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Interleukin-7 (IL-7) is produced by stromal cells, keratinocytes, and epithelial cells in host
tissues or tumors and exerts a wide range of immune effects mediated by the IL-7
receptor (IL-7R). IL-7 is primarily involved in regulating the development of B cells, T cells,
natural killer cells, and dendritic cells via the JAK-STAT, PI3K-Akt, and MAPK pathways.
This cytokine participates in the early generation of lymphocyte subsets and maintain the
survival of all lymphocyte subsets; in particular, IL-7 is essential for orchestrating the
rearrangement of immunoglobulin genes and T-cell receptor genes in precursor B and T
cells, respectively. In addition, IL-7 can aid the activation of immune cells in anti-virus and
anti-tumor immunity and plays important roles in the restoration of immune function.
These biological functions of IL-7 make it an important molecular adjuvant to improve
vaccine efficacy as it can promote and extend systemic immune responses against
pathogens by prolonging lymphocyte survival, enhancing effector cell activity, and
increasing antigen-specific memory cell production. This review focuses on the
biological function and mechanism of IL-7 and summarizes its contribution towards
improved vaccine efficacy. We hope to provide a thorough overview of this cytokine and
provide strategies for the development of the future vaccines.
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INTRODUCTION

In 1987, Hunt et al. discovered a cytokine that promoted the development of pro- and pre-B cells while
exploring the potential role of bonemarrow stromal cells in pre-B cell subset growth (1). The following
year, Namen et al. isolated and purified a cytokine from the culture supernatant of mouse bone
marrow stromal cells and named it lymphocyte growth factor-1 (lymphopoetin-1, LP-1) (2). This
cytokine was officially named interleukin-7 (IL-7) at the 6th International Lymphokine Conference,
France (2). Subsequently, it has been confirmed that IL-7 is mainly produced by thymus and bone
marrow stromal cells (3), but can also be secreted by lymphoid organs (spleen, tonsil), non-lymphoid
tissues (liver, lung, intestine, and skin), and tumors (colorectal cancer, prostate cancer) (4–11).
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B and T lymphocytes develop from hematopoietic stem cells
(HSCs) and play critical roles in regulating immune responses.
IL-7 is a highly pleiotropic cytokine that is required for the
efficient generation of lymphocytes from HSCs (12) and
maintains the survival of B and T cells by regulating B-cell
lymphoma-2 (Bcl-2) family proteins and providing proliferation
signals to these lymphocytes (13–15). Gene rearrangements
allow lymphocytes to recognize various antigens. For instance,
IL-7 regulates the rearrangement of immunoglobulin (Ig) genes
in immature B cell subsets and T cell receptor (TCR) genes in
precursor T cell subsets via the IL-7 receptor (IL-7R) signaling
pathway to ensure primary antibody repertoire and T cell
diversity (16, 17). In T cells, IL-7 can also restore T cell
homeostasis by enhancing thymic output (18) and trigger the
expression of chemokines (CCL4, CCL25, CCL28) and integrins
(a4b7, a2b1), leading to T cell homing in local organs (19–21).

IL-7 quantitatively and qualitatively modulates the responses
of immune cells, such as natural killer (NK) cells, dendritic cells
(DCs), B cells, and T cells, against pathogens (22–28). Indeed,
IL-7 treatment promotes Th2 cell immune responses, increases
the production of neutralizing antibodies, and increases the
cytotoxicity of antigen-specific cytotoxic T lymphocytes (CTL)
(29). Furthermore, it controls the survival of mature and memory
T cells by upregulating the expression of anti-apoptotic Bcl-2
family proteins and the glycerol channel aquaporin 9, which
promotes long-term immunity (30–32), as well as being an
important regulator of immune balance (33). Besides, IL-7
exerts significant effects on anti-virus and anti-tumor activities,
as demonstrated multiple times in vitro and in vivo. The
administration of IL-7 has been found to significantly boost
mouse anti-cynomolgus-monkey anti-simian immunodeficiency
virus (SIV) infection (34), mouse anti-4T1 breast tumor invasion
(35), lymphocytic choriomeningitis virus (LCMV) infection (36),
and mouse anti-E.G7-OVA tumor invasion (37). Moreover,
IL-7 has been tried to apply in patient against human
diseases (Table 1).

Given the powerful biological functions of IL-7, several
groups have successfully used IL-7 as a molecular adjuvant to
enhance immunogenicity and prolong the protection period of
vaccines against human, avian, and canine-related pathogens
(46–48). In this review, we summarize and update our
understanding of the biological function, mechanism, and
Frontiers in Immunology | www.frontiersin.org 2
adjuvanticity of IL-7 and highlight this cytokine as a promising
molecule for future vaccine research.
IL-7 IS ESSENTIAL FOR IMMUNE
CELL DEVELOPMENT

Lymphocytes such as B cells, T cells, and NK cells differentiate
from common lymphoid progenitors (CLPs) derived from HSCs.
CLPs differentiate into lymphocytes with the help of several
cytokines, including IL-7, which plays important roles in cell
differentiation, proliferation, survival, and activation. In
particular, IL-7 is the predominant cytokine associated with B
and T cell development, as demonstrated by Von et al. who
reported that mice lacking IL-7 or IL-7Ra are unable to maintain
normal numbers of B and T cells (49). NK cells were one of the
earliest reported lymphocytes and are the main effector cells of
the innate immune system, with essential roles in early host
defenses against intracellular pathogen infection (50). In
addition, IL-7 contributes towards maintaining and enhancing
NK cell-based cytotoxicity (24). DCs are considered to be the
most powerful antigen-presenting cells (APCs) and play central
regulatory roles in immunity, such as in antigen recognition,
processing, and peptide presentation to naive T cells (Tn) via the
major histocompatibility complex (MHC), which effectively
activates adaptive immune responses (51). Since IL-7 is critical
for bone marrow-derived and peripheral blood monocyte-
differentiated DCs (25), it may play crucial roles in host
immune system development and immune response
regulation. Taking these facts into account, the review next
expands on the role of IL-7 on the development of immune cells.

