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Gliomas are the most common primary brain tumors in adults. Despite the fact that they
are relatively rare, they cause significant morbidity and mortality. High-grade gliomas or
glioblastomas are rapidly progressing tumors with a very poor prognosis. The presence of
an intrinsic immune system in the central nervous system is now more accepted. During
the last decade, there has been no major progress in glioma therapy. The lack of effective
treatment for gliomas can be explained by the strategies that cancer cells use to escape
the immune system. This being said, immunotherapy, which involves blockade of immune
checkpoint inhibitors, has improved patients’ survival in different cancer types. This novel
cancer therapy appears to be one of the most promising approaches. In the present
study, we will start with a review of the general concept of immune response within the
brain and glioma microenvironment. Then, we will try to decipher the role of various
immune checkpoint inhibitors within the glioma microenvironment. Finally, we will discuss
some promising therapeutic pathways, including immune checkpoint blockade and the
body’s effective anti-glioma immune response.
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INTRODUCTION

The immune system is made up of several cell types, which defend the body against possible
pathogens (1).

Gliomas or glial tumors are the most common primary brain tumors and they account for 81%
of all malignant ones. Although they are relatively rare, gliomas cause significant morbidity and
mortality. Glioblastoma is the most aggressive and common (45%) of all 6 glioma types and grades,
and presents with a median survival of around 15 months (2).

For more than 10 years of research there has been no significant progress in Glioma treatment
until now (3) and the lack of effective treatment for glioma can be explained by the many strategies
that cancer cells use to escape the immune system (4).

Immunotherapy is an immunological treatment which uses the host’s immune system to
recognize and eliminate cancer cells. Indeed, this type of treatment has been shown to be fairly
effective against various types of cancer (3), especially with the blockade of inhibitory immune
checkpoint molecules (5). These immune checkpoints control the interactions between T cells and
cancer cells through the inhibition or activation of T cells. This process occurs according to the
organism’s needs and action of the tumor (3). Moreover, immunotherapy, which acts on immune
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checkpoint inhibitor’s blockade, has improved patients’ survival
in different types of cancers. This new hope of cancer therapy
remains one of the most promising approaches for the effective
activation of therapeutic antitumor immunity (6).

In recent years, these observations have raised the curiosity of
researchers who have taken a great interest in immune
checkpoint blockade in glioma. Previous studies have shown
that the combination of anti-PD-1 and anti- CTLA-4 blocking
Abs, does not improve the overall survival [(7), p. 143].

In addition, no obvious benefit of neoadjuvant nivolumab was
obtained with resectable glioblastoma (GBM), and presented
with a median overall survival of just 7.3 months (8). Similarly,
a phase III trial comparing nivolumab (anti-PD-1 blocking Ab)
to bevacizumab (anti-VEGF blocking Ab) on patients with
recurrent GBM failed to substantiate the benefit of nivolumab,
and conferred a similar median overall survival (mOS, 9.8 vs 10.0
months) (9).

The present review aims at describing the immune response
within the glioma microenvironment, and discussing the
involvement of various immune checkpoint inhibitor
molecules used by glioma cells in order to escape the immune
response. It will also report some potential therapeutic pathways
which involve immune checkpoints blockade.
IMMUNE RESPONSE WITHIN THE BRAIN

It is becoming more and more accepted that there exists an
intrinsic immune system which is present and functional in the
central nervous system (CNS) (10). However, in the 20th century,
the brain was defined as a privileged organ, which meant that the
brain and meninges were devoid of lymphatics (11). It was
initially presumed that the physiological characteristics of the
CNS, absence of antigen-presenting cells (dendritic cells) and
presence of the blood brain barrier (BBB) were the causes of the
lack of immune surveillance in the brain. Previous studies have
shown that upon infiltration of bacteria and viruses, the immune
system response could not be recognized or established (12).
Hence, when Lowenstein et al. transplanted skin grafts into the
brain of non-immunized animals, they found that it did not elicit
an immune response (13). These studies led to the belief that the
brain is a privileged organ (11, 13).

However, in October 2015, a study conducted by Louveau
et al. on mice showed that the brain, like every other tissue, is
connected to the peripheral immune system (10).

