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Intestinal microbiota dysbiosis is an established characteristic of ulcerative colitis (UC).
Regulating the gut microbiota is an attractive alternative UC treatment strategy,
considering the potential adverse effects of synthetic drugs used to treat UC.
Kaempferol (Kae) is an anti-inflammatory and antioxidant flavonoid derived from a
variety of medicinal plants. In this study, we determined the efficacy and mechanism of
action of Kae as an anti-UC agent in dextran sulfate sodium (DSS)-induced colitis mice.
DSS challenge in a mouse model of UC led to weight loss, diarrhea accompanied by
mucous and blood, histological abnormalities, and shortening of the colon, all of which
were significantly alleviated by pretreatment with Kae. In addition, intestinal permeability
was shown to improve using fluorescein isothiocyanate (FITC)–dextran administration.
DSS-induced destruction of the intestinal barrier was also significantly prevented by Kae
administration via increases in the levels of ZO-1, occludin, and claudin-1. Furthermore,
Kae pretreatment decreased the levels of IL-1b, IL-6, and TNF-a and downregulated
transcription of an array of inflammatory signaling molecules, while it increased IL-10
mRNA expression. Notably, Kae reshaped the intestinal microbiome by elevating the
Firmicutes to Bacteroidetes ratio; increasing the linear discriminant analysis scores of
beneficial bacteria, such as Prevotellaceae and Ruminococcaceae; and reducing the
richness of Proteobacteria in DSS-challenged mice. There was also an evident shift in the
profile of fecal metabolites in the Kae treatment group. Serum LPS levels and downstream
TLR4-NF-kB signaling were downregulated by Kae supplementation. Moreover, fecal
microbiota transplantation from Kae-treated mice to the DSS-induced mice confirmed the
effects of Kae on modulating the gut microbiota to alleviate UC. Therefore, Kae may exert
protective effects against colitis mice through regulating the gut microbiota and TLR4-
related signaling pathways. This study demonstrates the anti-UC effects of Kae and its
potential therapeutic mechanisms, and offers novel insights into the prevention of
inflammatory diseases using natural products.
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INTRODUCTION

Ulcerative colitis (UC) is the most common type of
inflammatory bowel disease (IBD) and is characterized by poor
prognosis, recurrent symptoms, and the potential for progression
to colitis-associated cancer (1). UC is a global public health
concern owing to its growing incidence (2). There are various
contributors to the pathogenesis of UC, including genetic
susceptibility, microbial dysbiosis, unhealthy lifestyle, and
depression (3). UC is associated with defects in mucosal
barrier function, leading to inflammatory cell infiltration (4).
Moreover, intestinal dysbacteriosis contributes to UC
pathogenesis (5). Thus, reshaping the intestinal microflora is a
potential target for UC treatment intervention strategies. Clinical
use of 5-aminosalicylate (5-ASA) and hormone drugs to treat UC
have certain limitations, including drug dependence and severe
side effects (6, 7). Consequently, there is an urgent need to
develop targeted, effective, and non-toxic treatment approaches
for patients with UC.

Kaempferol (Kae) is a flavonoid identified as the core active
ingredient of many medicinal plants (8, 9). Kae exhibits
antitumor and antioxidant properties, in addition to its ability
to promote neurological recovery and regulates a variety of other
biological activities (10). Further, Kae can attenuate
lipopolysaccharide (LPS)-induced murine neuroinflammation
by down-regulating the high mobility group protein B1/Toll-
like receptor 4 (HMGB1/TLR4) pathway (11). In addition,
NADPH oxidase activation and nuclear factor kappa beta (NF-
kB) expression induced by advanced glycation end-products are
inhibited by Kae (12). An in vitro study demonstrated that Kae
can significantly suppress LPS/ATP-induced inflammatory
responses by reducing tumor necrosis factor (TNF)-a,
interleukin (IL)-6, and IL-1b release in cardiac fibroblasts (13).
Moreover, a clinical study demonstrated that serum levels of C
reactive protein, TNF-a, and IL-6 were decreased in type-2
diabetes patients receiving a Kae-rich diet (14). A wound
healing effect of a Kae-rich diet through reduction of
inflammatory mediator production, was also detected in mice
with colitis (15); however, the mechanisms responsible for the
link between the colitis benefits of Kae and gut microbiota are
not fully understood.
Abbreviations: 5-ASA, 5-aminosalicylate; ANOVA, analysis of variance; CMC,
carboxymethyl cellulose sodium; DAI, disease activity index; DSS, dextran sulfate
sodium; ELISA, enzyme linked immunosorbent assay; fluorescein isothiocyanate,
FITC; FMT, fecal microbial transplantation; HE, hematoxylin–eosin; HMGB1,
high mobility group protein B1; IBD, inflammatory bowel disease; IL, interleukin;
Kae, Kaempferol; KEGG, Kyoto encyclopedia of genes and genomes; LDA, linear
discriminant analysis; LEfSe, linear discriminant analysis effect size; LPS,
lipopolysaccharide; MyD88, myeloid differentiation factor 88; NC, normal
control; NF-kB, nuclear factor kappa-B; NLR, NOD-like receptor; NOD,
nucleotide oligomerization domain; OPLS-DA, orthogonal partial least-squares-
discriminant analysis; OTUs, operational taxonomic units; PBS, phosphate buffer
saline; PCA, principal component analysis; PCoA, principal coordinates analysis;
PLS-DA, partial least-squares discrimination analysis; qRT-PCR, quantitative
reverse transcription polymerase chain reaction; SCFA, short-chain fatty acid;
SEM, standard error of the mean; TJ, tight junction; TLR4, toll-like receptor 4;
TNF-a, tumor necrosis factor-a; UC, ulcerative colitis; ZO-1, zonula occludens 1.
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Dextran sulfate sodium (DSS) has been used extensively to
generate an experimental murine model of UC disease. The
clinical phenotype of the animal model shares high similarity
with that of patients with UC, including an increased disease
activity index (DAI) (16). In addition, the model mice can exhibit
typical clinicopathological features of colitis, including immune
cell infiltration, mucosal barrier injury, and dysbacteriosis (17).