IL-7 in B Cell Development
Cytokine action causes CLPs to sequentially progress from pro-B
cells (Iga/Igb expressed and B cell receptor (BCR) gene
rearrangement) to pre-B cells (pre-BCR complex expression)
and finally develop into immature B cells (membrane IgM
molecule engagement). Immature B cells then migrate into
secondary lymphoid tissues, where they differentiate into
mature B cells (membrane IgM and IgD expression).
When mature B cells respond to antigens in peripheral
lymphoid organs, they transiently form germinal centers (GCs)
December 2021 | Volume 12 | Article 680442
TABLE 1 | Application and therapeutic effect of rhIL-7 in human patient.

Disease Results

Refractory malignancy (38) Rejuvenating circulating T-cell profile; increasing pre-B cells proliferation and maturation; increasing circulating transitional B
cells

HIV (39, 40) Increasing the number of circulating T cells, predominantly of central memory T cells
Septic syndrome (41) Restoring normal lymphocyte functions in septic patients, including improving CD4+ and CD8+ lymphocyte proliferations, IFN-g

production, STAT5 phosphorylation, and B cell lymphoma 2 induction
Idiopathic CD4 lymphopenia, ICL (42) Increasing the number of circulating CD4+ and CD8+ T cells and tissue-resident CD3 T cells in the gut mucosa and bone

marrow
Multidrug resistant (MDR) bacterial (43) Increasing T cell production of IFN-g; improving patient survival
Allogeneic hematopoietic stem cell
transplantation, allo-HSCT (44)

Increasing the number and function of T cells; enhancing immune recovery

Metastatic castration-resistant prostate
cancer, mCRPC (45)

Promoting the expansion of CD4+ and CD8+ T cells, and CD56bright natural killer (NK) cells; improving antigen-specific humoral
and T cell proliferative responses
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where Ig genes are hypermutated and selected, leading to the
formation of plasma cells and memory B cells (52, 53).

Previous studies have shown that the cytokines IL-4, IL-7, IL-
9, IL-13, and IL-21 play important roles in the development of B
cells. In particular, IL-7 is essential for B cell development since it
can enhance and maintain B lymphopoiesis-specific
transcription factor early B cell factor 1 (EBF1) expression to
induce B cell production and to cause early B cell differentiation
at the CLP stage (54, 55). IL-7 also critically assists the
transformation of pre-pro-B cells into pro-B cells, with pre-
pro-B cells from IL-7-/- mice losing their ability to differentiate
into pro-B cells (56). In this process, pre-pro-B cell growth
stimulating factor (PPBSF) is an important cofactor of IL-7,
which up-regulates the expression of IL-7Ra, making pro-B cells
better respond to IL-7 (57). In addition, IL-7 is essential for pre-B
cell formation from pro-B cells in the bone marrow: when IL-7 is
neutralized using a monoclonal antibody, pro-B cells are unable
to develop into pre-B cells (58), but their differentiation is
rescued by IL-7 supplementation (59). However, the function
of IL-7 varies between different early B cell subsets. For instance,
recombinant IL-7 administration was found to increase the
number of pro-B and pre-B cells in wildtype mice and renal
adenocarcinoma mice through transducing replicative signals for
cell proliferation by inducing signal transducer and activator of
transcription-5 (STAT5) phosphorylation (60–62), whereas
other experiments have shown that it provides survival signals
instead of proliferation signals for CD19- B-cell progenitors (63).

The Ig loci of B cells recombine in a stepwise and reproducible
manner. Ig heavy chain (HC) genes are rearranged in pro-B cells,
whereas Ig light chain (LC) genes are rearranged in pre-B cells
(64). IL-7 is essential for orchestrating the rearrangement of both
the Ig HC and LC loci in early B cell development (65). In
addition, IL-7 co-ordinates with the transcription factor paired
box protein 5 (PAX5) to regulate Ig HC variable-region (VH)
gene rearrangement that generates antibody repertoire during B
lymphocyte development (66). In particular, IL-7 influences the
distal VH locus by activating H3K36me2 histone modification,
whereas PAX5 controls the proximal VH locus by increasing
H3K27me3 histone modification (65). In IL-7-/- mice, splenic B
cell structure is absent or aberrant and the IgM xenoantibody
(IgMXAb)-producing function of marginal zone B cells is
blocked (67). During B cell development, IL-7 regulates the
expression of anti-apoptotic genes (Bcl-2, Bcl-xL, Mcl-1) and
pro-apoptotic genes (Bax, Bad, Bim) to affect the survival of
precursor B cell subsets via IL-7R-mediated signals (68, 69). A
previous study showed that mature B cells accumulate in IL-7-/-

mice, indicating that immature B cells do not require IL-7 for
survival or further development once they have left the bone
marrow (69). Although the conclusions of recent studies have
been controversial, IL-7 has been harnessed as a molecular
adjuvant in vaccines to significantly promote the production of
neutralizing antibodies and GC B cells (70, 71), suggesting that
IL-7 may assist mature B cell development in the formation of
plasma and memory B cells. This function may be indirectly
regulated by IL-7 through T follicular helper (Tfh) cells, which
assist B cells to produce pathogen neutralizing antibodies and to
Frontiers in Immunology | www.frontiersin.org 3
form memory B cells (72, 73). They prove that IL-7 plays a
directly or indirectly role in the development of B cells
(Figure 1). Although IL-7 is a key cytokine in B cell
progenitors development in the mouse, it has less critical
function in human (74).