Through the use of novel techniques, such as staining mice’s
meninges with immunohistochemistry, they were able to
highlight that endothelial cells, T cells and MHC II-expressing
cells were the most present near the dural sinuses. Upon
resection of the deep cervical lymph nodes, there was an
accumulation of meningeal T-cells due to an inability of T-
cells to drain from the meningeal space (14). Hence, the
suggestion that the primary route of drainage is from the
meningeal vessels (15). The basis of this new theory was a
report by Aspelund et al. where they discovered that the
Schlemm’s canal in the eye acted like a lymphatic vessel (16).
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This led other scientists to hypothesize that similar vessels may
also be present within the brain and to question the extent of the
brain’s immune privilege (10).

Innate immunity-related molecules like cytokines, toll-like
receptors and the major histocompatibility complex are
expressed in the brain and they influence the generation of an
efficient immune microenvironment (17). These cellular
constituents elicit an immune response which further supports
the idea that the brain does in fact have immune surveillance.
Microglia cells are the most predominant and make up 80% of
the immune cells in the brain (18). Others include dendritic cells,
B-cells, and T-cells, of which B-cells are the most abundant (15).
The movement of immune cells and fluid from the CSF is made
possible by the lymphatic system lining the dural sinuses (10).
Cytokines are signaling proteins and are mostly secreted by
immune cells. They can be described as pro-inflammatory or
anti-inflammatory (19). It was originally thought that cytokines
could not pass through the BBB via membrane diffusion as they
were too large and hydrophobic. However, cytokines have
overcome this by using saturable transport systems or by
passing through the disrupted parts of the BBB (20).

Chemokines are lowmolecularweight proteins that are involved
in direct cell migration. They attract leukocytes to the site of
infection to allow the mediation of acute and chronic
inflammation (21).

In normal circumstances, however, their expression is
diminished. Homeostatic chemokines are involved with
maintaining leukocyte composition in preparation for an
immune response to an insult. Still, inflammatory chemokines
are produced during infections or in response to an
inflammatory stimulus (22). The immune response in the
brain progresses at a much slower rate as opposed to that in
the peripheral tissue (14).

Microglia are the tissue resident macrophages of the brain
and are involved in innate immunity and infection. They are the
largest source of inflammatory mediators in the brain and are
derived from hematopoietic precursor cells of the yolk sac and
are defined as CD11b+/CD45 low (23).

Microglia are incredibly important for the regulation of
angiogenesis and vascularization, which plays a key role in
tumor development. In pathological states, injury serves as an
example; there is microglia-mediated neuronal injury and glial
cell injury through the production of proinflammatory factors
like cytokines and chemokines (20). Following this activation,
inflammatory molecules are released, which, in turn, activates
astrocytes and cells of the immune system. In this disease state,
the activated cytokines and the chemokines are essential in
maintaining the immune surveillance (22).

Cancer cells are capable of avoiding recognition and cancer
immune-editing can be conceptualized into three phases :
Elimination, Equilibrium and Escape (17, 24). However, when
the tumor cells escape immune recognition, they progress to a
clinical stage of cancer and mark the escape stage of immune-
editing. Tumors are able to escape either because of tumor
induced immunosuppression or because of immune system
deterioration (17).
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GLIOMA MICROENVIRONMENT

Primary tumors of the central nervous system account for only
2% of all tumors. Despite their low incidence, they are highly
prevalent in small children, adolescents and young adults with
relatively high mortality and morbidity (25). Gliomas are the
most common primary central nervous system (CNS) tumors
(26), and are classified according to grades (I to IV) of the World
Health Organization (WHO) (27). Thus, gliomas are divided
into two groups according to the malignancy of the tumor:
tumors of low grades (grades I and II), which have slow
growth, and high-grade gliomas (III and IV), which strongly
infiltrate the brain parenchyma (28).

