasm locally and easily. Positive strand
RNA viruses can be translated into proteins of interest with the
host ribosomal machinery. Therefore, several virus vectors have
been developed for mRNA delivery of genes other than adeno-
associated viruses, such as flavivirus (73) (e.g., Kunjin virus),
picornaviruses (74), and alphaviruses (e.g., Semliki Forest virus
and Sindbis) (75). However, there are some disadvantages for
mRNA delivery through viral vectors, such as some difficulties
with host genome integration and the possibility of host
rejection, cytotoxicity, and immunogenicity (76). Wadhwa
et al. have also described the drawback of genome integration
of mRNA-based vaccine and possible host rejection (16).
Ura et al. stated that sometimes genome integration could lead
to cancer (77).

mRNA Delivery Through Lipid Vectors
Lipid-based vectors or lipid-like compounds (lipidoids) are
regularly used in mRNA delivery. Naturally occurring lipids
and synthetic lipid molecules, such as liposomes or lipid
Frontiers in Immunology | www.frontiersin.org 5
nanoparticles (LNPs), have been used to deliver mRNAs.
Liposomes are membrane-bound structures that can be
produced through the self-assembly process (78). Dhaliwal
et al. used liposomes for mRNA delivery, and cationic
liposomes are the preferred system (79). Due to rapid
elimination, cationic lipid delivery systems are very challenging
(80). However, there are some safety issues of cationic lipids due
to their quaternary ammonium head group. Safety issues include
immunogenicity and toxicity in vivo systems (81) and in vitro
systems (82). These issues can be solved through the replacement
of quaternary ammonium head groups using tripeptide-based
lipids (DAO3). Researchers observed that this tripeptide-based
lipid has no toxicity in vivo or in vitro (81).

mRNA Delivery Through Polymer-
Based Vectors
The different polymer-based vectors are used from time to time
for mRNA delivery. The first polymer used for mRNA delivery
was diethylaminoethyl (DEAE) dextran (83, 84). Later, it was
observed that lipid-mediated mRNA delivery is more efficient
than the DEAE-dextran-mediated mRNA delivery system (85).
However, Siewert et al. observed that charge ratio variation can
improve mRNA delivery through the mRNA-DEAE-dextran
polyplex system (86). Biodegradable polymers are also used for
mRNA delivery, such as biopolymeric nanoparticles [e.g., poly
(lactic-co-glycolic acid) (PLGA)]. PLGA is a compatible
nanostructure (87, 88), and a PLGA-based mRNA delivery
system was developed with tolerable toxicity and substantial
transfection efficiency (89).
TABLE 1 | Different delivery system for the different type of mRNA vaccine.

Sl. no miRNA vaccine type Route of entry Disease Reference

1. Vector based mRNA Lipid nanoparticles Intravenous Anaemia (37)
2. Melanoma (38)
3. Subcutaneous AIDS (39)
4. Nasal pumping Cystic fibrosis (40)
5. Intramuscular Respiratory syncytial virus infection (41)
6. ZIKV (42)
7. H10N8 and H7N9 (43, 44)
8. Polymer-based Subretinal injections Retina diseases (45)
9. Intravenous Pulmonary vascular disease (46)
10. Anaemia, myelodysplasia (47)
11. Subcutaneous AIDS (48)
12. Muscle atrophy (49)
13. Lipid and polymer hybrid Intravenous Ornithine transcarbamylase deficiency (50)
14. Lymphoma (51)
15. Protamine-formulated Intradermal Melanoma (52)
16. Prostate cancer (53)
17. Non-small cell lung cancer (54, 55)
18. Intradermal, intramuscular Rabies (56)
19. Infectious diseases, cancer (57, 58)
20. Intradermal Ovarian cancer (59)
21. Ex vivo loading of dendritic cells Subcutaneous Different tumors (60)
22. Intradermal Acute myeloid leukaemia (61)
23. Naked mRNA Subcutaneous tumors, intranodal Cervical cancer (62)
24. Intradermal Melanoma (63)
25. Intranodal Cancer (64)
26. Intradermal (Electroporation) – (65)
27. Gene gun Melanoma (66)
28. Intradermal (Microneedles) – (67)
July 2021 | Volume 12 | Art
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Alternatively, several multifunctional block copolymers have
also been used for mRNA delivery, such as poly(ethylene glycol)
methacrylate, dimethylaminoethyl methacrylate (DEAEMA),
and DEAEMA-co-n-butyl methacrylate (90). However, due to
the high molecular weight of some polymers, polymer-based
delivery system design is challenging for mRNA delivery system
development (70).