IL-7 in T Cell Development
T cells play a key role in cellular immunity against intracellular
pathogens. Pro-T cells differentiate and mature from HSCs that
have migrated into the thymus, a primary lymphoid organ, where
they transition through several developmental stages, including
double-negative T cells (DN, pre-T cells), double positive T cells
(DP, immature T cells), and single positive T cells (SP, Tn cells).
Tn cells migrate into secondary lymphoid tissues where they can
encounter antigens, leading to their activation, proliferation, and
differentiation into effector T cells. Approximately 90–95% of
effector T cells die after pathogen clearance and the remaining
cells become memory T cells (75, 76).

Previous studies have shown that T cell development is
regulated by several cytokines, including IL-2, IL-7, IL-15, and
IL-21. As a pluripotent cytokine, IL-7 is important for regulating
T cell survival, proliferation, differentiation, and activation
(Figure 2). In addition, IL-7-/- mice display approximately 10-
20-fold fewer total T cells, indicating that IL-7 plays a critical role
in T cell development (77). However, the demand for IL-7 in T
cell development varies at different stages and the dynamic
interplay between IL-7 requirement and the T cell subset is
regulated by IL-7R. Pro-T, pre-T, Tn, and memory T cell subsets
display relatively high IL-7R expression, whereas IL-7R
expression is low or absent in immature T and activated T cell
subsets. Therefore, the effect of intrinsic IL-7 may be greater
during the pro-T, pre-T, Tn, and memory T cell stages than in
immature and activated T cells (78). Overall, several studies have
assisted us to understand the important function of IL-7 in the
development and activation of T cells in vitro and in vivo.

Thymocytes in IL-7-/- mice have been shown to arrest in G0/
G1 phase and lose Bcl-2 expression, leading to defects in T
lymphopoiesis that can be rescued when the thymocytes are
cultured with IL-7 (79). Subsequent studies have demonstrated
that IL-7 contributes towards T lymphopoiesis by enhancing the
expression of Bcl-2, Cdk2, Rb, GSK-3, and Mcl-1 and
downregulating p27, Bax, Bad, and Bim (80–85). IL-7 can also
rescue thymic CD4+CD8+ T cell subsets from apoptosis and is
required to sustain the metabolism of Tn cells to inhibit cell
atrophy (86). Long-term IL-7 monoclonal antibody treatment
was found to interrupt the proliferation of CD44+CD25+ T cells
in mice, causing the sharp depletion of the CD4+CD8+ T cell
subset (87). In addition, studies have shown that IL-7 tightly
regulates Tn cell proliferation to maintain T cell homeostasis in
peripheral lymphoid tissues (33, 35, 88). However, the role of IL-
7 in early T cell differentiation in vitro remains controversial.
One study showed that IL-7 crucially controls the development
of CD4-CD8- DN T cells into CD4+CD8+ DP T cells and the
differentiation of DP T cells into CD4+CD8-/CD4-CD8+ SP T
cells when HSCs were cultured in vitro (89). Conversely, the
transition of DN T cells into DP T cells was reduced when CD4-
December 2021 | Volume 12 | Article 680442
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CD8- DN thymocytes were cultured with IL-7 in vitro, indicating
that IL-7 mainly provides survival signaling rather than DN T
cell subset differentiation signaling (90). Later research
demonstrated that IL-7 signaling was required for DN-DP
differentiation, but it could delay DN T cells differentiation
into DP T cells for maintaining DN self-renewal in vitro and
in vivo (91). Additionally, IL-7 could induce the expression of
CXCR4, a chemokine receptor, to support CD4+ and CD8+ SP T
cell survival and recruitment in secondary lymphoid tissues (92,
93). Therefore, IL-7 is a crucial cytokine in regulating T cell
production, survival, proliferation, and differentiation.

IL-7 can also boost T cell immune responses against
pathogens by promoting the differentiation of Tn cells into
effector T cells and then memory T cells (18, 94, 95). IL-7 has
been used as an activator to augment mature T cell immune
Frontiers in Immunology | www.frontiersin.org 4
responses against chronic viruses and cancers. Recent reports
have shown that IL-7 can stimulate CD8+ T cell proliferation and
promote their cytotoxicity by upregulating perforin, granzyme B,
and IFN-g expression in patients with viral infection and tumors
(96–99). The cytokine promotes the activation of both CD4+ and
CD8+ T cells by increasing CXCR3 expression to control Lewis
lung tumor growth (100). Ubiquitin ligases are crucial factors in
protein degradation that also participate in both the innate and
adaptive immune responses (101) and are involved in IL-7-
mediated T cell immune responses. This notion is supported by
the fact that IL-7 represses Casitas B lymphoma-b (Cbl-b)
expression and enhances SMAD-specific E3 ubiquitin protein
ligase-2 (Smurf2) expression to augment T cell activation during
antitumor immune responses (102). Increased IL-7 usage can
also enhance pathogen-specific memory T cell responses against
FIGURE 1 | Role of IL-7 in the life cycle of B cells. IL-7 plays an essential role in B cell development in both bone marrow and peripheral lymphoid tissues. It is
involved in regulating the production of pro-B, pre-B, immature B, plasma, and memory B cells. HSCs, hematopoietic stem cells; CLPs, common lymphoid
progenitors; IL-7Ra, IL-7 receptor a chain; BCR, B cell receptor; mIgM, membrane IgM; mIgD, membrane IgD.
December 2021 | Volume 12 | Article 680442
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cancer and chronic viral infections (32, 103). In addition, IL-7
serves as a key factor in promoting T-cell reconstitution, with IL-
7 treatment increasing CD4+ T-cell circulation to maintain CD4+