In this study, we investigated the effects of Kae on the
interactions between the host immune system and the gut
microbiota in DSS-challenged mice. Our study showed that
Kae supplementation improved the intestinal barrier, restored
gut microbiota, modified the metabolic profile, and suppressed
the TLR4-NF-kB signaling pathway. Moreover, fecal microbial
transplantation provided further validation of the potential
therapeutic mechanism underlying Kae activity. Accordingly,
our data suggest that Kaempferol has significant potential to
alleviate UC.
MATERIALS AND METHODS

Reagents
Kae (purity > 98%) and carboxymethyl cellulose sodium (CMC)
were purchased from MeilunBio (Dalian, China). Antibodies
against myeloid differentiation factor 88 (MyD88; Lot:
00091677), zonula occludens 1 (ZO-1; Lot: 10003932),
occludin (Lot: 10004180) and claudin-1 (Lot: 00081584) were
purchased from Proteintech (Wuhan, China). Anti-TLR4
antibody (Lot: E2913) was obtained from Santa Cruz (Santa
Cruz Bio, Santa Cruz, USA). The antibody against phospho-NF-
kB (p-NF-kB)-P65 (Lot: 16) was purchased from CST (Danvers,
USA). The antibody against nucleotide oligomerization domain
(NOD)-like receptor 3 (NLRP3; Lot: 080639650) was purchased
from Novus Biologicals (San Diego, USA). Fluorescein
isothiocyanate (FITC)-dextran (#FD4, average mol wt 3000–
5000 Da) was purchased from Sigma-Aldrich (St. Louis, USA).
DSS (36000–50000 Da) was obtained from MP Biochemicals
(Santa Ana, USA).

Animal Experiments
Six-week-old female C57BL/6J mice (20 ± 2g) were purchased
from SPF Animals Biotechnology (Beijing, China). Mice were
maintained under standard laboratory conditions, as follows:
25°C ± 3°C, 53% ± 3% humidity, with a 12-h light/dark cycle and
were allowed to adapt to this environment for 7 days with free
access to food and water. The composition of the mouse diet is
provided in Supplementary Table 1. For experiments, 40 mice
were randomly divided into four groups: normal control (NC),
Kaempferol control (Kae), DSS-induced colitis (DSS), and
Kaempferol treatment (DSS-Kae) groups (n = 10 per group).
Mice in the NC and DSS groups were given vehicle (1% CMC) by
gavage for 14 days, while those in the Kae and DSS-Kae groups
were administered Kae (50 mg/kg/day, dissolved in 1% CMC) by
gavage for 14 days. Between days 8 and 14, mice in the DSS and
DSS-Kae groups received 3.5% (w/v) DSS in their drinking water.

On the 15th day of the experiment, mice were anesthetized by
intraperitoneal injection with pentobarbital sodium (30 mg/kg),
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before samples of feces and blood were collected. At termination,
all mice were euthanized by cervical dislocation. Colon samples
were snap frozen in liquid nitrogen and then stored at −70°C
until further study. This study was approved by the Animal
Ethics Committee of Inner Mongolia Agriculture University
[NO. (2020)077].

Fecal Microbial Transplantation and
Co-Housing Experiments
Fecal microbial transplantation (FMT) was achieved as described
previously (18–20). Briefly, C57BL/6J female mice (n = 40; weight,
20 ± 2g) were randomly divided into four groups: F-NC, F-Kae, F-
DSS, and F-DSS-Kae, and each group was designated to receive
daily fresh fecal supernatant from NC, Kae, DSS, and DSS-Kae
group donors, respectively. Feces from each group of mice were
weighed and homogenized in saline (0.1 g/mL), the suspension
centrifuged at 850 ×g, at 4°C for 5 min, and supernatants collected
(>9.6 × 109 CFU/mL). Recipient mice in the F-NC, F-Kae, F-DSS,
and F-DSS-Kae groups were administered supernatants collected
from corresponding donor mice by gavage for 14 days (10 mL/
kg).The detailed co-housing experimental conditions are described
in the Supplementary Material. All processes were performed
under a sterile environment.