To date, glioblastoma is the most aggressive glioma and the
deadliest of all (29). Even with the current treatments, namely
surgical resection, radiotherapy, and chemotherapy (30), it is still
an incurable disease with a fairly poor survival rate, ranging
between 12 to 15 months,. GBM manages to escape the immune
system in a deadly symbiotic collaboration. Furthermore, it can
also come from several cell types, not just glial cells. It is mainly
present in adults aged 64 years and older, but can also occur in
children, with a higher incidence in men compared to women.
Gliomas can either be primary (precursor), or secondary (when a
low-grade glioma is transformed) (30, 31). Studies have shown
that patients with an isocitrate dehydrogenase (IDH) mutation
have a longer survival and respond to chemotherapy and
radiotherapy well unlike those who do not have the
mutation (32).

Tumor-infiltrating immune cells are cells that have left the
bloodstream to enter the tumor microenvironment. Their
function may change throughout tumor progression,
depending on the type of cells and their functional
interactions. Indeed, immune cells may play a key role in
tumor suppression or in tumor growth support, with specific
effects on patient behavior (33).

Tumor-Associated Macrophages (TAM)
They represent microglia which are intrinsic to the brain, and act
by creating supporting stroma for the expansion and invasion of
neoplastic cells. TAMs that are recruited into the tumor
microenvironment of gliomas can release growth factors and
cytokines in response to cancer cell activity (34). Thus, TAM
infiltrates gliomas in moderate numbers and often exhibit an
immunosuppressive phenotype and functional behavior (33).

Natural Killer Cells (NK)
NK cells are the prototypes of innate lymphoid cells. They are
characterized by large granular lymphocytes containing
perforins and granzymes and have a destructive function.
These cells are able to kill tumor cells using soluble molecules
of the tumor necrosis factor (TNF) family (35). Additionally, NK
cells have also been identified in primary and metastatic brain
neoplasms, where they have a key role in suppressing brain
tumors (36). The level of tumor infiltration by NK cells tends to
remain low and their functionality often affected by factors
released by tumors or other immunosuppressive cells (37, 38).
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Dendritic Cells (DC)
DC are professional antigen-presenting cells that are found upon
recognition of the pathogen at the site of inflammation. In
cancers, in addition to antigen presentation, mature dendritic
cells (mDC) release cytokines and chemokines to induce tumor-
specific T cell activation (39). CD11c+ DCs were studied
extensively in GL261 mouse glioma model and showed little or
no co-stimulatory molecules in addition to being unable to
stimulate T cells. However, these cells favored the development
of regulatory T cells (Treg). Analysis of the peripheral blood in
glioma patients showed a decrease in numbers compared to
healthy patients, suggesting that these cells may have been
implicated in tumor pathogenesis (33).

Usually, high levels of cytotoxic T cell-directed human glioma
cells (CTL) are associated with increased antitumor activity,
whereas high levels of helper T cells (particularly Th17) are
thought to be associated with the role of promoting tumor
development. Treg cells are a subset of CD4 T cells that
express CD25 and FoxP3 (40). These play an important role in
the regulation of the immune response by suppressing the
proliferation of other T cells presented in the tumor
microenvironment, through mechanisms directly dependent on
cell contact or indirectly by the secretion of IL-10 and TGFb (41,
42). In the tumor microenvironment, the production of specific
chemokines and cytokines appears to be associated with
preferential recruitment of Treg and subsequently poor
prognosis (43) (Figure 1).
IMMUNE CHECKPOINT INHIBITORS IN
GLIOMA THERAPY

Immune Checkpoints in Cancer
To escape immune surveillance, cancer cells have developed
several mechanisms that induce a state of immune tolerance
and evade immune destruction (44). One of the mechanisms is
the use of the inhibitory and costimulatory receptors, called
“immune checkpoints” (45). Clinical cancer treatment has
become directed towards targeting T cell inhibitory receptors
by using immune checkpoint inhibitors (ICI) (46, 47).

Each tumor has a specific dynamic interaction of immune
checkpoints, which highlights the importance of having a better
understanding of the tumor-immune interactions in a hope to
achieve and design a rational combination therapy specific to
each tumor (48). Cancer immunotherapy differs from
chemotherapy in that it aims to enhance the immune response
in different stages of tumor progression and, in so doing,
reducing patients’ clinical poor outcomes. Chemotherapy, on
the other hand, destroys cancer cells directly (Figure 2) (49).