T cell homeostasis in idiopathic CD4 lymphopenia (ICL) and
human immunodeficiency virus (HIV) infections (104–106).
Furthermore, it has been confirmed that the homeostatic
proliferation and survival of memory CD4+ T cells rely on IL-
7, whereas these aspects of memory CD8+ T cells require a
combination of IL-7 and IL-15 (12, 107–110). Hence, IL-7 can
enhance cell-mediated immune responses, including antigen-
specific and -non-specific cellular immune responses, by
promoting the production and function of effector T cells and
memory T cells.

IL-7 in NK Cell and DC Development
NK cells are a fundamental component of bodily frontline defense
systems that participate in both innate and adaptive immune
responses against tumors and viruses (111). IL-7Ra is expressed
in thymus-dependent and -independent NK cell progenitors
(NKPs) in mouse lymph nodes, indicating that IL-7 signaling
may contribute towards their development (112). IL-7 not only
plays important roles in NK cell maturation, but also in their
survival via the anti-apoptotic protein Bcl-2 (113). In addition,
Frontiers in Immunology | www.frontiersin.org 5
IL-7 is strictly responsible for maintaining NK cell homeostasis
(114) and is related to their activation. Dadmarz et al. showed
that IL-7 could stimulate the generation of lymphokine-activated
killer cells from mouse CD56bright NK cells and enhance the
cytotoxicity of mature NK cells (115). These findings are
consistent with the ability of IL-7 to promote the cytolytic
activity of mature CD56bright NK cells against K562 cells by
increasing CD69 expression, IFN-g production, and CD107a
expression (116). However, compared with IL-2, IL-15 and
IL-21, IL-7 plays a minor role in initiating and sustaining the
proliferation of NK cell (117).

DCs are a major type of antigen-presenting cell derived from
bone marrow that recognize, process, and present antigens to T
cells and then induce T cell-dependent immune responses.
Mature DCs further differentiate into conventional DCs
(cDCs) and plasmacytoid DCs (pDCs), which regulate the
activation of adaptive immunity (118, 119). When DC
progenitors isolated from the thymus were cultured together
with GM-CSF, IL-3, and IL-7 in vitro, efficient DC differentiation
was observed compared to stimulation with GM-CSF alone
(120), suggesting that IL-7 is involved in DC differentiation.
Moreover, DCs derived from both bone marrow and lymph
nodes express IL-7R, while reduced proportions of cDCs and
FIGURE 2 | The crucial role of IL-7 in T cell development and activation. IL-7 contributes to T cell lymphopoiesis and survival. When T cells encounter antigens,
IL-7 can boost T cell immune responses to fight against pathogens, including rescuing T cells from apoptosis, promoting naive T cells to differentiate into effector
T cells, and improving memory T cell production. HSCs, hematopoietic stem cells; CLPs, common lymphoid progenitors; IL-7Ra, IL-7 receptor a chain; TCR,
T cell receptor.
December 2021 | Volume 12 | Article 680442
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pDCs have been observed without IL-7 (25). Thus, it has been
clarified that IL-7 participates in DC development.

Taken together, IL-7 is an essential cytokine in regulating
both innate and adaptive immune responses through
participation in B cell, T cell, NK cell and DC development to
fight against pathogen infection. Although some controversial
issues regarding immune cells development require further
study, the feature of IL-7 lays the foundation for its application
in vaccine research.
IL-7 SIGNALING PATHWAY

The biological effects of IL-7 are mediated by binding to its
receptor, IL-7R, which is a transmembrane heterodimer of the
IL-7Ra (CD127) and g (CD132) chains. The a chain is used by
IL-7R and thymic stromal lymphopoietin receptor (TSLPR), also
Frontiers in Immunology | www.frontiersin.org 6
termed cytokine receptor-like factor 2 (CRLF2), while the g chain
(or common g (gc) chain) is shared by IL-7R, IL-2R, IL-4R, IL-
9R, IL-15R, and IL-21R (121). IL-7Ra is mainly found in T, B,
and NK cells as well as DCs, innate lymphoid cells (ILCs), and
lymphoid tissue inducer (Lti) cells (122), whereas gc is expressed
in all HSC-derived cell types (84). Both IL-7Ra and gc are high-
affinity IL-7 receptors; however, non-receptor kinases and
adaptors are employed to transduce IL-7 signals via IL-7R
since IL-7Ra and gc both lack intrinsic tyrosine kinase activity.
When IL-7 binds to IL-7Ra, the a and gc chains dimerize,
triggering kinase activation (Figure 3). Subsequent IL-7/IL-7R
signal transduction is mainly dependent on the Janus kinase
(JAK)-STAT and phosphatidylinositol 3-kinase (PI3K)-
Akt pathways.