mRNA Delivery Through Lipid-Polymer
Hybrid Nanoparticles
Lipid-polymer hybrid nanoparticles (LPNs) are effective
molecules for mRNA delivery. Zhao et al. developed lipid-like
nanoparticle TT3-LLN (N1,N3,N5-tris(2-aminoethyl) benzene-
1,3,5-tricarboxamide (TT)-derived lipid-like nanomaterial),
which was used for efficient mRNA delivery (91). In another
study, successful mRNA delivery was performed in the lungs
using LPNs, which consist of the degradable polymer poly(b-
Frontiers in Immunology | www.frontiersin.org 6
amino esters) (PBAEs). In this study, PBAEs with PEG and
mRNA formulations were developed, which increased in vitro
potency and serum stability (92). Conversely, using a lipidoid
polymer hybrid, co-delivery of siRNA and mRNA was
performed, augmenting the co-delivery (93).

mRNA Delivery Through the Peptide-
Based Delivery System
There is increased interest in using peptide-based systems for
mRNA delivery due to their versatility (94). Recently, using cell-
penetrating peptides (PepFect14), Cerrato et al. performed mRNA
delivery for mitochondrial disorders. Researchers have designed a
peptide-based delivery technology called mitochondrial peptide-
based oligonucleotide technologies, and the technology is promising
for treating patients with mitochondrial disorders (95). Conversely,
peptide-based delivery systems have some disadvantages, such as
targeted cell delivery (59).
FIGURE 4 | A schematic diagram which explains the pathways from vaccination to immune system activation for the two categories of mRNA vaccine [One for SAM
vaccine constructs and other for NRM vaccine constructs].
July 2021 | Volume 12 | Article 679344
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DENDRITIC CELLS: A POTENTIAL
TARGET FOR DELIVERY OF
mRNA VACCINES

Dendritic cells are significant antigen-presenting cells (APCs) in
the immune system. Dendritic cells instigate the adaptive
immune response through antigen processing. Dendritic cells
process antigens offered by major histocompatibility complex
(MHC) molecules (MHC class I or MHC class II molecules) to T
cells (CD8+ T cells or CD4+ T cells). MHC class I molecules
interact with CD8+ T cells, and MHC class II molecules interact
with CD4+ T cells. Furthermore, dendritic cells may process
antigens to B-cells to induce the antibody response (96). Wykes
and MacPherson (2000) have described that dendritic cells play a
significant role in dendritic cells B-cell interaction, thereby
activating B-cell to its function and producing antibodies (97).
Harvey et al. illustrated a mechanism by which B-cells interact
with dendritic cells during the time of antigen processing. This
interaction of B-cells with dendritic cells results in the transfer of
B-cell receptors with antigen to the APCs. This antigen transfer
may result in immunologic response in a more committed way
(98). Heesters et al. also described that follicular dendritic cells
might play a significant role in the antigen presentation to B-
cells. At the same time, they also illustrated that the membrane-
bound antigen presentation has a considerable influence on the
B-cell activation and its subsequent stages of B-cell responses
(99). Therefore, dendritic cells are a significant target for both ex
vivo and in vivo delivery of mRNA vaccines through the
transfection process (100). For cancer vaccination, the ex vivo
dendritic cell loading is being studied to produce cell-mediated
immunity (101).
Frontiers in Immunology | www.frontiersin.org 7
mRNA VACCINES AND THE IMMUNE
RESPONSE LANDSCAPE

mRNA vaccines can activate both the adaptive immune response
and innate immune response (Figure 5).

mRNA Vaccine and the Adaptive
Immune Response
The immune response is activated through mRNA vaccines by
two routes. First, after vaccination, mRNAs enter the cytoplasm
through endocytosis. Dendritic cells are the most important cells
for antigen protein presentation. Therefore, these cells are called
antigen-presenting cells (APCs) in the immune system. Several
mRNAs unite with host cell ribosomes, and translation occurs
effectively. After antigen protein synthesis, the antigen is
degraded in the cytoplasm into small antigenic peptides via the
proteasome. Then, these small antigenic peptides are presented
via the major histocompatibility complex (MHC) to cytotoxic T
lymphocytes (CTLs). Alternatively, antigenic proteins can be
released by the host cell. Then, these antigenic proteins can be
taken up by dendritic cells, and they are degraded and presented
to helper T cells and B-cells through MHC. Finally, MHC class I
interacts with CD8+ T cells, and MHC class II interact with CD4+

T cells to activate them. B-cells can also recognize antigen
proteins that are released by dendritic cells. Finally, B-cells
release antibodies (70, 102).

