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In the past decade, radiation therapy (RT) entered the era of personalized medicine,
following the striking improvements in radiation delivery and treatment planning
optimization, and in the understanding of the cancer response, including the
immunological response. The next challenge is to identify the optimal radiation regimen(s)
to induce a clinically relevant anti-tumor immunity response. Organs at risks and the tumor
microenvironment (e.g. endothelial cells, macrophages and fibroblasts) often limit the
radiation regimen effects due to adverse toxicities. Here, we reviewed how RT can
modulate the immune response involved in the tumor control and side effects associated
with inflammatory processes. Moreover, we discussed the versatile roles of tumor
microenvironment components during RT, how the innate immune sensing of RT-
induced genotoxicity, through the cGAS-STING pathway, might link the anti-tumor
immune response, radiation-induced necrosis and radiation-induced fibrosis, and how
a better understanding of the switch between favorable and deleterious events might help
to define innovative approaches to increase RT benefits in patients with cancer.

Keywords: radiation, radiotherapy, targeted radionuclide therapy, inflammation, nucleic acids, bystander immunity,
cGAS, STING
INTRODUCTION

In one century, radiation therapy (RT) has become a cornerstone of cancer treatment and is
proposed in about 50% of therapeutic schedules. RT goal is to deliver high amounts of energy in
cancer cells that will produce unrepairable damage leading to cell death. However, already the first
studies on RT reported that healthy tissues, such as skin, are limiting organs showing specific side
effects (for instance, erythema and telangiectasia for skin). The amount of energy delivered to tissues
was identified as the critical parameter of RT, and the radiation dose in gray units (Gy) was defined
for treatment rationalization. It was also observed that tumors and healthy tissues respond
differently when the radiation dose is fractionated. Until the 1940s, various dose and dose per
fraction were systemically tested to improve RT efficacy and to better protect skin from early and
late reactions (1). This led to the standard therapeutic schedule used today: 2 Gy per fraction,
5 fractions per week, and 6-8 weeks of overall treatment time (2). This has been accompanied
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by improvements in radiation delivery to the tumor, and the
current image-guided radiotherapy systems provide high
ballistic precision.

These advances have comforted the target cell theory
according to which only tumor cells crossed by radiation will
die, ultimately leading to eradication of clonogenic tumor cells
and to tumor control. However, exposure of healthy tissues
remains a matter of concern (3). Specifically, it has been
observed that the response to RT is not the same in all
patients, and late radiation toxicities, such as radiation-induced
necrosis [RN (4, 5)] and fibrosis (RIF) (6–8), have been
described. Besides the intrinsic patient radiosensitivity, total
dose, dose per fraction, irradiated volume, and treatment
combinations (e.g. endocrine therapy, chemotherapy, history of
surgery) (9, 10) could be involved in such side effects.

A new paradigm was established in the 1950s when a possible
role for RT-enhanced immune response against cancer cells was
suggested. Regression of cancer cells at a distance from the
radiation field was reported, leading to the introduction of the
abscopal effect concept (11). These observations that challenge
the target cell theory have been supported by many other studies
(12–15), and the immune response role during RT is today
strengthened by the benefit observed when combining RT and
immunotherapy, which stimulates or suppresses the immune
system to help the body fight cancer (e.g. monoclonal antibodies)
(14, 16, 17).

Here, we will review how RT modulates the immune response
towards a better tumor control or side effects associated with
inflammatory processes. After briefly describing the cellular and
tissue responses to RT and the different RT modalities, we will
discuss how the innate immune sensing of RT-induced
genotoxicity might link anti-tumor immune response, RN and
RIF, and how a better understanding of the switch between
favorable and deleterious events might help to define innovative
approaches to increase RT benefit in patients with cancer.

Cellular and Tissue Responses to RT
RT is based on the principle that radiation will produce lethal
lesions in exposed cells. This starts with the ionization and
excitation of molecules contained in cells, leading to the
production of radical species, such as reactive oxygen (ROS)
and nitrogen species (NOS) that will damage cell constituents.
These damages may be repaired (cells will survive), misrepaired
(cells undergo abnormal proliferation), or not repairable (cells
will die). Among all the radiation-sensitive targets, nuclear DNA
has been the most investigated. Indeed, survival of irradiated cells
is closely related to the level of unrepaired DNA double-strand
breaks, and the DNA damage response (DDR) plays a major role
in the final cellular outcome. Other subcellular targets, such as
cell membrane (18–20), mitochondria (21, 22) and lysosomes,
also may contribute to the final outcome. It must be noted that
cell killing will be more important when the dose and dose-rate
increase than when the dose is fractionated or delivered at low
dose-rate.