The JAK family consists of JAK1, JAK2, JAK3, and tyrosine
kinase-2 (TYK-2), while the STAT family has seven members:
STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b, and STAT6.
JAK1, JAK3, and STAT5 are the predominant proteins that
December 2021 | Volume 12 | Article 680442
FIGURE 3 | IL-7 signaling pathways. IL-7 must combine with the IL-7R to carry out its biological function. IL-7R is a transmembrane heterodimer consisting of the a
chain and g chain (common g chain, gc chain). IL-7Ra is used by IL-7R and the thymic stromal lymphopoietin receptor (TSLPR), while gc is shared by IL-7R, IL-2R,
IL-4R, IL-9R, IL-15R, and IL-21R. JAK-STAT, PI3K-Akt, and MAPK pathways are involved in IL-7 signaling transduction. When IL-7 binds to IL-7Ra, the a and gc
chains dimerize. JAK1 and JAK3 are major kinases that respond to IL-7/IL-7R signaling in the JAK-STAT pathway. Myc interacting zinc finger protein 1 (Miz1)
recruits JAK1 to IL-7Ra. The phosphorylation of JAK1 and JAK3 triggers STAT5 phosphorylation and dimerization to upregulate anti-apoptotic gene expression and
downregulate pro-apoptotic gene expression. In addition, the MAPK pathway is also activated by the phosphorylated JAK1 and JAK3. When p85 tethers to IL-7Ra,
the PI3K-Akt pathway is activated. Subsequently, the Akt is phosphorylated, which then induces glucose metabolism regulator gene expression, and inhibits p27
kinase inhibitor protein 1 (p27kip1) expression with phosphorylated Forkhead box protein 1 (FOXO1).
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respond to IL-7/IL-7R signaling: when IL-7 combines with IL-
7R, JAK1 and JAK3 tether to IL-7Ra and gc, respectively,
alongside IL-7Ra C-terminal phosphorylation. Next, STAT1,
STAT3, and STAT5 are recruited and phosphorylated by JAK1
and JAK3 (123), with phosphorylated STAT5 production
occurring in an IL-7 dose-dependent manner (124). Following
its phosphorylation, STAT5 dimerizes and is translocated into
the nucleus, which in turn triggers the expression of downstream
genes involved in cell survival and proliferation (125–127). Via
the JAK-STAT pathway, IL-7 upregulates the expression of anti-
apoptotic genes mainly belonging to the Bcl-2 family, including
Bcl-2, Mcl-1, and Bcl-xL, while also downregulating pro-
apoptotic genes, including Bax, Bad, and Bak, to promote the
survival of cells in vitro and in vivo (128). Lu et al. quantified B
cell apoptosis and examined the expression of Bcl-2 family
proteins in IL-7-/- mice and IL-7 transgenic mice, finding that
IL-7 strongly increased Bcl-2 levels and decreased Bax levels to
promote precursor B cell survival (128). Myc interacting zinc
finger protein 1 (Miz1) is a crucial activator that also participates
in the JAK-STAT signaling transduction pathway by recruiting
JAK1, activating STAT5, and upregulating Bcl-2 expression
when IL-7 triggers early B and T cell survival and proliferation
(129, 130). Therefore, the lymphocyte survival signaling
provided by IL-7 is predominantly dependent on the JAK-
STAT pathway.

The PI3K-Akt signaling transduction pathway is an
important intracellular signaling pathway that regulates cell
growth, survival, and glucose metabolism (131). Indeed, PI3K
inhibitors have been found to attenuate the proliferation and
activation of murine T cells in response to IL-7 (132), while Akt
phosphorylation increased when IL-7 was used to improve
adipose-derived stem cell differentiation (133). The pathway
starts with the recruitment of p85, a regulatory subunit of
PI3K, when IL-7 interacts with IL-7R. P85 then associates with
IL-7Ra and induces the phosphorylation of tyrosine in the IL-
7Ra cytoplasmic tail (134). Subsequently, Akt is activated to
induce downstream gene expression (135). p27 kinase inhibitor
protein 1 (p27kip1) is a crucial molecule in this pathway and its
expression is downregulated by PI3K-Akt signaling via Forkhead
box protein 1 (FOXO1) phosphorylation (136). p27kip1

degradation can induce cyclin D1 expression and promote the
G1 to S phase transition for cell proliferation during IL-7-
dependent cell cycle progression (80, 137). Furthermore, PI3K-
Akt signaling can drive the cytoplasmic localization of p27kip1

and thereby allow cell proliferation (138, 139). Glucose is the
main nutrient for cell development and activation, and studies
have shown that IL-7 can upregulate the expression of the
glycolytic enzymes hexokinase II (HXK II) and glucose
transporter-1 (Glut-1), thereby augmenting glycolysis by
increasing glucose uptake (140, 141). Furthermore, it has been
clarified that IL-7-mediated glucose utilization occurs in a PI3K-
Akt-dependent fashion (83).These results suggest that the PI3K-
Akt pathway is necessary for effective IL-7 signaling during cell
cycle progression.