Evaluation of Colitis
The DAI and histopathology were assessed in each group of
mice. The DAI was determined by combining hematochezia,
mucous stools, and body weight loss scores, and dividing them
by 3 (21). Colon tissues were fixed in 4% paraformaldehyde
fixation solution, dehydrated through an ethanol gradient,
rendered transparent by immersion in xylene, and finally
embedded in paraffin, from which 4 mm paraffin slices were
sectioned and stained with hematoxylin and eosin (HE).
Histological features of colon tissue samples were scored
independently using a previously described method (22).
Detailed scoring criteria for the DAI and histology are
described in Supplementary Tables 2 and 3.

Assays of Pro-Inflammatory Factor Levels
Enzyme-Linked Immunosorbent Assay
Serum was extracted from blood after centrifugation at 850 ×g
for 20 min, 4°C. IL-1b (Lot: M200702-001a), IL-6 (Lot:
M200702-004a), and TNF-a (Lot: M200702-102a) levels were
measured using commercial enzyme-linked immunosorbent
assay (ELISA) kits (Neobioscience Technology Co., Ltd.,
Shenzhen, China), following the kit instructions. Serum LPS
was measured using an ELISA kit (Lot: 03036B; YaJi Biological,
Shanghai, China).

Quantitative Reverse Transcription Polymerase
Chain Reaction
TRIzol (TianGen, BeiJing, China) was used to extract total RNA
from colon tissue; RNA concentration and quality were
evaluated using the NanoDrop 2000C Spectrophotometer
(Thermo Scientific, Waltham, USA). Prime Script RT Master
Mix (TaKaRa, Beijing, China) was used to reverse-transcribe
total RNA into cDNA. Transcription levels of specific genes were
Frontiers in Immunology | www.frontiersin.org 3
determined by quantitative reverse transcription polymerase
chain reaction (qRT-PCR) analysis using the TB Green Premix
Ex Taq II (TaKaRa, Beijing, China) and detected using the Light
Cycler96 system (Roche, Mannheim, Germany). Primer
sequences are shown in Supplementary Table 4. Relative gene
expression levels were calculated by the 2−DDCT method.

Immunohistochemistry
After dewaxing with xylene and an ethanol gradient, colon tissue
sections were heated in sodium citrate solution for antigen
retrieval, the endogenous peroxidase was inactivated by soaked
in 3% hydrogen peroxide, phosphate buffered saline (PBS) was
used to rinsed sections three times, and 5% normal goat serum
was used to block nonspecific binding. Next, sections were
incubated with primary antibodies (1:300) at 4°C overnight.
After three washes with PBS, tissue sections were further
incubated with biotin-tagged secondary antibodies at room
temperature for 20 min. Sections were then stained with
streptavidin-horseradish peroxidase, followed by the addition
of the colorimetric substrate, diaminobenzidine (DAB, Beijing
Solarbio Science & Technology Co., Ltd.). After staining,
clearing, and dehydration, sections were sealed with gum
rubber sealant. More than three visual fields were randomly
selected for observation under the microscope. Quantitative
analysis of the target proteins was conducted using Image J
software (version 1.5.7, National Institutes of Health, USA).
Protein expression intensity is expressed as positive protein
integral optical density.

16S rRNA Gene Sequencing
Fecal genomic DNA was extracted by DNeasy-PowerSoil Kit
(Qiagen, Dusseldorf, Germany) following the standard
procedure. DNA concentrations were determined using the
NanoDrop 2000C Spectrophotometer and gel electrophoresis.
Using genomic DNA as the template, specific primers (343F 5’-
TACGGRAGGCAGCAG-3’ and 798R 5’-AGGGTATCTAATCCT-
3’) with barcodes and Tks Gflex DNA Polymerase (TaKaRa, Beijing,
China) were used to amplify the V3-V4 hypervariable regions of the
bacterial 16S rRNA gene. The quantity and quality of amplicons were
evaluated using the NanoDrop 2000C Spectrophotometer and gel
electrophoresis. Subsequently, AMPure XP beads were used to purify
the amplicons (Beckman Coulter, California, USA) and purified
products formed the template for the next round of amplification.
The quality of amplicons was again confirmed as described above,
and products were purified oncemore using AMPure XP beads. After
the second purification step, the Qubit-dsDNA analysis kit (Life
Technologies, Waltham, USA) was used to quantify the amplicons.
Pooled equal amounts of purified amplicons were sequenced on the
Illumina Novaseq platform (Illumina, California, USA) to obtain raw
data in FASTQ format.