Target cell death upon RT leads to reduction in tissue
function (1). As RT delivers high fractionated dose (2 Gy per
fraction, 5 fractions per week, total dose between 40 and 70 Gy),
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the priority is to precisely control the exposure to radiation of
tumor cells and healthy tissues. The determinist effects,
occurring beyond a certain dose-threshold (>0.5 Gy), are
proportional to the dose, according to a S shape curve
(sigmoid curve), before reaching a plateau at high dose.
Therefore, by controlling the dose, it is possible to predict the
biological effect, e.g. the tumor control probability. The S curve
obtained for healthy tissues (normal tissue complications
probability) is quite similar as the one obtained for tumor cells,
but the dose threshold is higher. This indicates that the tumor is
more sensitive to radiation than healthy tissues when using the
previously described fractionated schedule. Therefore, it is
possible to define a therapeutic window where tumor growth
can be controlled with acceptable side effects. The organs
concerned by deterministic effects usually display high
proliferation rates (i.e. tumor, skin, bone marrow, digestive
tract), but other organs also may be concerned, for instance
the nervous system.
RT Modalities and Differential
Effects on Tissues
It took more than 50 years of preclinical and clinical data to
define the current standard therapeutic schedule of RT. This
schedule allows controlling the tumor, while minimizing side
effects. At the beginning of RT, the first systems produced low
energy X-rays that delivered huge doses to the skin, which was
used as the guide for therapeutic schedules. Schedules were
progressively improved to deliver the maximum dose not to
the skin but to the tumor. This was the beginning of a huge
progress in the design/development of technological devices with
the final goal of increasing the ballistic accuracy and improving
the ratio between disease control and toxicity (23). Three-
dimensional conformal radiation therapy (3D-CRT), intensity-
modulated radiation therapy (IMRT), stereotactic body radiation
therapy (SBRT/SABR) and stereotactic radiation surgery (SRS),
proton therapy (and to a lesser extent hadrontherapy with heavy
ions) (24), and more recently FLASH RT (25) have progressively
been implemented. For example, 3D-CRT aims at delivering
radiation to the gross tumor volume with a margin for
microscopic tumor extension and a further margin
uncertainties for organ in motion, while IMRT allows the
oncologist create irregular-shaped radiation doses that conform
to the tumor whilst avoiding critical organs. For instance, the
optimal radiation technique to treat breast cancer may vary with
patient anatomy and laterality of the breast cancer. IMRT
provide better conformality of the high dose to the target
regions than conventional 3D-CRT, but at the expense of more
tissue (contralateral breast and lung) exposed to low radiation
doses. Also, due to physical properties, proton therapy improves
target coverage and conformality with a high dose volume to the
target, and significantly reduces both organs at risks and integral
doses. Thus, the more the radiation technique allows a perfect
coverage of the tumor shape while avoiding healthy surrounding
tissues, the more the dose can be increased (improving the
cytotoxic effect of the physical dose), intensificated, or
hypofractionated to further improving outcomes.
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However, some of conventional RT modalities are not always
suitable for the treatment of disseminated or diffuse disease or of
tumors located very close to organs at risk because it would lead
to an unacceptable exposure of healthy tissues to high radiation
doses. Very early, clinical radionuclides were identified as an
alternative to RT because they emit radiation and can be used as
unsealed sources for intravenous injection. In 1941, iodine 131
(26), which is taken up by the thyroid gland, was the first tested
radionuclide for hyperthyroidism treatment, marking the birth
of nuclear medicine (27). Recently, Xofigo™ (223RaCl2) has been
approved for bone metastasis management in patients with
prostate cancer (28). In brachytherapy (also called
Curietherapy), radionuclides are locked in a sealed capsule
placed close to the tumor (e.g. prostate cancer), and then the
radiations cross the capsule and irradiate the localized tumor. In
1951, for the first time, radionuclides were radiolabeled with
vehicles, such as monoclonal antibodies against cancer cells (29–
31) and later peptides. For instance, Lutathera™ (177Lu-
DOTATATE) has been approved for treating neuroendocrine
tumors (32–34). However, radionuclide therapy also is associated
with side effects due to exposure of healthy tissues. For example,
treatment with Lutathera™ strongly increases progression-free
survival in patients (32), but whole blood and bone marrow are
inevitably exposed to radiation that may lead to long-term
toxicities. Subacute hematologic toxicity (grade 3/4) after
Lutathera™ has been observed in 11% of patients (35), and
long-term safety concerns include myelodysplastic syndrome
(MDS) and leukemia (32, 36).