In addition to the JAK-STAT and PI3K-Akt pathways,
mitogen-activated protein kinases (MAPK), including p38
Frontiers in Immunology | www.frontiersin.org 7
kinase, extracellular signal regulated kinase (ERK), and c-Jun
N-terminal kinase (JNK), may also contribute towards IL-7/IL-
7R signaling. Importantly, the MAPK pathway allows the
transduction of signals from the cell membrane to the nucleus.
The p38 MAPK pathway may play a critical role in IL-7 signaling
since specific p38 inhibitors can suppress T cell proliferation
driven by IL-7 (142). Moreover, IL-7 withdrawal results in IL-7-
dependent thymocyte death caused by blocking the activation of
p38 and JNK kinases (143). In addition to JAK3 activation, the
phosphorylation of p44, an ERK isoform, was found to
significantly increase after IL-7 stimulation in murine T helper
cells (144). Furthermore, IL-7 signaling may affect the migration
of peripheral blood monocytes in rheumatoid arthritis (RA), a
chronic autoimmune disorder caused by ERK (145). Therefore,
the ERK MAPK pathway appears to play a role in IL-7-mediated
signal transduction to regulate cell development and activation.
IL-7 APPLICATIONS IN VACCINES

An ideal vaccine would permanently protect the host from
related pathogens after only one immunization; therefore, it is
important to develop efficient vaccines with broad, robust, and
long-lasting immunogenicity. Cytokines are commonly
employed as adjuvants to enhance and extend the vaccine
effect, with early studies revealing that IL-7 can improve
vaccine protection by driving T lymphocyte responses as a
molecular adjuvant (29, 146, 147). Recent studies have also
shown that IL-7 can not only enhance cellular immune
responses, but also improves the humoral immune responses
induced by vaccines (71, 148–150). As an adjuvant, IL-7 has been
shown to stimulate antigen-specific CD4+ T cell, CD8+ T cell,
and B cell responses to boost vaccine potency, as well as
increasing the production of memory T and B cells to prolong
the protective effects of vaccines (108, 151–154) (Table 2).

The IL-7 protein possesses strong adjuvant activity to
improve and extend vaccine protection. Indeed, costimulation
of the male HY antigen with recombinant human IL-7 (hIL-7)
protein may augment HY specific-CD8+ effector T cell
generation and improve the survival of HY specific-CD8+

memory T cells (155). In addition, administering recombinant
hIL-7 protein with a trivalent inactivated influenza vaccine (TIV;
H1N1 A/New Caledonia/20/99, H3N2 A/Fujian/411/2002, and
B/Shanghai/361/2002) could facilitate the generation of GC B
cells and increase neutralizing antibodies against homologous
and heterologous (PR8/H1N1) influenza viruses (70). Nanjappa
et al. found that the codelivery of hIL-7 protein with a DNA
vaccine encoding LCMV nucleoprotein (NP) in mice during the
contraction phase of the T cell response could increase the
number of specific mouse anti-LCMV memory CD8+ T cells
and enhance T cell proliferation and cytotoxicity to improve viral
control (155). Using hIL-7 protein as an adjuvant may also
improve mouse anti-tumor immune responses by increasing
pro-inflammatory cytokine production [IL-6, IL-1a, IL-1b, IL-
12, TNF-a, C-C chemokine ligand-5 (CCL-5), macrophage
inflammatory protein 1a (MIP-1a)], augmenting Th17 cell
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differentiation, repressing Cbl-b expression, and enhancing
SMAD-specific E3 ubiquitin protein ligase 2 (Smurf2)
expression (98). Furthermore, recombinant chicken IL-7 (chIL-
7) protein expressed in E. coli and administered with the
inactivated infectious bursal disease virus (IBDV) vaccine was
found to significantly upregulate chicken anti-IBDV antibody
titers, lymphocyte proliferation, and IFN-g and IL-4 production
(163). This increased the survival rate of chickens to 91–97%
compared to 78% when vaccinated with the inactivated IBDV
vaccine alone (163). Alfredo et al. also assessed the adjuvanticity
of chIL-7 protein with the Eimeria tenella elongation factor 1a
(EF-1a) DNA vaccine, finding that chIL-7 boosted humoral and
cellular immunity against live E. acervulina challenge in broiler
chickens that received the EF-1a DNA vaccine (157).

Flexner et al. were the first to report the use of a cytokine gene
as a biological adjuvant, having inserted mIl-2 into the vaccinia
virus genome to construct a recombinant virus as a novel
vaccine. They found that mIl-2 was able to improve the safety
Frontiers in Immunology | www.frontiersin.org 8
and immunogenicity of the vaccinia virus (164), providing a
foundation for the application of cytokine genes in vaccines.
Subsequently, numerous studies have attempted to co-
administer cytokine genes with vaccines to improve their
efficiency. IL-7 has been confirmed to exhibit efficient
adjuvanticity to boost vaccine immunogenicity, with the
codelivery of hIL-7-encoding plasmids with hepatitis C virus
(HCV) NS2-E1E2-NS3-NS4 DNA vaccine increasing anti-HCV
antibody levels and widening the T cell response compared to the
DNA vaccine alone (158). A DNA vaccine co-expressing IBDV
VP2366 and chIL-7 via an internal ribosome entry site (IRES)
connection was constructed and then used to intramuscularly
immunize SPF chickens, with significantly strengthened
immunogenicity compared to the IBDV VP2366 DNA vaccine
(156). In particular, the VP2366-chIL-7 DNA vaccine increased
the titer of neutralizing antibodies as well as IFN-g and IL-4
production, while chIL-7 enhanced IBDV VP2366 DNA vaccine
protection by approximately 25% (156). The murine Il-7 (mIl-7)
TABLE 2 | Application and advantages of IL-7 as a biological adjuvant in vaccines.