GC-MS Untargeted Metabolomics
Mice feces (50 mg) were transferred into a 2 mL microcentrifuge
tube, and mixed with 500 mL of extraction solvent (methanol/
water 4:1 ratio, v/v), 40 mL of internal standard solution (2-
chloro-l-phenylalanine in methanol, 3 g/L), and ground at 60 Hz
for 3 min. Samples were then added to 120 mL of chloroform and
July 2021 | Volume 12 | Article 679897
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subjected to vigorous vortexing, followed by ultrasonic extraction
for 20 min at 25°C. Supernatants were extracted after samples
were centrifuged at 13,680 ×g, for 20 min at 4°C, dried at 25°C
under vacuum for 30 min, and dissolved in 80 mL of 15 mg/mL
methoxyamine hydrochloride in pyridine. The resulting
products was vigorously vortexed for 10 min, and kept at
room temperature for 80 min. To this mixture, 20 mL of n-
hexane and 60 mL of BSTFA (containing 2% TMCS) were added,
samples vortexed vigorously for 3 min, then derivatized at 65°C
for 70 min, and analyzed by gas chromatography using the
Agilent 7890 B System, coupled to the Agilent 5977 A MSD
System (Agilent Technology, California, USA). Separation of
derivatives was performed using a 30 mm× 0.25 mm× 0.25 µm
DB-5MS fused silica capillary column (Agilent Technology,
California, USA), using the standard protocol, under full-scan
mode to detect mass spectrometry data (m/z 50–500). Quality
control samples were injected regularly throughout the analysis
process to check data reproducibility. Raw data were obtained in
D format.

Bioinformatics Analysis
FASTQ format raw data were processed using Trimmomatic
(version 0.39) and FLASH (version 1.2.11), to remove invalid
bases (23, 24). Data were classified into multiple operational
taxonomic units (OTUs) by Vsearch (version 2.15.1) according
to similarity score (≥ 97%) (25). Representative sequences of
every OTU were selected using QIIME software and compared
with the Greengenes database (v201305) (26). Alpha-diversity
were assessed using the Shannon, Simpson, and Chao1 indices in
Mothur (version 1.44.3) and R language (27). Pairwise
comparisons were analyzed by Wilcoxon rank sum test for
alpha-diversity. To evaluate beta-diversity, principal
component analysis (PCA), principal coordinates analysis
(PCoA), and non-metric multidimensional scaling (NMDS)
were computed using QIIME and R language. Galaxy LEfSe
tools were used to conduct linear discriminant analysis effect size
(LEfSe) analyses and the relative abundance of microbial taxa
and (LDA) scores >2 were recorded (28). Different microbial taxa
were distinguished by the non-parametric factorial Kruskal-
Wallis sum-rank test. Raw metabolomic data were quality-
filtered using Analysis Base File Converter (version 1.0), then
representative data was searched against the untargeted GC-MS
database (OEbio, Shanghai, China). After log10 transformation,
partial least-squares discrimination analysis (PLS-DA) and
orthogonal partial least-squares-discriminant analysis (OPLS-
DA) were performed using a data matrix to visualize the
metabolic differences between the DSS and DSS-Kae groups.
Differential metabolites were analyzed by calculation of Pearson
correlation coefficients. Kyoto encyclopedia of genes and
genomes (KEGG) pathway enrichment analysis was conducted
using tools available in the KEGG database (release 95.2) (www.
kegg.jp).

Measurement of Intestinal Permeability
Intestinal permeability was evaluated using a FITC-labelled-
dextran method as described by Volynets et al. (29). Briefly, on
the final day of the experiment, FITC–dextran (mol wt 3000–
Frontiers in Immunology | www.frontiersin.org 4
5000 kDa; 600 mg/kg) was administered to the mice by oral
gavage 4 h before euthanization. Immediately before
euthanization, blood was collected and heparinized. Plasma
was separated by centrifugation at 12000 ×g for 10 min, at
4°C, and 200 µL of each sample was added to a 96-well black
microplate. Fluorescence was read with Agilent Biotek Synergy
H4 (Santa Clara, USA) at 485/528 nm wavelength.

Statistical Analysis
Statistical analyses were performed using SPSS 22.0 software
(New York, USA). Data are expressed as mean ± standard error
of the mean (SEM). One-way analysis of variance (ANOVA)
followed by Tukey post hoc analysis was applied when evaluating
differences between two groups. P values < 0.05 were considered
statistically significant.
RESULTS

Kae Attenuated DSS-Induced
Murine Colitis
The structure of Kae is shown in Figure 1A. According to the
experimental treatment schedule (Figure 1B), mice in the DSS
and DSS-Kae groups were supplied ad libitum with 3.5% (w/v)
DSS in drinking water on days 7–14, while those in the NC and
Kae groups had ad libitum access to untreated drinking water.
Compared with the NC group, the DSS group had an obviously
steeper DAI score curve, while the rise in the DSS-Kae group was
slower (P < 0.05) (Figure 1C). Additionally, treatment with Kae
led to an increased colon length, relative to the DSS group (P <
0.05) (Figures 1D, E). HE staining of colon tissue showed that DSS
treatment caused severe enteric mucosal injury; however, all
characteristic features were prevented by oral Kae supplementation
(Figures 1F, G). These results indicated that Kae could alleviate the
gross symptoms of DSS-induced colitis in mice and alleviated
colonic injury.