The choice between the different RT modalities depends on
the tumor type and its localization. The chosen modality will
influence the delivered dose and dose-rate and the nature of the
lesions produced in cells. For example SBRT and SRS, which
deliver high individual radiation doses with enhanced precision
accuracy in only few treatment fractions, can be used to ablate
small and well-defined primary tumors anywhere in the body,
such as non-small cell lung cancer (NSCLC) (37–39), or brain
metastases (SRS) (40, 41). However, these modalities may cause
late RIF and RN. RN is a well-characterized effect of SRS and is
occasionally associated with serious neurologic sequelae (42). A
preclinical study in normal rats whose brain was exposed to a
single radiation dose (37 Gy at 30% using a Gamma Knife©

device) found vascular disorders and neovascularization (43)
with no detectable behavior changes at day 54 post-irradiation.
At day 110, rats exhibited large RN surrounded by an
increasing gradient (distal to proximal from the RN) of
microglia that accumulated near newly sprouted blood vessels,
upregulation of Iba1+CD68+ macrophages, and infiltrating CD3+

T cells (44). These effects were accompanied by irreversible
neuroinflammation, memory loss and a decrease in anxiety-
like behavior (44). In the context of brain RN pathophysiology,
there are two main theories whether it is likely that the true cause
is multifactorial: i) the vascular injury theory and ii) the glial cell
theory. In the first case scenario, radiation disrupts the blood-
brain barrier, resulting in increased capillary leakiness and
vascular permeability. Radiation, especially in large fraction
sizes >8 Gy, activates acid sphingomyelinase and causes
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upregulation of ceramide, which in turn causes endothelial
apoptosis (20, 45). This leads to increased oxygen-free radicals,
a pro-inflammatory milieu (through release of tumor-necrosis
factor and interleukin-1b) (46), and amongst other increased
production of vascular-endothelial growth factor (VEGF). This
cascade leads to anarchic vessel sprouting resulting in ischemia
and cell death (47). In the second case, radiation can also damage
glial cells. Damage to oligodendrocytes and their progenitors
result in demyelination (48), accompanied by leaky capillaries,
which result in perilesional edema (43, 48). Therefore, it is
important to understand the balance between beneficial and
deleterious effects of the radiation-induced inflammatory
response, and how exposed tumor cells communicate with
their microenvironment.

Revisiting the Target Cell Paradigm
Accounting for Non-Irradiated Bystander
Cell Killing
For about one century, RT has been considered as a ballistic
therapeutic approach where radiation is seen as projectiles
targeting tumor cells. Accordingly, only cells traversed by
radiation will die. There is now a huge body of evidence
indicating that irradiated cells communicate with non-
irradiated neighboring cells, leading to the so-called bystander
response to radiation that includes cytotoxic and genotoxic
effects, such as chromatid exchange (49), mutagenic effects
(50), micronucleus formation (51) and DNA damage-inducible
protein upregulation (52, 53). Besides these short-distance
effects, there are long-range effects that involve the immune
response activation through the production/release by irradiated
cells of pro-immunogenic factors, such as tumor antigens (54),
Natural Killer (NK) receptor G2D (NKG2D) ligands that act
as danger signals to alert NK cells (55), and through the
recruitment of CD8+ T cells and myeloid cells (56) together
with the production of type I Interferon (IFN) (57).
Simultaneously, RT can lead to immunogenic death of
cancer cells (15) that can subsequently favor the immune cell
response toward the surveillance and eradication of transformed
cells (58). Immunogenic cell death consists in the release of
immunostimulatory damage-associated molecular patterns
(DAMPs) by dying cells (59), for instance extracellular ATP
(60), extracellular DNA (61), nuclear DNA-binding protein high
mobility group box 1 (HMGB1) (62), and endoplasmic reticulum
chaperones, such as calreticulin (63). Irradiated cells produce
also inflammation-related cytokines (e.g. IFNs, IL-1, IL-6, IL-8,
VEGF, EGFR, and TNFa) encoded by ‘‘early response’’ genes
(64) that are induced within minutes to hours following RT
exposure. This is associated with ROS production and cytokine
production that will participate in the creation of a DAMP-
associated proinflammatory micro-environment. Mediators of
systemic effects and DDR/DNA repair components interact also
with components of the innate immune response, such as pattern
recognition receptors, and with DNA repair proteins (BRCA1,
XRCC1, DNA-dependent protein kinases, Ku70/80) (64). For
instance, during RT (or chemotherapy), dendritic cells (DCs)
require signaling through Toll-like receptor 4 (TLR4) for efficient
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processing and cross-presentation of antigen from dying tumor
cells (releasing HMGB1). Apetoh et al. demonstrated that in vivo,
local RT reduced tumor growth on CT26 colon cancers and TS/A
breast carcinomas, and prolonged the survival of tumor-bearing
immunocompetent wild-type mice, which was less effective in
Tlr4-/- and athymic nude mice (65).