mRNA Vaccine and the Innate
Immune Response
A self-adjuvant effect has also been noted for mRNA vaccines. In
this effect, APCs recognize mRNA, subsequently triggering PRRs
A B

FIGURE 5 | mRNA vaccines based immune response (A) mRNA vaccine based adaptive immune response (B) mRNA vaccine based innate immune response.
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(pattern recognition receptors). Pattern recognition receptor
members include TLR family members, such as TLR3, TLR7
and TLR8 (58, 103), which are localized in the endolysosomal
area of the cell. Receptors in the cytosol can detect nucleic acids
in the cytoplasm. ssRNA molecules are recognized by two TLRs:
TLR7 and TLR8 receptors. Auridine-rich tetramers are a
minimum requirement for both receptors for activation. TLR7-
mediated downstream pathway activation aids in type I IFN
production (104). AU-rich sequences induce TLR8-mediated
downstream pathway activation, leading to a tumour necrosis
factor (TNF) response (105). Additionally, dsRNA triggers
immune system activation through TLR3 recognition (57, 106).
Binding with the TLR3 receptor requires a minimum length of
45 bp dsRNA (107).

Protein families, such as RIG-I, LGP2, and MDA5, function
as pattern recognition receptors (108). RIG-I can also recognize
dsRNA and ssRNA and activate the downstream pathway, which
stimulates IFN production (109–113). mRNA can stimulate the
immune response through the TLR pathway, which further
stimulates cel ls to produce augmented amounts of
proinflammatory cytokines, type I IFN, and other interferons.
These interferons or proinflammatory cytokine molecules
degrade RNA, inhibit the translation of mRNA, cause a
reduction in CD8+ T cells, and ultimately terminate the
immune response (5, 7, 10, 114, 115). However, this cascade
may produce negative effects for some mRNA vaccines.
Therefore, the self-adjuvant property of mRNA vaccines has
both disadvantages and advantages.
RECENT CLINICAL TRIAL LANDSCAPE
mRNA VACCINES

Several mRNA vaccines are currently registered for clinical trials.
Different mRNA vaccines have been developed against cancer
and different types of infectious diseases. mRNA vaccine can
balance both adaptive as well as innate immune responses.
Therefore, the mRNA vaccine can be used for cancer and
infectious diseases (116). These mRNA vaccines have been well
studied in animal models and human subjects.

mRNA Vaccines for Cancer and Their
Pre-Clinical and Clinical Update
Different mRNA-based cancer vaccines were designed to target
tumor-associated antigens. These antigens are more prevalent in
cancerous cells. The majority of cancer vaccines are therapeutic
rather than prophylactic (117). These vaccines may stimulate
cell-mediated immune responses. Two decades ago, the proposal
of RNA-based cancer vaccines was published (118). Recently,
several mRNA-based cancer vaccines have been developed that
are registered for different phases of clinical trials (Table 2).
Nevertheless, few trials were terminated due to lack of efficiency,
immunogenicity, toxicity, and other side effects. The terminated
clinical trials are also listed in Table 2. Due to lack of efficiency,
one clinical trial (clinical trial no. NCT01582672) was
terminated. The trial was conducted using an mRNA vaccine
Frontiers in Immunology | www.frontiersin.org 8
against carcinoma. Similarly, another clinical trial, an mRNA-
based prostate cancer vaccine (clinical trial no. NCT01817738)
was terminated as the study’s outcome was not as impactful
as expected.

Slam et al. developed an mRNA vaccine NP (nanoparticle)
with a C16-R848 adjuvant for cancer immunotherapy (119).
Ex vivo dendritic cell loading is currently a method of interest for
mRNA-based cancer vaccine development. This vaccine
produces cell-mediated immunity efficiently against cancer.
Dendritic cell-based mRNA vaccines for cancers have shown
promising results in different phases of clinical trials (120).
Recently, Ary and colleagues developed mRNA-lipid
nanocomplexes that provide strong immune responses to
inhibit B16-OVA tumour progression. The mRNA vaccine was
tested in tissue culture and mice by direct local injection and
increased mouse survival (121). Presently, researchers are trying
to develop different mRNA vaccines for different types of cancer.