Kae Attenuated DSS-Triggered
Pro-Inflammatory Responses
Next, we assessed the effects of Kae administration on DSS-
induced pro-inflammatory responses. Compared with the NC
group, DSS triggered significantly increased serum IL-1, IL-6,
and TNF-a levels. Conversely, Kae supplementation remarkably
reversed this tendency (Figures 2A–C). DSS treatment
significantly increased mRNA level expression of inflammatory
factors, such as IL-1b, IL-6, TNF-a, COX-2, MCP-1, and iNOS,
while inhibiting IL-10 expression (P < 0.05) (Figure 2D).
Further, mRNA expression levels of the pattern recognition
receptors, TLR4 and NLRP3, as well as the signaling molecules,
MAPK1 and NF-kB, were also elevated in the DSS group. In
contrast, gavage with Kae strongly inhibited the transcription of
genes involved in colitis, while reversing the effects of DSS on IL-
10 transcription (P < 0.05). In summary, Kae alleviated
inflammation caused by UC, partly through upregulation of
IL-10 transcription and downregulation of the expression of
inflammation-associated genes.
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Kae Prevented Loss of Intestinal Barrier
Integrity in Mice Treated With DSS
To evaluate the protective effects of Kae administration on
intestinal barrier integrity, fluorescence spectroscopy of
ingested FITC–dextran was measure. qRT-PCR and
immunohistochemistry were used to evaluate the expression
levels of tight junctions (TJs) genes, including ZO-1, occludin,
and claudin-1. The results showed that mice with DSS exposure
had remarkably higher FITC levels, Kae pre-treatment revealed
an improvement in intestinal permeability compared to DSS-
only mice (P < 0.05) (Figure 3A). DSS challenge led to decreased
levels of ZO-1, occludin, and claudin-1, whereas in mice
pretreated with Kae, expression of ZO-1, occludin, and
claudin-1 were similar to those of control untreated mice
(Figures 3B–E). These data suggested that the anti-
inflammation effects of Kae involved maintenance of
intestinal barriers.
Frontiers in Immunology | www.frontiersin.org 5
Kae Reshaped the Diversity and Richness
of the Gut Microbiota
In this study, we performed 16S rRNA gene high-throughput
sequencing to reveal the impact of Kae on the gut microbiota.
Results from rarefaction curve analysis, Shannon index
calculation, and Good’s coverage reflected that there was a
sufficient sequencing depth to provide coverage of the majority
of microflora diversity in each sample (Supplementary Figure S1).
Generation of a Venn diagram showed that in all samples, total of
1473 OTUs were calculated, 312 and 300 were in the NC and Kae
groups, respectively, while the DSS group had fewer OTUs (n = 74),
compared with the DSS-Kae groups (n = 447) (Figure 4A).

Alpha-diversity analysis is mainly used to assess community
diversity and richness. Compared with samples from the NC and
Kae groups, samples from the DSS group had remarkably
reduced Shannon and Simpson diversity indices, and a lower
Chao1 richness estimates, whilst Kae treatment effectively
A B

D E

F G

C

FIGURE 1 | Kae attenuates the symptoms of DSS-induced mice colitis. (A) Chemical structure of kaempferol (Kae). (B) Experimental design to test the effects of
Kae on DSS-induced mice (n = 10/group). (C) Disease activity index of mice during the course of colitis. (D, E) Representative images of colons from mice following
euthanization and statistical analysis of colon length in each group. (F, G) Representative images of HE stained colon tissue samples (scale bar, 200 mm) and
histological scores of colonic tissues. Data are expressed as the mean ± SEM, n = 10, analyzed using one-way ANOVA with Tukey post-hoc analysis. DSS (vs. NC,
##P < 0.01; vs. DSS-Kae, *P < 0.05, **P < 0.01); Kae (vs. NC, aP < 0.05).
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prevented the DSS-induced decline in bacterial community
diversity and richness (P < 0.05) (Figures 4B–D).

PCA, PCoA, and NMDS analyses were used to evaluate
similarities and differences between samples and groups. Based
on values generated using the weighted UniFrac algorithm,
PCoA and NMDS analyses indicated that the gut microbiota
composition of the NC group was unlike that of the DSS group in
terms of Axis PCo-1 and NMDS-1. Moreover, the DSS-Kae
group was clearly located on a separate branch from the DSS
group, but close to the NC and Kae groups (Figures 4E–G).
These results indicated that the gut microbiota community
structure was maintained by administration of Kae.

Kae Administration Restructured the Gut
Microbiota Diversity in Mice Treated
With DSS
As shown in Figure 5A, DSS challenge resulted in an obvious
decrease in the abundance of Bacteroidetes and Firmicutes, while the
abundance of Proteobacteria was increased. Kae supplementation
Frontiers in Immunology | www.frontiersin.org 6
prevented the decrease in Firmicutes/Bacteroidetes ratio
(Figure 5B). LEfSe analysis showed that pathogenic bacteria, such
as Proteobacteria, Gammaproteobacteria, and Enterobacteriaceae,
had LDA scores >4 in the DSS group. On the contrary, the DSS-Kae
group had higher scores for beneficial bacteria, such as
Ruminococcaceae and Prevotellaceae (Figures 5C, D). The all-
against-all algorithm within LEfSe demonstrated that, in the DSS
group, Proteobacteria, Gammaproteobacteria, Enterobacteriales,
Enterobacteriaceae, and Escherichia_Shigella species were
remarkably increased, whereas Kae supplementation partially
prevented increases in these bacteria (Figure 5E).