In recent years, inhibitors of CTLA-4 have shown remarkable
success in cancer immunotherapy. Tremelimumab is a fully
human monoclonal antibody to CTLA4 that has shown
beneficial responses in clinical trials against different tumors,
especially when combined with PD-1/PD-L1 blockade. However,
in the case of glioblastoma, several studies reported that anti-
July 2021 | Volume 12 | Article 679425
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FIGURE 1 | Immunosuppressive microenvironment of glioma. Tumor cells release molecules which contribute to multiple unique immunosuppression mediated by
various cellular players in glioma microenvironment. (A) After recruitment to the tumor site, Tregs directly suppress the activity of cytolytic T cells and induce their
apoptosis through secretion of various types of cytokines including IL-10 and TGFb. (B) Angiogenesis is a pathologic hallmark of glioblastoma mainly mediated by
vascular endothelial growth factor (VEGF). (C) Immune checkpoints suppress T cell function in glioma microenvironment through distinct mechanisms.
FIGURE 2 | Immune checkpoint blockade in gliomas. The mechanisms by which various immune checkpoints promote each other and contribute to the
immunosuppressive microenvironment in gliomas. PD-1/PD-L1, CTLA-4/B7, TIM3/GAL9, and TIGIT/CD96 expressed on different types of immune cells such as T
cells (CD4 and CD8) Dendritic cells (DC), Natural killer cells (NK) B cells. These pathways could induce FoxP3 expression and promote tumor escape, cytotoxic cell
inhibition and Treg conversion with the help of TGF-b and IL-10. The blockade of these immune checkpoint molecules through mono or combined therapy could be
used as a potential therapeutic for glioma and especially glioblastoma.
Frontiers in Immunology | www.frontiersin.org July 2021 | Volume 12 | Article 6794254
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CTLA-4 and/or anti-PD-1 antibodies exhibit no survival benefit
compared to standard chemotherapy (50–53).

However, resistance to ICIs has become a common clinical
phenotype that we currently do not have much knowledge about.
Collaborative efforts are needed for a deeper understanding of
biology to prevent, overcome or reverse this resistance (54).

The successful preclinical trials and the very positive results
obtained with other tumors promoted the utilization of immune
checkpoint inhibitors in GBM. Indeed, the survey of the NIH
Clinical Trials Database (https://www.clinicaltrials.gov)
performed on July 2018 showed registered trials of malignant
glioma. (Table 1).

Due to the recent COVID-19 outbreak, oncologists are
wondering about the risk of administering ICIs to patients.
The concern was mainly regarding the overlap between the
possible pneumological toxicity from anti-PD-1/PD-L1 agents,
which could be life threatening in the case of coronavirus-related
interstitial pneumonia. The overall incidence rate of ICI-related
pneumonitis ranges from 2.5–5% with anti-PD-1/PD-L1
monotherapy to 7–10% with anti-CTLA-4/anti-PD-1
combination therapy (55).

Immune Checkpoints in Glioma
Glioma cells secrete different types of chemokines, cytokines and
growth factors that enhance infiltration of various cells such as
astrocytes, pericytes, endothelial cells, circulating progenitor cells,
and a range of immune cells including microglia, peripheral
macrophages, myeloid-derived suppressor cells (MDSC), CD4+
T cells as well as Treg cells into the tumor (56–59). However,
identification of these factors may facilitate the improvement of
glioma immunotherapy as immunomodulatory and immune
evasion mechanisms used by glioma cells.

Glioma cells express the ligands which recognize and bind to
partner proteins (receptor) on the surface of immune cells.
Subsequent preclinical research showed their important role in
the maintenance of peripheral immune tolerance and control
overreaction to inflammatory responses. In fact, in glioma case
different immune checkpoint molecules have been described
such as CTLA-4, PD-1, TIM-3, and LAG-3; each of these
receptors has corresponding ligands (60).