mRNA Vaccines for Different Infectious
Diseases and Their Pre-Clinical and
Clinical Update
Similar to cancer mRNA vaccines, mRNA-based vaccines for
different infectious diseases have been studied extensively during
the previous two decades. The mRNA-based vaccines developed
for different infectious diseases are currently registered for
different phases of clinical trials (Table 3). In the case of
infectious diseases, mRNA vaccines were designed both for
therapeutic use and prophylactic use (27). In a Phase-I clinical
trial, an mRNA-based vaccine against rabies virus showed that
the mRNA could be complexed with protamine. The in vivo
study showed that it was well-tolerated and safe. Vaccine efficacy
depends on the route of administration and the dose. This study
demonstrated that the effectiveness of the vaccine was better
when administered with a needle-free intramuscular or
intradermal device compared to a direct intramuscular or
intradermal needle injection (56). Similarly, Bahl and
colleagues formulated lipid nanoparticle (LNP)-based mRNA
vaccines using the haemagglutinin proteins H10N8 or H7N9,
which were tested in ferrets, mice, and nonhuman primates. In a
Phase-I clinical trial, the results showed that mRNA vaccines for
H10N8 induced robust prophylactic immunity in human
volunteers. In this clinical trial, mild or moderate adverse
events were noted, while no serious events were documented
(43). Presently, several other mRNA vaccines against different
infectious diseases are being developed, which are in phases of
pre-clinical and clinical trials.

Toxicity Issues Related to mRNA Vaccines
and Some Approved Vaccines scenario
Toxicity is the other side of mRNA vaccines. Sometimes
therapeutic nucleosides show toxicity. For example, some
nucleoside-based anti-cancer drugs and antivirals drugs
containing unnatural nucleoside analogs show toxicity (122–
124). During pre-clinical studies, liver toxicity was observed in
mRNA therapeutic while delivering them through the lipid
nanoparticles. The mRNA therapeutic was developed using a
July 2021 | Volume 12 | Article 679344

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chakraborty et al. mRNA Vaccines: Bench to Clinic
TABLE 2 | Different mRNA based cancer vaccines which are registered for different phases of the clinical trial.

Vaccine targets Clinical trials no. Status (Phase) Vaccine type Sponsor/Organization

Prostate cancer NCT01817738 Terminated (I/II) RNActivetumour-associated antigen mRNA CureVac AG
NCT00831467 Completed (I/II)
NCT02140138 Terminated (II)
NCT01446731 Completed (II) Dendritic cell loaded with tumour-associated antigen mRNA Herlev Hospital
NCT01197625 Recruiting (I/II) Oslo University Hospital
NCT01278914 Completed (I/II)
NCT00906243 Terminated (I/II) RNActivetumour-associated antigen mRNA University of Florida

Glioblastoma NCT02649582 Recruiting (I/II) Dendritic cell electroporated with tumour-associated antigen mRNA Antwerp University Hospital
NCT02465268 Recruiting (II) Dendritic cell loaded with cytomegalovirus antigen mRNA with granulocyte–

macrophage colony-stimulating factor protein
University of Florida

NCT02366728 Active (II) Dendritic cell loaded with cytomegalovirus antigen mRNA Duke University
NCT00626483 Completed (I)
NCT02529072 Completed (I)
NCT00639639 Active (I)
NCT00890032 Completed (I) Dendritic cell loaded with autologous tumour mRNA
NCT02709616 Active (I) Dendritic cell loaded with tumour-associated antigen mRNA Guangdong 999 Brain

HospitalNCT02808364
NCT00846456 Completed(I/II) Dendritic cell loaded with autologous tumour or tumour-associated antigen

mRNA
Oslo University Hospital

Pancreatic
cancer

NCT00664482 Completed
(Not applicable)

Dendritic cell electroporated with autologous tumour mRNA with or without
CD40L mRNA

Argos Therapeutics

Melanoma NCT02035956 Completed (I) Naked tumour-associated antigen or neo−Ag mRNA BioNTech RNA
Pharmaceuticals GmbHNCT01684241

NCT02410733 Active (I) Liposome-complexed tumour-associated antigen mRNA
NCT01216436 Terminated Dendritic cell, matured, loaded with tumour-associated antigen mRNA Duke University
NCT01456104 Active (I) Dendritic cell (Langerhans) electroporated with tumour-associated antigen

mRNA
Memorial Sloan Kettering
Cancer Center

NCT01278940 Completed (I/II) Dendritic cell loaded with autologous tumour or tumour-associated antigen
mRNA

Oslo University Hospital
NCT00961844 Terminated (I/II)
NCT02285413 Completed (II) Dendritic cellelectroporated with tumour or tumour-associated antigen mRNA Radboud University
NCT01530698 Completed (I/II)
NCT00940004 Completed (I/II)
NCT00243529 Completed (I/II)
NCT00929019 Terminated (I/II)

Melanoma NCT00204516 Completed (I/II) Autologous tumour mRNA with granulocyte–macrophage colony-stimulating
factor protein

University Hospital Tübingen

NCT00204607 Completed (I/II) Protamine-complexed tumour-associated antigen mRNA with macrophage
colony-stimulating factor protein