Protective Effects of Kae Treatment on
Gut Microbiota-Derived Metabolites
Weperformed untargetedmetabolomics analysis to study the effect
of Kae supplementation on the metabolic profiles of mice with
colitis. PLS-DA and OPLS-DA analyses showed clearly
distinguished between the metabolic profiles of mice in the DSS
and DSS-Kae groups (Figures 6A, B), and demonstrated that the
A B

D

C

FIGURE 2 | Effects of Kae on inflammatory-associated cytokine levels in DSS- and Kae-treated mice. Serum inflammatory factors, (A) IL-1b, (B) IL-6, and (C) TNF-a,
detected using ELISA kits. (D) Relative mRNA expression of inflammatory factors in the colon evaluated by qRT-PCR. All data were log2 converted and are presented
as fold-change in expression level versus the NC group (means for the NC group were set as 1). Data are expressed as the mean ± SEM, n = 4–6, analyzed using
one-way ANOVA with Tukey post-hoc analysis. DSS (vs. NC, #P < 0.05, ##P < 0.01; vs. DSS-Kae, *P < 0.05, **P < 0.01).
July 2021 | Volume 12 | Article 679897
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DSS-treated group formed a distinct metabolic cluster, separate
from those of the NC and DSS-Kae groups. In addition, 14
metabolites showing differential abundance between the DSS and
DSS-Kae groups were identified. Interestingly, we found that
supplementation with Kae greatly increased the levels of D-
fructose 2,6-bisphosphate, D-xylose, galactitol, lactose, and N-
acetyl-5-hydroxytryptamine in DSS-treated mice (Figure 6C).
Pathway enrichment analysis indicated that Kae elicited major
alterations in metabolic pathways related to phenylalanine
metabolism, galactose metabolism, and arginine and proline
metabolism (Figure 6D). Taken together, these results
demonstrated that the protective effects of Kae against UC were
related to the regulation of microbial metabolites.

Down-Regulation of LPS-TLR4-NF-kB
Inflammatory Pathway by Kae
As shown in Figure 7A, the LPS content in serum was significantly
increased in the DSS group, indicating that DSS triggered metabolic
endotoxemia. Conversely, the level of LPS in the DSS-Kae groupwas
remarkably lower, suggesting that Kae was able to alleviate DSS-
induced endotoxemia. Immunohistochemistry analysis showed that
Frontiers in Immunology | www.frontiersin.org 7
Kae pretreatment inhibited DSS-induced expression of TLR4,
MyD88, p-NF-kB-P65, and NLRP3 (Figure 7B). Therefore, the
anti-colitis activity of Kae could be partly attributed to the
inhibition of the LPS-TLR4-NF-kB inflammatory pathway.

Anti-Colitis Effects of Kae Could Be
Induced by Microbiota-Transfer
To further assess the involvement of the gut microbiota and its
metabolic products in the anti-inflammatory effects of Kae, FMT
and co-housing experiments were established (Figure 8A,
Supplementary Figure S2A). The results showed that FMT
from DSS-Kae donor mice to DSS-challenged recipient mice
significantly increased colon length, reduced DAI scores, and
alleviated pathological features (Figures 8B–F). Further, serum
IL-1b, IL-6, TNF-a, and LPS content were also decreased in the
recipient group (P < 0.05) (Figures 8G–J). The results of co-
housing experiments showed that the anti-colitis effects of Kae
could be transferred among co-housed mice to some extent
(Supplementary Figures S2B-I). These results further verified
the beneficial effects of Kae against colitis were associated with its
ability to regulate the microbiota.
A B D

E

C

FIGURE 3 | Kae improves gut permeability and enhances expression of intestinal tight junction proteins. Relative mRNA levels analysis of (A) Quantification of serum
FITC-dextran. (B) ZO-1, (C) occludin, and (D) claudin-1. (E) Representative images of immunohistochemical staining of ZO-1, occludin, and claudin-1 in colon
samples from different experimental groups (scale bar, 50 mm). Positive protein integral optical density was determined using Image J 1.5.7 software. Data are
expressed as the mean ± SEM, n = 5–6, analyzed using one-way ANOVA with Tukey post-hoc analysis. DSS (vs. NC, #P < 0.05, ##P < 0.01; vs. DSS-Kae, *P <
0.05, **P < 0.01); ns, no significant difference.
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DISCUSSION

UC is an idiopathic IBD which is incurable and prone to relapse
(30, 31). Research to date indicates that IBD is a “polymicrobial
disease”, involving a combination of interactions between
microorganisms and the host (32). Modulation of the gut
Frontiers in Immunology | www.frontiersin.org 8
microbiota is a new therapeutic option for UC patients.
Nutritional therapies, including exclusive enteral nutrition,
have already been demonstrated to be clearly linked with
changes in the gut microbiota in colitis patients (33, 34). In
our studies, we used DSS to induce UC in model mice, since it
can successfully induce high rates of stable colitis-associated
A B