Critical Tissues and Cell Response to RT:
Bone Marrow and Circulating Blood Cells
Although treatment planning allows delivering most of the
radiation dose to the tumor, the surrounding healthy tissues
also are exposed to radiation, but at lower doses. Consequently,
the surrounding tissues, including the vascular system, also are
included in the exposed volume. The tumor and infiltrating
immune cells (myeloid cells and lymphocytes), whose number
depends on the tumor immune microenvironment (hot, cold,
and immune-altered), are also irradiated. Consequently, RT can
have detrimental effects on the hematological compartment.
Bone marrow aplasia occurs for doses >3 Gy and death due to
hematopoietic syndrome occurs upon whole-body exposure to
doses that are expected to cause the death of 50% of exposed
people (LD50 = 4.5 Gy) (66). When irradiation is not fatal, the
number of hematopoietic stem cells returns progressively to
normal, but this can take years. Higher intramedullary
cytotoxicity due to abnormal hematopoiesis can be observed,
although blood formula has returned to normal values. This
might be due to RT-linked modifications of the stem cell
microenvironment, niches and/or vascularization. Long term
effects of irradiation of bone marrow have been reported in
patients treated for ankylosing spondylitis (67) or in atomic
bomb survivors. They mainly consist of acute leukemia a
myelodysplasia occurring between 5 and 10 years after
exposure. However their occurrence depend on the dose and
have not been observed after RT alone but more after
combination with chemotherapy (68, 69).

Bone marrow is a tissue with a hierarchical organization that
is involved in the early response to RT. Quiescent or proliferating
hematopoietic stem cells are located in bone marrow. Except for
T lymphocytes that differentiate in thymus, hematopoietic cells
proliferate and differentiate in the bone marrow before entering
the blood circulation. During RT, a proportion of stem cells is
killed and the negative effect on hematopoiesis is proportional to
the irradiation dose. As blood cells have a limited lifespan, blood
cell depletion will be detectable after the non-replacement of
mature cells by young differentiating cells. The immune cell
radiosensitivity depends on the lineage, maturity, and activation
status. All bone marrow cells and particularly progenitors are
sensitive to RT, and 1 Gy kills about 2/3 of all progenitor cells.
Conversely, mature cells, except lymphocytes, are relatively
resistant to RT. Lymphocytes are particularly radiation-
sensitive, and a decrease in circulating lymphocytes, due to
apoptosis, is observed already with 0.3 Gy. At 1 Gy, the
decrease becomes significant and occurs within 3 days. B cells
and naïve T helper (Th) cells are the most radiation-sensitive,
whereas T memory cells, natural killer T cells, and regulatory T
cells (Tregs) are more resistant (64).
Frontiers in Immunology | www.frontiersin.org 4
In recent years, the transcriptional response to radiation
exposure has been much studied. This is important because it
has been reported that the gene expression signature of blood
lymphocytes can help to predict the clinical outcome in human
cancers (70). Upon exposure to RT, multiple signal transduction
pathways are activated, resulting in complex alterations in gene
expression in circulating immune cells [e.g. Kabacik et al. (71)].
For instance, CD4+ and CD8+ T cells produce IFN-g,
contributing to the formation of an inflammatory environment
that favors the anti-tumor immunity (72). Irradiated human
monocytes and macrophages activate transiently p53- and ATM-
dependent mechanisms. The transcriptional factors TP53 and
nuclear factor kappa B (NF-kB), which play a central in immune
and inflammatory responses by regulating the expression of pro-
inflammatory cytokines and chemokines such as TNF-a, induce
the expression of inflammatory cytokine-encoding genes, thus
establishing a direct link between radiation-induced DNA
damage response and radiation-induced inflammation (73).