NCT01983748 Recruiting (III) Matured Dendritic cell, loaded with autologous tumour RNA University Hospital Erlangen
NCT01676779 Completed (II) Dendritic cellelectroporated with tumour-associated antigen and TriMix mRNA UniversitairZiekenhuisBrussel
NCT01066390 Completed (I)
NCT01302496 Completed (II)

Colorectal
cancer

NCT00228189 Completed (I/II) Dendritic cellelectroporated with tumour-associated antigen mRNA Radboud University

Ovarian cancer NCT01334047 Terminated (I/II) Dendritic cell loaded with autologous tumour or tumour-associated antigen
mRNA

Oslo University Hospital

NCT01456065 Unknown Matured Dendritic cell, loaded with autologous tumour RNA Life Research Technologies
GmbH

Breast cancer z NCT02316457 Active (I) Liposome-formulated tumour-associated antigen and neo−antigen mRNA BioNTech RNA
Pharmaceuticals GmbH

NCT00978913 Completed (I) Dendritic cellloaded with tumour-associated antigen mRNA Herlev Hospital
Acute Myeloid
Leukemia

NCT00514189 Terminated (I) Dendritic cell loaded with Acute Myeloid Leukemia lysate and mRNA MD Anderson Cancer
Center

NCT01734304 Completed (I/II) Dendritic cell loaded with tumour-associated antigen and cytomegalovirus
antigenmRNA

Ludwig-Maximilian-University
of Munich

NCT00510133 Completed (II) Dendritic cell loaded with tumour-associated antigen mRNA AsteriasBiotherapeutics
NCT00965224 Unknown (II) Dendritic cellelectroporated with tumour-associated antigen mRNA Antwerp University Hospital
NCT01686334 Recruiting (II)
NCT00834002 Completed (I)
NCT03083054 Active (I/II) Dendritic cell loaded with tumour-associated antigen mRNA University of Campinas,

Brazil
Brain
metastases

NCT02808416 Active (I) Dendritic cell loaded with tumour-associated antigen mRNA Guangdong 999 Brain
Hospital

(Continued)
Frontiers in Immun
ology | www.frontie
rsin.org
 July 2021 |9
 Volume 12 | Article 679344

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chakraborty et al. mRNA Vaccines: Bench to Clinic
lipid nanoparticle-based delivery system for de Crigler-Najjar
syndrome. However, during the delivery of the mRNA vaccine,
some delivery system or some formulation might have generated
toxicity (125). On the other hand, some systemic adverse events
(AEs) were observed for a rabies mRNA vaccine during a human
clinical trial. It highlights another side of mRNA, which is the
inflammatory nature of the mRNA (56).

In general, toxicity is observed during any vaccine or
therapeutics development, especially during pre-clinical studies.
It may generally occur due to some issues like developing a
delivery system or the formulation of the mRNA vaccine. These
are the part of the process of mRNA vaccine development which
provides stability/more efficacy to the mRNA molecule.
However, if toxicity occurs during development processes, it
can be rectified by altering the delivery system or changing the
vaccine formulation. Therefore, the therapeutic or vaccine
development process is a trial and error method where issues
like toxicity may happen during the development process.

The toxicity of an mRNA vaccine is verified through the
human clinical trials (Phase-I, Phase-II, and Phase-III), a general
rule for the drug development process. If the toxicity is not
statistically significant, then only the mRNA vaccine receives
approval. Occasionally, in very few cases, toxicity is observed
during the clinical trial, which is statistically significant. If the
safety profile of an mRNA vaccine is not proper or considerable
toxicity of the vaccine is found during the clinical trial, the
mRNA vaccine is withdrawn from the clinical trial.

Conversely, there are several success stories of mRNA
vaccines. In these cases, three RNA vaccines have shown
Frontiers in Immunology | www.frontiersin.org 10
excellent safety profiles in clinical trials. Recent success stories
of two COVID-19 mRNA vaccines (Moderna (mRNA-1273) and
Pfizer/BioNTech (BNT162b2)) have demonstrated excellent
safety and efficacy profile. Another COVID-19 mRNA vaccine,
CureVac, has been registered for Phase-III clinical trial, which
CureVac AG has developed. It has shown an ideal safety profile
during the Phase-I and Phase-II clinical trials. All the safety
profiles of mRNA vaccines are illustrated in Table 4. These
promising case studies of safety and efficacy profiles will help
future manufacturers develop mRNA vaccines with more focus.
COVID-19 mRNA VACCINES
Recently, two significant COVID-19 mRNA vaccines have been
approved, and others are in development (Figure 6). The two
approved mRNA vaccine candidates were developed quickly and
changed the developmental history of vaccines.
BNT162b2 mRNA Vaccine From Pfizer
and BioNTech
One mRNA-based vaccine was developed jointly by BioNTech
and Pfizer against COVID-19, marked as the brand name
tozinameran, and the vaccine is also called BNT162b2 (126). It
is a modified mRNA vaccine that was developed from the
optimized version of the entire spike protein of SARS-CoV-2.
This vaccine was formulated with lipid nanoparticles and can be
administered through intramuscular injection in two doses, and
TABLE 2 | Continued