PD-1/PD-L1
In 2014, the FDA approved immune checkpoint PD-1 targeting.
The anti-PD-1 and anti-PD-L1 mAbs act to block distinct
inhibitory signals that unleash T cells to have the ability to
eradicate tumors (46, 61–63). In the case of GBM, PD-1 is
expressed on T cells, B cells, tumor associated macrophages
(TAMs), MDSCs, and NK cells (64). Immunotherapy is used to
target the PD-1/PD-L1 pathway (Figure 3B) to trigger an
antitumor immune response (65–67). The immunosuppressive
tumors can then be resected, followed by a continuation of
immunotherapy to enhance the functions of the TILs (64, 68).

The BBB is a factor that requires attention, unfortunately
numerous drugs that have been tested in clinical trials for GBM
patients have failed due to the lack of successful drug delivery
across the BBB (69), thus affecting their therapeutic efficacy on
intracranial tumors. However, despite recent studies showing
Frontiers in Immunology | www.frontiersin.org 5
that anti-PD-1 antibodies cannot cross the BBB, it is in fact not
entirely true. Anti-PD-1 have a mechanism which enables them
to bind irreversibly to PD1 or CTLA-4 on peripheral
lymphocytes and ultimately penetrate the BBB. Once they have
passed the BBB, they can bind TILs which occupy the
intracranial tumors (70).

In a previous study, GBM tumor-bearing mice were treated
with anti-PD-1 antibody or with a combination of anti-PD-1 and
anti-CTLA-4 antibodies. Significant improvement in survival
was noted in WT and CD73−/− mice treated with a
combination of anti-PD-1 compared to controls (48).
Furthermore, GBM patients who received anti-PD-1 therapy
showed a persistence of immunosuppressive CD73 high myeloid
subsets. Benefits of therapy by immune checkpoint inhibitors in
a CD73−/− mouse model should be explored further (48).

TIM3/GAL9
T cell immunoglobulin and mucin domain-containing molecule 3
(Tim-3) is an inhibitory receptor expressed on the surface of T cells
and plays a key role in the inhibition of T cell responses against
tumors (71) (Figure 3C). Galectin-9 has been identified as a ligand
forTim-3, anduponbinding, it results in the apoptosis ofT cells and
a negative regulation of T cell immunity (72–75).

A recent study investigated the expression of Tim-3 and
galectin-9 in glioma tissues and showed that there is an
association between the expression of these immune
checkpoint receptors and the malignancy of gliomas (50). The
expression level of Tim-3 on healthy PBMCs was low and the
expression of galectin-9 on non-cancerous brain tissues also
followed a similar pattern. However, Tim-3 and galectin-9
were highly expressed in TILs and glioma tissues (50).

Yuan et al. demonstrated that Gal9 was highly expressed in
the core than in the periphery of tumors in GBM patients, and
that those with high expression of Gal9 had significantly shorter
survival than those with low expression (76). This suggests that
Gal9 is closely related to glioma patient’s prognosis and plays a
key role in the malignant progression of GBM (76, 77).

CTLA4
In 2011, the FDA approved an immune checkpoint agent,
ipilimumab, a monoclonal antibody (mAbs) that targeted the
checkpoint molecule CTLA4. This was based on a randomized
phase III clinical trial that demonstrated an improved survival
rate with durable clinical response for patients with advanced
melanoma (46). As shown in Figure 3A; CTLA-4 suppresses
antigen-specific T-cell activation and is expressed on activated T
cells and CD4+Foxp3+ Tregs (78, 79).

A higher expression of CTLA-4 was observed in more severe
grades of glioma, and this indicates that it is linked to a worse
prognosis (80, 81). It was also found that CTLA-4 significantly
correlates with PD-1, CD40, and ICOS (53). Besides, it was
tightly associated with CXCL12, CXCR3, CXCR6, and TIGIT (a
new promising immune checkpoint-related protein). The
combination of these molecules can potentially enhance the
efficacy of CTLA-4 blockade in cancer immunotherapy (53).
Furthermore, it has been observed that the CTLA-4 antibodies
do not cross the BBB. To solve that, Galstyan et al. attempted to
July 2021 | Volume 12 | Article 679425
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TABLE 1 | Current clinical trials involving immune checkpoint blockade in human glioma.
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Clinical trial Title of the study Study population Phase Intervention