D E F

G

C

FIGURE 4 | Kae increased the diversity and richness of gut microbiota in DSS-induced mice. (A) Venn diagram illustrates the numbers of OTUs in the NC, Kae,
DSS, and DSS-Kae groups. Alpha diversity is illustrated using a violin plot of the (B) Shannon, (C) Simpson, and (D) Chao indices. Beta-diversity was assessed
using (E) PCA, (F) PCoA, and (G) NMDS, based on weighted UniFrac distances. Pairwise comparisons using the Wilcoxon rank sum test for alpha diversity, n = 6,
**P < 0.01; ns, no significant difference.
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FIGURE 5 | (A) Taxonomic analysis of microbiota in fecal samples at the phylum, class, order, family, and genus levels. (B) Ratio of Firmicutes to Bacteroidetes in
the gut microbiota. (C) LDA scores for bacterial taxa significantly enriched in gut microbiota from each group (LDA score > 3). (D) Cladogram illustrating the results of
LEfSe analysis. (E) All-against-all algorithm of LDA coupled with LEfSe. Ratios are expressed as the mean ± SEM, n = 6, analyzed using one-way ANOVA with Tukey
post-hoc analysis. DSS (vs. DSS-Kae, *P < 0.05); Kae (vs. NC, aP < 0.05); ns, no significant difference. The significance of differences in taxonomic groups were
assessed using the non-parametric factorial Kruskal-Wallis sum-rank test, n = 6. P < 0.05 was considered to indicate a significant difference between groups.
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characteristics (35). As expected, mice with DSS-induced colitis
showed a variety of disease features comparable to those
observed in patients with UC, including increased DAI score
and intestinal micro-dysbiosis.

The anti-UC potential of Kae has been used to guide the
management of many clinical conditions (36). Bian et al. (37)
used a coculture model of gut endothelial and epithelial cells to
study the effects of Kae, and their results indicated that Kae could
alleviate epithelial barrier dysfunction and inhibit IL-8 secretion
via suppressing NF-kB-related pathways; however, there is the
insufficient data in vivo to support these in vitro results. Another
study demonstrated the beneficial effects of Kae against colitis
(15), although the potential role of the intestinal microbiome in
mediating the beneficial effects of Kae was not elucidated. The
current study aimed to further unravel the mechanisms
underlying the effects of Kae on gut microbiota and then
influence colonic inflammation in a DSS-triggered UC mice
Frontiers in Immunology | www.frontiersin.org 10
model. Our results suggested that Kae supplementation
alleviates UC in this mice model through modulation of the
intestinal microbiota and TLR4-related pathways.

Gut microbiota are an essential part of the intestinal barrier,
and have critical roles in host pathophysiological processes, such
as intestinal mucosal barrier maturity, immune system
development, nutrient absorption, and energy metabolism (38).
Increasing evidence indicates that a decline in the diversity and
richness of intestinal microbiota is correlated with an increased
prevalence of colitis (39). The major phyla constituting intestinal
microorganisms include Firmicutes and Bacteroides (40). One
clinical study demonstrated that the Firmicutes to Bacteroides
ratio (F/B) decreased in UC patients (41), while the abundance of
Proteobacteria increased significantly in mice with colitis, and
was also a signature feature of gut dysbiosis (42). Our study
showed that Kae could reverse the F/B ratio in DSS-treated mice.
Interestingly, Kae pretreatment reshaped the microbiota
A B

D

C

FIGURE 6 | Kae altered fecal metabolic composition. (A) PLS-DA analysis score plot showing comparisons of the NC vs DSS and DSS vs DSS-Kae group
metabolome profiles. (B) OPLS-DA analysis score plots showing comparisons of the NC vs DSS and DSS vs DSS-Kae group metabolome profiles. (C) Heat map
showing metabolites differing significantly in abundance between the DSS and DSS-Kae groups. (D) KEGG pathway analysis of the DSS and DSS-Kae groups.
Statistical analysis was conducted by calculation of Pearson correlation coefficients (VIP > 1 and P < 0.05).
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composition by decreasing the abundance of Proteobacteria.
Moreover, the probiotic Prevotellaceae and Ruminococcaceae
phyla increased in response to Kae administration. Chen et al.
pointed out that the hydrogen-producing Prevotellaceae can be
considered antioxidant organisms that can neutralize reactive
oxygen species, protecting cells against oxidative stress and
alleviating symptoms of IBD in patients (43). Ruminococcaceae
are an important type of butyrate-producing bacteria. A recent
study has shown that DSS challenge results in a lower relative
abundance of Ruminococcaceae in both the cecum and small
intestine (44). Recent research by Zhang et al. demonstrated that
Dendrobium officinale polysaccharides can ameliorate the extent
of colitis by increasing the abundance of Ruminococcaceae, a type
of short-chain fatty acid (SCFA)-producing bacteria (45). Our
study highlights increased diversity in commensal bacterial when
Frontiers in Immunology | www.frontiersin.org 11
mice were administered with DSS following Kae pretreatment.
Future research will be imperative to decipher whether SCFA
plays a role in the anti-UC efficacy of Kae.