Vaccine targets Clinical trials no. Status (Phase) Vaccine type Sponsor/Organization

Non-small-cell
lung cancer

NCT01915524 Terminated (I) RNActivetumour-associated antigen mRNA CureVac AG
NCT00923312 Completed (I/II)

Renal cell
carcinoma

NCT00087984 Completed (I/II) Dendritic cell electroporated with autologous tumour mRNA with or without
CD40L mRNA

Argos Therapeutics
NCT01482949 Terminated (II)
NCT01582672 Terminated (III)
NCT00678119 Completed (II)
NCT00272649 Completed (I/II)

Mesothelioma NCT02649829 Recruiting (I/II) Dendritic cell electroporated with tumour-associated antigen mRNA Antwerp University Hospital
July 2021 |
TABLE 3 | Different mRNA vaccines for different diseases which are registered for clinical trial.

Vaccine targets Clinical trials no. Status (Phase) Vaccine type Sponsor/Organization

HIV−1 NCT02888756 Terminated (II) Dendritic cell; loaded with viral antigenic mRNA with TriMix Erasmus Medical Center
HIV−1 NCT00833781 Completed (II) Dendritic cell loaded with viral antigenic mRNA Massachusetts General Hospital
HIV−1 NCT00381212 Completed (I/II) Dendritic cellelectroporated with autologous viral antigen and CD40L

mRNAs
McGill University Health Centre

Zika Virus NCT03014089 Completed (I) Nucleoside-modified viral antigenic mRNA Moderna Therapeutics
Influenza NCT03076385 Completed (I)
HIV−1 NCT02042248 Completed (I) Dendritic cellelectroporated with autologous viral antigen and CD40L

mRNAs
ArgosTherapeutics

NCT00672191 Completed (II)
NCT01069809 Completed (II)

HIV−1 NCT02413645 Completed (I) Viral Antigenic mRNA with TriMix FundacióClıńic per la Recerca
Biomèdica

Rabies virus NCT02241135 Completed (I) Viral antigenic mRNA (RNActive®) CureVac AG
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the two doses can be administered three weeks apart. This
vaccine was evaluated through clinical trials conducted in
Germany (clinical trial no. NCT04380701) and the USA
(clinical trial no. NCT04368728).

In a Phase-I clinical trial, the immunogenicity and safety of
the vaccine candidate was evaluated. The results showed
neutralizing antibody titres against SARS-CoV-2 and strong
antigen-specific T-cell responses (127, 128). The Phase-III
clinical trial result was published by Polack et al. (127). In this
study, 43,448 human subjects received injections. Among them,
21,728 human subjects received placebo injections, and 21,720
human subjects received BNT162b2 injections. The results show
95% protection for people 16 years of age or older. The vaccine
was analysed through a safety profile, which showed headache,
fatigue, and mild-to-moderate pain at the injection site (127).
This mRNA vaccine was approved by the USA for emergency
use. Later, the vaccine was approved by the UK and Canada (126,
129–131).
Frontiers in Immunology | www.frontiersin.org 11
mRNA Vaccine (mRNA-1273)
From ModernaTX
mRNA-1273 is a mRNA vaccine against COVID-19 that was
developed by Moderna and two other research institutes (NIAID
and BARDA) of the USA. The vaccine is encapsulated with a
lipid nanoparticle carrier that encodes the full-length spike
protein of the virus. The vaccine is administered by
intramuscular injection. This vaccine is given in two doses that
can be administered four weeks apart.

The vaccine was studied through pre-clinical research in
nonhuman primate animal models, and the animals received
10 or 100 mg of the vaccine. The results showed that the vaccine
augments Th1 (type 1 helper T-cell)-biased CD4 T-cell
responses. Additionally, undetectable or very low Th2 or CD8
T-cell responses were noted (132).

A Phase-I clinical trial (NCT04283461) was conducted for
this vaccine, which was an open-label and dose-ranging clinical
trial performed by the NIH, USA (133).
TABLE 4 | mRNA vaccines (approved/last part of Phase-III trial) which showing very good safety profile.