NCT01670890 Efficacy and Safety of TMZ Plus CDDP in
the Patients With Recurrent Malignant
Gliomas

Malignant Gliomas Phase I Drug: Temozolomide Drug:
Temozolomide plus neoadjuvant
CDDP

Alloca
Maski
Treatm
Assign

NCT03011671 Study of Acetazolamide With
Temozolomide in Adults With Newly
Diagnosed or Recurrent Malignant Glioma

Malignant Glioma of Brain Phase I Drug: Acetazolamide and
Tolomozomide

Alloca
Assign
Purpo

NCT03973879 Combination of PVSRIPO and
Atezolizumab for Adults With Recurrent
Malignant Glioma

Malignant Glioma Phase I
Phase II

Biological: PVSRIPO
Drug: Atezolizumab

Alloca
Interve
Maski
Prima

NCT00953121 Bevacizumab Plus Irinotecan Plus
Carboplatin for Recurrent Malignant Glioma
(MG)

Malignant Glioma Phase II Drug: bevacizumab and CPT-11 and
Carboplatin

•Alloc
Interve
Maski
Prima

NCT02313272 Hypofractionated Stereotactic Irradiation
(HFSRT) With Pembrolizumab and
Bevacizumab for Recurrent High Grade
Gliomas

Malignant Glioma Phase I Radiation: Hypofractionated
Stereotactic Irradiation (HFSRT)
Drug: Pembrolizumab
Drug: Bevacizumab

Alloca
Interve
Maski
Prima

NCT02829931 Hypofractionated Stereotactic Irradiation
With Nivolumab, Ipilimumab and
Bevacizumab in Patients With Recurrent
High Grade Gliomas

Malignant Glioma Phase I Radiation: Hypofractionated
Stereotactic Irradiation
Drug: Nivolumab
Drug: Bevacizumab
Drug: Ipilimumab

Alloca
Interve
Maski
Prima

NCT01891747 A Phase I Study of High-dose L-
methylfolate in Combination With
Temozolomide and Bevacizumab in
Recurrent High Grade Glioma

Malignant Glioma Phase I Drug: Bevacizumab
Drug: Temozolomide
Dietary Supplement: Vitamin C

Alloca
Interve
Maski
Prima

NCT00271609 Bevacizumab for Recurrent Malignant
Glioma

Recurrent High-Grade
Gliomas
Malignant Gliomas

Phase II Drug: Bevacizumab Alloca
Interve
Maski
Prima

NCT02590263 Study Evaluating ABT-414 in Japanese
Subjects With Malignant Glioma

Malignant Glioma
Glioblastoma Multiforme

Phase I
Phase II

Radiation: Whole Brain Radiation
Drug: Temozolomide
Drug: ABT-414

Alloca
Interve
Maski
Prima

NCT00782756 Bevacizumab, Temozolomide and
Hypofractionated Radiotherapy for Patients
With Newly Diagnosed Malignant Glioma

Brain Cancer
Malignant Glioma

Phase II Other: radiotherapy (RT) in
combination with temozolomide and
bevacizumab

Alloca
Interve
Maski
Prima

NCT01738646 Ph II SAHA and Bevacizumab for
Recurrent Malignant Glioma Patients

Recurrent Glioblastoma
Multiforme
Malignant Glioma
Adult Brain Tumor

Phase II Drug: Vorinostat
Drug: Bevacizumab

Alloca
Interve
Maski
Prima
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combine nanotechnology and immunotherapy. They delivered
nanoscale immunoconjugate (NIC) drugs across the BBB to treat
GBM (82). They used a versatile drug carrier and poly (b-L-malic
acid) (PMLA),a natural polymer obtained from the slime
mold Physarum polycephalum, to deliver covalently conjugated
CTLA-4 and PD-1 antibodies to brain tumor cells. This resulted
in a local immune system activation and a prolonged survival of
intracranial GBM in GL261-bearing mice (82). Currently,
clinical trials of anti-CTLA-4 (ipilimumab) and anti-PD-1
(nivolumab) are being performed in patients with glioma,
testing the safety, toxicities, and efficacy (78).