Application Formation Dosage of IL-7 Delivery of
IL-7

Animal Advantage

Influenza virus (IV)
(70)

rhIL-7 protein + trivalent IV inactivated vaccine 1.8 mg i.m Mouse Facilitating the generation of GC B cells;
Increasing neutralizing antibodies against
homologous and heterologous influenza viruses

The man antigen
HY (151)

rhIL-7 protein + HY antigen 5 mg/day, 27 days i.p Mouse Augmenting HY specific-CD8+ effector T cell
generation;Improving the survival of HY specific-
CD8+ memory T cells

Lymphocytic
choriomeningitis
virus, LCMV (155)

rhIL-7 protein + LCMV DNA vaccine 5 mg/day, 7 days i.p Mouse Increasing the number of specific mouse anti-
LCMV memory CD8+ T cells;Enhancing T cell
proliferation and cytotoxicity to improve viral
clearance

Infectious bursal
disease virus,
IBDV (154, 156)

chIL-7 protein + IBDV inactivated vaccine 200 mg/time, 3
times, at 1 week
interval

i.m Chicken Increasing chicken anti-IBDV antibody titers;
promoting lymphocyte proliferation; up-regulating
IFN-g and IL-4 production

chIL-7 gene inserted into IBDV VP2366 DNA
vaccine

200 mg/time, 3
times, at 1 week
interval

i.m Chicken Increasing the levels of neutralizing antibodies,
IFN-g and IL-4

Eimeria tenella-1,
EF-1 (157)

chIL-7 protein + EF-1 DNA vaccine 20 mg/time, 2
times, at 1 week
interval

i.m Chicken Boosting humoral and cellular immunity against
live Eimeria tenella challenge

Hepatitis C virus,
HCV (158)

hIL-7 plasmid + HCV DNA vaccine 200 mg/time, 6
times, at 1 month
interval

Electroporation Monkey Increasing anti-HCV antibody levels and the T
cell response

Human
papillomavirus,
HPV (159)

hIL-7 protein + HPV DNA vaccine 1 mg/kg i.v Mouse Enhancing genital mucosal CD8+ T cell immune
responses; promoting anti-tumor activity

Newcastle disease
virus, NDV (160)

mIL-7 gene inserted into nonlytic NDV genome 106 cell/time, 2
times, at 1 week
interval

s.c Mouse Greater levels of tumor-infiltrating CD4+ and
CD8+ T cells;stronger cytotoxicity of tumor-
specific CD8+ T cells

Rabies virus (150) mIL-7 gene inserted into a recombinant
attenuated rabies virus genome (rRABV)

106 FFU rRABV i.m Mouse Increasing antigen-specific memory B cells;
prolonging neutralizing antibodies production

Mycobacterium
bovis (161)

mIL-7 gene inserted into recombinant M. bovis
BCG genome (rBCG)

106 CFU rBCG i.v Mouse Increasing the pool size of IL-17A+ gd T cells;
augmenting Th1 response

Mycobacterium
tuberculosis (162)

mIL-7/mIL-15 proteins + bacille Calmette-
Guerin (BCG) vaccine

500 ng of each
cytokine/time, 2
times, at 3 weeks
interval

i.p Mouse Augmenting T cell proliferation and cytokines IL-
2, IFNg production; promoting both CD4+ and
CD8+ memory T cell responses

Toxoplasma
gondii (149)

mIL-7/mIL-15 co-expression plasmids +
Toxoplasma gondii calcium-dependent protein
kinase 1 (TgCDPK1) DNA vaccine

100 mg/time, 3
times, at 2 weeks
interval

i.m Mouse Enhancing levels of Toxoplasma-specific IgG2a,
CD8+/CD4+ T cell frequencies
FFU, focus-forming units; CFU, colony forming unit; i.p, intraperitoneal injection; i.m, intramuscular injection; i.v, intravaginal injection; s.c, subcutaneous injection.
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gene has also been inserted into the genome of the nonlytic
Newcastle disease virus (NDV) LX strain, which is an autologous
tumor vaccine modified using the reverse genetic method that
has been used against murine tumors (HCC, lymphoma, and
melanoma) (160). Interestingly, the NDV LX-mIL-7 vaccine
displayed strong anti-tumor activity, with mIL-7 expression by
the NDV LX strain inducing higher IFN-g production, greater
levels of tumor-infiltrating CD4+ and CD8+ T cells, and stronger
cytotoxicity of tumor-specific CD8+ T cells than the NDV LX
vaccine (160). Similarly, when mIl-7 was inserted into the
recombinant canine distemper virus (rCDV) genome, it
significantly promoted the generation of GC B cells and
plasma cells in draining lymph nodes (LNs) (71). The number
of antigen-specific memory B cells was also highly increased and
the presence of virus-neutralizing antibodies was prolonged (up
to 360 days) when mice were injected with a recombinant
attenuated rabies virus (rLBNSE) expressing mIL-7 (150).
These results suggest that the Il-7 gene can be directly used in
vaccine development. Although IL-7 has strong adjuvanticity, its
immunomodulatory properties may be different in certain
diseases. The vaccine efficacy of Friend Virus was no
significant changed when with or without adenoviral vectors
encoding hIL-7 (165). Therefore, further research is needed to
pinpoint the benefits of IL-7 in different pathogen vaccines, and
the adjuvanticity of IL-7 in different vector-based vaccines.