Sl no. mRNA vaccine Disease Developer Status Remark

1. BNT162b2 COVID-19 BioNTech and Pfizer The vaccine is approved, several country have started the
vaccination program with this vaccine

This vaccine shows excellent safety profile

2. mRNA-1273 COVID-19 ModernaTX, Inc. The vaccine is approved, several country have started the
vaccination program with this vaccine

This vaccine shows excellent safety profile

3. CureVac AG COVID-19 CureVac N.V. Registered under Phase-III clinical trial (NCT04860258) The vaccine showed very good safety
profile in Phase-I and Phase-II
FIGURE 6 | Different significant COVID-19 mRNA vaccines.
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A Phase-I clinical trial (ClinicalTrials.gov number,
NCT04470427) was a randomized, placebo-controlled, observer-
blinded trial in which persons 18 years of age or older were
vaccinated. The participants received a 1:1 ratio of two
intramuscular injections of this vaccine (100 mg). This mRNA
vaccine showed 94.1% efficacy (134). This mRNA vaccine was
first given emergency use authorization (EUA) in the USA (126,
135) and was later approved by Canada and the UK (135, 136).

CVnCoV From CureVac AG
CVnCoV is a mRNA vaccine against COVID-19 that was developed
by CureVac AG. This vaccine was enrolled in a Phase-IIb/III
placebo-controlled, observer-blinded, randomized, multicentre
clinical trial (ClinicalTrials.gov number NCT04652102). A total of
36,500 participants were enrolled in this clinical trial. The vaccine
was administered through intramuscular (i.m.) injection on day 1
and day 29 (12 µg of vaccine).

HGC019 From Gennova
Biopharmaceuticals
This mRNA vaccine was developed by Gennova Biopharmaceuticals
in collaboration with HDT Biotech. This vaccine uses lipid inorganic
nanoparticles as a delivery system. This vaccine is currently in a pre-
clinical trial stage and will be starting a clinical trial.
DIFFERENT LEADING mRNA
VACCINE DEVELOPERS

Several leading mRNA vaccine developers have been noted, such
asModerna Therapeutics, Argos Therapeutics, Fundació Clıńic per la
Recerca Biomèdica, CureVac AG, Gennova Biopharmaceuticals, etc.

Moderna Therapeutics
This biopharmaceutical company is well known for its mRNA
vaccine development. They have developed several vaccines,
such as mRNA-1647 against cytomegalovirus, mRNA-1273
against COVID-19, and mRNA-1893 against Zika. mRNA-
1647 was registered for a Phase-II clinical trial, and mRNA-
1893 was registered for a Phase-I clinical trial. mRNA-1273
received approval for COVID-19.

Argos Therapeutics
This biopharmaceutical company was founded in 1997 and
developed mRNA vaccines against metastatic renal cell carcinoma
and HIV-1. Their first vaccine, AGS-003, was developed against
metastatic renal cell carcinoma. Their second vaccine, AGS-004,
was developed to treat HIV-1 and is registered for a Phase-IIb
clinical trial.

CureVac AG
CureVac AG was founded in 2000, and it is a German
biopharmaceutical company that has developed several mRNA
vaccines. CV7202 is a mRNA vaccine that uses the rabies virus
glycoprotein RABV-G. The vaccine was developed for
immunization against the rabies virus. They have also
Frontiers in Immunology | www.frontiersin.org 12
developed CVnCoV against COVID-19, which is registered for
Phase-III clinical trials (ClinicalTrials .gov number,
NCT04860258). CureVac generated mRNA-based prostate
cancer vaccines (CV9103 and CV9104) using RNActive®-
derived technology (58, 137). CV9103 completed a Phase-I/IIa
clinical study for prostate cancer. The vaccine was administered
at a dose of 1280 mg (ClinicalTrials.gov number, NCT00906243) (53).
CURRENT UPDATES ON mRNA
VACCINE IN LIGHT OF COVID-19
VACCINE AND VACCINATION

The first approved COVID-19 vaccine is an mRNA vaccine,
approved by the USA. Two mRNA vaccines were approved in
this direction: Pfizer-BioNTech mRNA-based vaccine
(BNT162b2) and Moderna mRNA-based vaccine (mRNA-
1273). BioNTech and Pfizer, Inc. developed the first one, and
the second one was developed by ModernaTX, Inc. Both of the
vaccines were developed at breakneck speed. Presently, both of
these vaccines are being used by different countries (Canada,
United Kingdom, Israel, and Singapore), including the USA, for
mass vaccination to their people (138–140).
ANTIGEN ACTIVATION AFTER mRNA
VACCINATION: A VIEW IN COVID-19
mRNA VACCINATION SCENARIO