Circulating leukocytes are only exposed when passing
through exposed blood vessels and receive a much lower dose,
which is difficult to calculate accurately. Yet, this is a crucial issue
because the transcriptional changes observed in vitro following
exposure of whole blood samples are quantitatively (74) and
qualitatively (75) different in function of the dose. High doses
induce mainly p53-dependent signaling, and genes involved in
the stress response and apoptosis. Their level of expression is
dose-dependent down to 10-50 mGy. Low doses predominantly
induce the NF-kB pathway and the regulation of genes involved,
for instance, in cytosolic DNA sensing and chemokine and
cytokine signaling, rather than radiation-induced direct cell
killing. NF-kB, p53, breast cancer associated protein 1
(BRCA1) and AP-1 are among the main transcription factors
activated by radiation exposure and regulated by the DDR (76),
but low doses induce more immune-stimulatory responses (75).
Therefore, it can be hypothesized that the dose received by
immune cells and consequently the triggered responses are
determined by their localization during RT. Interestingly, the
influence of the tumor presence on the expression of several
stress genes in circulating white blood cells has been investigated,
and similar levels of expression in pre-exposure cancer samples
and in normal donor samples were observed (77).

Additionally, the type of radiation (X-rays, gamma, proton,
beta or alpha particles), the dose rate (around 1 Gy per minute,
FLASH irradiation in seconds, or protracted - days - irradiation
in targeted radiotherapy, TRT) and the RT type (e.g. IMRT or
SABR), which limits the dose to the microenvironment and
surrounding organs, can modify the volume of irradiated blood,
the dose to circulating leukocytes and consequently the
associated transcriptional modifications. This is illustrated by
the different modulation of the expression of inflammation
genes, such as TGFb1 (cytokine with anti-inflammatory
properties), IL-1b and IL-6 (pro-inflammatory), CCL3
(involved in the recruitment and activation of granulocytes)
and IL8 (neutrophil recruitment), in function of the RT type
(IMRT and SABR) and total dose (78). For instance, TGFb may
be a major obstacle to the optimal activation of antitumor T-cell
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responses by RT. Bouquet et al. demonstrated that TGFb
inhibition prior to radiation attenuated DNA damage
responses, increased clonogenic cell death, and promoted
tumor growth delay, and thus may be an effective additional
therapy in cancer RT (79). Also, in preclinical models of
metastatic breast cancer, Vanpouille-Box et al. showed that
anti-TGFb antibodies administered during RT uncovered the
ability of RT to induce T-cell responses to endogenous tumor
antigens (80). Interestingly, only the combination of RT with
anti-TGFb, but not each treatment alone, induced T-cell-
mediated rejection of the irradiated tumor and non-irradiated
metastases in mice, indicating that blocking TGFb unleashes the
potential of RT to promote an in situ tumor vaccine (80). In
addition, TGFb activation depends on radiation modalities.
Vozenin’s research team demonstrated that conventional RT
(15 Gy) triggered lung fibrosis associated with activation of the
TGFb cascade, whereas no complications have been observed
after doses of FLASH below 20 Gy for more than 36 weeks after
irradiation (81).

Also, the effects of RT on suppressive immune cells, such as
regulatory T cells (Tregs), in the tumor microenvironment
(TME) are not fully elucidated. For example, across several
tumor models (B16/F10, RENCA, and MC38) Muroyama et al.
demonstrated that RT (10 Gy) significantly increased tumor-
infiltrating Tregs compared with non-irradiated tumors. The
authors found that tumor-infiltrating Tregs from irradiated
tumors had equal or improved suppressive capacity compared
with non-irradiated tumors, independently of TGFb (82).
Consequently, blocking Tregs infiltration in tumors might be
an interesting therapeutic strategy in combination with RT and
anti-PD-L1, to overcome RT-induced immunosuppressive Tregs
and drive an abscopal effect (83).

In conclusion, there is a direct link between radiation-induced
DNA damage-dependent changes in gene expression and
radiation-induced inflammation. These changes need to be
better investigated to decipher these complex interactions.