During digestion, the gut microbiota produces large
quantities of metabolites. These metabolites interact with
intestinal epithelial cells, can enter the circulatory system, and
have important functions in human health and disease (46).
Galactose metabolism is involved in maintaining the energy
intake of cells, whereas metabolism of phenylalanine, arginine,
and proline is strongly associated with several human diseases
(47–49). FMT has been widely considered as an effective strategy
to re-establish an intestinal ecosystem (50). Using FMT, we
further demonstrated that the intestinal microflora plays a
critical role in regulating the influence of Kae on UC mice.
Coprophagy is the common habit that rodents feed on each
A

B

FIGURE 7 | Kae suppresses the LPS-TLR4-NF-kB signaling pathway. (A) Serum levels of LPS. (B) Immunohistochemical analysis of TLR4, MyD88, p-NF-kB-P65,
and NLRP3 expression in colon tissues (scale bar, 50 mm). Positive protein integral optical density was analyzed using Image J 1.5.7 software. Data are expressed
as mean ± SEM, n = 5, analyzed using one-way ANOVA with Tukey post-hoc analysis. DSS (vs. NC, ##P < 0.01; vs. DSS-Kae, *P < 0.05, **P < 0.01), ns, no
significant difference.
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other’s feces, and the behavior will meet their own nutritional
needs, maintain the stability of gut microbiota, and help rodents
to maintain a normal level of memory and cognition (51). Through
fecal-oral transplantation of intestinal microorganisms, our data
indicate that the anti-colitis effects of Kae can be transferred among
co-housed mice, implying the involvement of the gut microbiota in
the mechanism of action of Kae. Longer co-housed experimental
observation time is necessary in the future in order to fully evaluate
the effects of Kae.
Frontiers in Immunology | www.frontiersin.org 12
Sequencing of microbial 16S rRNA genes revealed that
Proteobacteria was pivotal in the processes investigated in our
study. Increases in the abundance of gram-negative bacteria are
more closely-linked with UC progression (42). Initial recognition
of Proteobacteria in the intestinal tract occurs through pathogen
recognition receptors, of which TLR4 is a specific receptor for the
LPS released from Proteobacteria (52). Upon ligand binding,
MyD88-dependent signaling can result in the phosphorylation of
NF-kB, a transcription factor that regulates the levels of IL-1b,
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FIGURE 8 | Transplantation of microbiota altered in response to Kae recapitulates the effects of Kae treatment on DSS-induced colitis. (A) Design of the FMT
experiment on DSS-treated mice (n = 10/group). (B) Disease activity index of FMT mice during the course of colitis. (C, D) Representative images of mouse colon at
sacrifice and statistical analysis of colon length data from each FMT group. (E, F) Representative images of H&E staining of colon samples (scale bar, 200 mm) and
histological scores of colonic tissues. Serum inflammatory factors: (G) IL-1b, (H) IL-6, and (I) TNF-a were measured using ELISA kits. (J) Serum LPS levels indicate
the endotoxemia index. Data are expressed as the mean ± SEM, n = 4–10, analyzed using one-way ANOVA with Tukey post-hoc analysis. DSS (vs. NC, #P < 0.05;
##P < 0.01; vs. DSS-Kae, *P < 0.05, **P < 0.01); F-Kae (vs. F-NC, aaP < 0.01); F-Kae (vs. F-DSS, bbP < 0.01); ns, no significant difference.
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IL-6, TNF-a, and several other inflammatory factors, in response
to NLRP3 (53, 54). Consistent with previous investigations (55,
56), our study showed that Kae could inhibit the expression of
inflammatory-associated mediators by dampening the activation
of the LPS-TLR4-NF-kB signaling in mice with DSS-
triggered colitis.

Intestinal epithelial barrier dysfunction is a fundamental
component of UC pathogenesis (57). The damage of the
intestinal mucosal barrier is the initiating factor of colitis, and
can lead to elevated intestinal permeability and infiltration of
antigens, toxins, and pathogens from the intraluminal
environment into the mucosal tissue, leading to the onset of
inflammation (58). The FITC-dextran test has already been used
successfully in previous studies to assess intestinal permeability
in mice induced with DSS (59). The integrity of TJs determines
the permeability of the intestine; thus, TJs are of great
importance in determining the integrity of the intestinal
epithelial barrier (60); their “zipper-like” structure can
effectively close the intercellular space and prevent the
infiltration of harmful substances (58). TJs mainly consist of
transmembrane proteins, including the cytoplasmic proteins,
ZO-1, occludin, and claudins (61). Occludin have the c-
terminal coiled-coil domain, binds with ZO-1 to regulate
intercellular signaling and message transmission, and affects
actin contractility to control colonic permeability (62).
Claudin, the main skeletal protein of TJs, is widely expressed
in the basement membrane (63). Analysis of FITC revealed that
Kae reduced the intestinal permeability compared to the DSS
group. Furthermore, we demonstrated that Kae could markedly
Frontiers in Immunology | www.frontiersin.org 13
restore the expression of ZO-1, occludin, and claudin-1 in the
murine colitis model, likely recovering the integrity of the
intestinal mucosal barrier.

In conclusion, our study demonstrated that Kae exerts
immunoregulatory effects in mice with UC by regulation of the
gut microbiota and a wide range of metabolites, thereby
suppressing LPS-induced TLR4-NF-kB signaling. Intestinal
dysbiosis is associated with a variety of pathological processes
including UC. Understanding this relationship is crucial to the
full exploitation of the therapeutic potential of microbial
interventions in clinical treatment. Therefore, this investigation
provides a novel insight that foods rich in Kae may have a health
benefit for preventing human UC and more broadly reveals
metabolic processes involving intestinal microbiota.
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