Both of the two COVID-19 mRNA vaccines [Moderna (mRNA-
1273) and Pfizer/BioNTech (BNT162b2)] have shown excellent
safety and efficacy profile and also achieved approximately 90 to
95% efficacy. These vaccines generated considerable neutralizing
antibody(nAb) titres during the clinical trial, a study of over 100,000
participants (141). mRNAmay act as an immunogen, and adjuvant
has immunostimulatory characteristics and can stimulate innate
immunity without severe side effects. RNA strands (ssRNA and
dsRNA) are recognized by a variety of cytosolic sensors and
endosomal sensors. For example, endosomal TLR7 or TLR3 can
attach to endosomal ssRNA. While, inflammasome such as PKR,
RIG-I, MDA5, and NOD2 may bind to dsRNA/ssRNA present in
the cytosol. It can cause further lead to cellular activation.
Consequently, various inflammatory mediators and type I IFN
are produced (5). Moreover, these mRNA vaccines can activate
MDA5 and TLR7, activating the dendritic Cells. Activation of
dendritic cells activates the naive T-cells, which helps to generate
antibody-secreting plasma cells (5, 141).

The CDC data demonstrated that very few people had side
effects after the first doses of BNT162b2 COVID-19 vaccines. It
was noted that among 1,893,360 individuals who received first
doses of BNT162b2, only 0.2% reported side effects or unpleasant
reactions (4393 individuals) (142, 143).

The side effects are recorded as viral enhanced disease (VED)
after COVID vaccination with COVID-19 mRNA vaccines.
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VED is associated with vaccine-associated enhanced respiratory
disease (VAERD) and antibody-dependent enhancement (ADE)
(142, 143). VAERD is a distinctive medical syndrome, and it is
associated with a considerable amount of non-neutralizing
antibody production. It usually activates TH2 associated
immune responses, leading to activation of the complement
system. Meanwhile, it also contributes to the generation of the
immune complex deposition (144, 145).

On the other hand, during the trial of BNT162b2 (NCT04368728
trial) using 733 patients, malignancies were activated in few patients,
which was about 3.9%. In this clinical trial, solid metastatic
tumor (4 patients), lymphoma (22 patients), and leukaemia
(12 patients) were recorded (128). Hence, several questions are still
remains unanswered. For example, does the vaccine is produced
after intramuscular or subcutaneous injection leaks to other organs
such as the liver or endothelial cells in other sites? Do the antigens
spill over to the bloodstream, and which types of cells produce the
antigens? These questions need to be resolved immediately to
understand more about the COVID mRNA vaccine.
CHALLENGES AND FUTURE PROSPECTS

After the first publications on the delivery of mRNA into animal
models, this field has progressed quickly and has shown promise
as a next-generation biopharmaceutical for the vaccine
development landscape. mRNA vaccines are considered one of
the most significant and promising next-generation vaccines due
to their rapid development capacity, high potency, safety profile,
and low cost of manufacturing. This biopharmaceutical has
gained important momentum in the recent few years. Several
significant achievements have been observed in the field of
mRNA vaccines in the past decade. After the recent launch of
two COVID-19 vaccines (mRNA-1273 and BNT162b2), this
next-generation mRNA vaccine development landscape has
been widely recognized. Human trials with data from both
Frontiers in Immunology | www.frontiersin.org 13
mRNA cancer vaccines and mRNA infectious disease vaccines
have provided encouraging results. Therefore, the next few years
will be extremely crucial for the development of new mRNA-
based therapeutics as the technology is rapidly refined. For the
biopharmaceutical industry, investors/sponsor organizations will
be more aligned for the generation of mRNA vaccines for new
diseases. More public and private partnerships will create more
favourable conditions for mRNA-based vaccine development.

However, several points in the area of mRNA vaccine
technologies need to be improved. First, there is a need for
further advancement of delivery platforms or delivery materials
for mRNA vaccines. Second, more extended clinical trials are
needed for mRNA vaccines to better understand immunogenicity
and safety. Third, the long-term consequences of these vaccine
candidates need to be evaluated. Fourth, further optimization is
required in the manufacturing processes of mRNA vaccines.
Fifth, the stability of formulated mRNA vaccines at normal
temperatures is still challenging for vaccine distribution.

The opportunity for mRNA vaccines is considerable, and the
future of this vaccine technology is bright. Finally, mRNA
vaccines will overcome these obstacles, and more mRNA
vaccines will enter the clinic as next-generation vaccines.
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