LAG3
Lymphocyte activation gene‐3 (LAG3), also known as CD223, is a
potential cancer immunotherapeutic target because of its negative
regulatory role onT cells (83). It is expressed on activated humanT
andNKcells, and is an activationmarker forCD4+andCD8+Tcells
(83).Mair et al. have shown that LAG-3+TILs are rarely observed in
IDH-wt andabsent in IDH-mtglioma (84).However, these cells are
more present in an active inflammatory microenvironment but
according to LAG-3+ TIL infiltration; there was no difference in
overall survival (84).

TIGIT/CD96
T-cell immunoglobulin and ITIM domain (TIGIT) and CD96 are
co-inhibitory receptors. TIGIT is expressed on conventional ab T
cells uponactivation,memoryT cells, regulatoryTcells (Treg), both
follicular helper T cells (TFH) and follicular regulatory T cells
(TFR), NKT and NK cells (85). However the expression of CD96
Frontiers in Immunology | www.frontiersin.org 7
has been reported primarily on conventional ab and gd T cells, NK
cells, and NKT cells (85). Hung et al. have found high levels of
TIGIT expressiononCD8+andCD4+TILs ingliomapatients.They
have also shown that anti-TIGIT therapy alone had no significant
effect on the survival rate in the GBMmouse model (86). However,
combination therapy using anti-TIGIT and anti-PD-1 showed a
significant increase in survival (87, 88); this was carried out through
modulation of both the T cell and myeloid compartments (86).
Additionally, elevated frequencies of CD8 + andCD4 +T cells with
double expression of IFNg and TNFa have also been reported
during combination therapy, compared to monotherapy and
control groups (86).

Zhang et al. showed that high expression of CD96 was present
in the malignant molecule phenotype, including IDH wild type
and mesenchymal subtype. They also stressed that it had a
positive association with inflammatory activities (89). Indeed,
CD96 showed a h igh concordance wi th immune
checkpoints such as PD-1, CTLA-4, TIGIT, TIM-3, NR2F6,
and GITR, which would suggest a potential synergism (89). In
addition to that, they discovered that higher CD96 expression
predicted worse survival rates in glioma and GBM patients
overall. This implied that CD96 blockade may significantly
improve the prognosis of glioma patients (89) (Figure 2).
CONCLUSION

In the present review, we managed to collect further evidence
which demonstrates that the immune system is involved in
FIGURE 3 | Immune checkpoint inhibitors in glioblastoma. The CTLA-4 immune checkpoint (A) operates early during the priming phase of the immune response.
CTLA-4 preferentially binds to CD80/CD86 on the surface of APCs, thus leading to decreased T-cell activation and proliferation in the context of tumor antigen
presentation. The T cell-expressed inhibitory PD-1 receptor interacts with PD-L1 (B), which is expressed on tumor cells. Engagement of PD-1 and PDL-1, in the
context of tumor antigen- presentation by MHC class I molecules, induces T cell apoptosis, inhibits T cell activation/cytotoxicity, promotes Tregs proliferation and
blocks the production of inflammatory mediators, resulting in T cell inactivity. TIM-3/GAL-9 pathway (C) negatively regulates T cell immunity and induces T cell
apoptosis. *ICP, Immune Checkpoint.
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glioma physiopathology and describes the general concept of
immune response within the glioma microenvironment.

The immune cells are highly inhibited in the glioma
microenvironment through various mechanisms, including
immune checkpoint inhibitors. Undoubtedly, the discovery of
immune checkpoints such as CTLA-4 and PD-1 played a key role
in the development of cancer immunotherapy. Although these
molecules were originally discovered as molecules with a role in
the activation and apoptosis of T cells, subsequent preclinical
studies showed their important role in the maintenance of
peripheral immune tolerance. In addition, several predictive
glioma biomarker studies are completed and many are
underway. Indeed, the clinical validation of the identified
biomarkers is necessary. Lastly, investigations in glioma
immunotherapy should decipher adequate ways to facilitate
BBB crossing of these therapeutic molecules in order to
potentially benefit from current and future therapies.
Integrated approaches should also be developed to identify
Frontiers in Immunology | www.frontiersin.org 8
patient-specific choices for checkpoint monotherapies or
combination therapies.
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