Another strategy to improve the immunogenicity of vaccines
is to combine IL-7 with other cytokines. When mIL-7 or mIL-33
was subcloned into pVAX1 vector, both mIL-7 and mIL-33
could enhance the immunogenicity of varicella-zoster virus
(VZV) glycoprotein E (gE) DNA vaccine. However, compared
with the coadministration of mIL-7 and mIL-33, the DNA
vaccine with mIL-7 alone enhanced the weaker VZV-specific T
cell immune responses and protection (153). Coadministering
mice with bacille Calmette-Guerin (BCG) vaccine and mIL-7/
mIL-15 proteins promoted T cell proliferation, cytokine
production, and both CD4+ and CD8+ memory T cell
responses compared to the BCG vaccine alone (162),
indicating that mIL-7 and mIL-15 proteins can induce long-
lasting T cell immune responses against Mycobacterium
tuberculosis. Similarly, recombinant NDV expressing mIL-7/
mIL-15 also improved the anti-tumor activity of the NDV LX
strain (166), while the delivery of mIL-7/mIL-15 co-expression
plasmids as molecular adjuvants with the Toxoplasma gondii
calcium-dependent protein kinase 1 (TgCDPK1) DNA vaccine
enhanced Toxoplasma-specific IgG2a levels and CD8+/
CD4+IFN-g+ T cell frequencies induced by the vaccine and
prolonged the survival of mice post lethal infection by
approximately 7 days (149). Furthermore, mIl-7/mIl-15 genes
subcloned into an adenovirus were able to extend the protective
efficacy of the M. tuberculosis subunit vaccine (LT70 and MH
fusion protein) by augmenting M. tuberculosis-specific central
memory-like T cell responses (167). When mIl-7/mIl-2 were co-
administered with the ovalbumin (OVA) DNA vaccine, mIL-7
and mIL-2 mutually improved its immunogenicity by up-
regulating the specific antibody titer, IFN-g production, and T
cell proliferation (168). This may have occurred via a mechanism
wherein mIL-2 induced the generation of mIL-7Ra-expressing
Frontiers in Immunology | www.frontiersin.org 9
lymphocytes, which were increased in number by mIL-7 (168).
These findings show that other adjuvants are needed to enhance
the adjuvanticity of IL-7 in some vaccines. As a result, further
studies about the form and mechanism of IL-7 in the
development of specific vaccines should be conducted.

The mucosal immune system plays a fundamental role in
defending against infection through food, water, pathogens, and
direct contact with mucosal surfaces. The Fc fragment is always
employed to enhance the mucosal delivery of a target protein.
When mice were intranasally treated with Fc-fused mouse IL-7
(mIL-7-mFc) not native IL-7 protein before lethal influenza A
virus (IAV) infection, the percentage of mice that survived was
significantly increased (169). In particular, mIL-7-mFc recruited
both T cells and pDCs from circulation into the lungs, with T
cells transitioning into lung-specific memory-like T cells (TRM-
like) and pDCs strengthening lung-specific anti-IAV CTL
responses (169, 170), thereby providing long-lasting immune
responses against lethal AIV infection by altering the pulmonary
immune environment. Since IL-7 is locally produced by
intestinal epithelial cells, particularly epithelial goblet cells, it
can regulate the phenotype and function of intraepithelial
lymphocytes (IELs) and lamina propria lymphocytes (LPLs)
(171, 172). Indeed, mIL-7 prevented approximately 50% of
IELs from undergoing spontaneous apoptosis via both caspase-
dependent and Bcl-2-dependent pathways in vitro (173).
Exogenous mIL-7 was also able to reverse the mucosal damage
induced by parenteral nutrition (PN) and increase the levels of
secretory IgA in the intestine and bronchoalveolae, meaning that
mice with PN could resist lethal Pseudomonas aeruginosa
infection (174). In addition, the hIL-7-hFc protein not hIL-7
was shown to enhance genital mucosal CD8+ T cell immune
responses to the human papillomavirus (HPV) GX188 DNA
vaccine and promote the anti-tumor activity of the vaccine (159).
The vaccine has entered preclinical trials and demonstrated that
hIL-7-hFc can be used with safety (175). Together, these studies
indicate that IL-7 could be used as a promising molecular
adjuvant to improve mucosal immune responses to vaccines.
Moreover, the formation of IL-7 with Fc fragment should be
considered in future mucosal vaccine development.
CONCLUSION

Vaccines play fundamental roles in helping the body to resist
pathogenic infections; however, antigens alone are unable to
stimulate persistent protective immune responses. To solve this
problem, cytokines have been employed to improve vaccine-
specific immunity and promote vaccine-specific memory
immune responses. In the past three decades, numerous trials
have confirmed that IL-7 can alter immune responses and
promote immune reconstitution by inducing the development
and activation of B cells, T cells, NK cells, and DCs. Moreover,
IL-7 exhibits adjuvant properties, enhancing effector and
memory cell immune responses, and has been used in
preventive and therapeutic vaccines.

As mucosal vaccines always present poor immunogenicity, an
appropriate adjuvant to enhance mucosal immunity is necessary.
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In view of the biological activity and tissue distribution of IL-7, it
has been used in vaccines to enhance mucosal immune
responses. It has been proved that IL-7 can not only promote
the humoral and cellular immune responses of vaccines, but also
improve their mucosal immunity. It can recruit DCs, NK cells, B
cells, and T cells to infiltrate in local mucosal tissues. IL-7 has
been employed in the development of IAV (169), HPV (159), DT
(176), and other mucosal vaccines. This strategy has been
demonstrated to be toxicity-free.

These findings have made IL-7 an important adjuvant in
vaccine development. Here, we reviewed the biological function
and mechanism of IL-7, and summarized its applications in
vaccines to provide a new perspective on clinical vaccine design.
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