Overall, this section showed the complex interaction between
ionizing radiation, tumor cells and TME. It also highlighted that
not all observed effects are linked to direct radiation damage
crossing cancer cells, but also to bystander and systemic effects.
JANUS-FACED TUMOR
MICROENVIRONMENT COMPONENTS
DURING RT

RT is detrimental for bone marrow and circulating blood cells
through their direct irradiation, but it can also via its indirect
effects, trigger the activation of immune cells, as observed when
RT is combined with immunotherapy (84). RT physical
parameters, such as dose and dose-rate, are key determinant of
the response type. Nevertheless, it must be kept in mind that the
immune response can participate in cancer control, but can also
contribute to the deleterious inflammatory effects observed in
healthy tissues. The balance between radiation-induced
immunity and toxicity is influenced by the TME cell
Frontiers in Immunology | www.frontiersin.org 5
composition, architecture and intercellular communications.
The role of macrophages, endothelial cells, fibroblasts and
mesenchymal stem cells (MSC) in the TME is presented in the
following paragraphs.

Macrophages
In macrophages, ionizing radiation induces the pro-
inflammatory phenotype that favors their pro-invasive and
pro-angiogenic functions in vitro (85). This involves the
transient activation of p53- and ATM-dependent responses.
The transcription factors p53 and NF-kB, which have key roles
in the immune and inflammatory responses, regulate the
expression of pro-inflammatory cytokines and chemokines,
such as TNF-a, and lead to the expression of inflammatory
cytokine-encoding genes, thus establishing a direct link between
radiation-induced DDR and radiation-induced inflammation
(73). Indeed, Mikhalkevich et al. demonstrated macrophages
irradiation induced an altered secretory phenotype (through
human endogenous retroviruses), characterized by an increase
of proinflammatory factors, such as IL-6, IL-1b, TNFa, CCL2,
CCL3, CCL8, and CCL20, in addition to an elevated secretion of
anti-inflammatory IL-10, which may facilitate their tumorigenic
activity (86). In mice xenografted with insulinoma, melanoma
or prostate cancer cells and exposed to low radiation doses
(2 Gy), macrophages in the TME show increased inducible
nitric oxide synthase (iNOS) expression that favors their ability
to inhibit abnormal tumor angiogenesis and promote tumor
antigen-specific T-cell immunity (87). The activation of a
signaling cascade involving NOX2-mediated ROS production,
ATM and IRF5 is required in 2 Gy-irradiated macrophages
for the acquisition of the RT induced pro-inflammatory
phenotype. Moreover, NOS2+CD68+ macrophages are
enriched in tumor lesions from patients with colorectal cancer
showing good response to neoadjuvant RT (88). Interestingly,
a study based on the observation that human papillomavirus
16 (HPV16)-positive head and neck cancers are more
sensitive to immunotherapy than HPV16- specimens found
that IL-6 production by HPV16+ cancer cells specifically
favors RT-induced macrophage polarization toward an
immunostimulatory phenotype, which is linked to the
establishment of an effective anti-tumor immunity (89).
Furthermore, blockade of IL4/IL14 signaling by inhibiting
STAT6 suppresses the induction of the immunosuppressive
phenotype in the THP1 human macrophage cell line,
thus reducing the radiation resistance of the co-cultured
inflammatory breast cancer cell lines (90). Macrophage
behavior following radiation appears versatile and influenced
by the TME. However, 2 Gy irradiation of mouse macrophages
reduces their ability to induce T-cell proliferation in vitro (91,
92). The positive impact of macrophages following RT remains
largely debated because despite the induction of a pro-
inflammatory phenotype, these cells are unfavorable to the
establishment of an effective anti-tumor immune response in
multiple contexts. In agreement, macrophage depletion upon 10
Gy RT promotes the adaptive immunity and the response to
immune checkpoint inhibitors in mice harboring MC38
colorectal cancer cell xenografts (93). Similarly, 25 Gy
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irradiation and 4 Gy fractionated irradiation of mice xenografted
with TRAMP-C1 prostatic cancer cells drive ARG1, iNOS and
COX2 expression in macrophages. Moreover, the transfer of
macrophages isolated from 25 Gy-irradiated tumors increases
tumor growth in vivo (94). Finally, CD163 expression, a marker
of immunosuppressive macrophages, is negatively associated
with survival in patients with HPV16- head and neck primary
tumors after RT with various radiation modalities (95).

Although macrophage plasticity in response to the radiation
modalities and TME might favor the anti-tumor immune
response and radiation resistance, this cell type has been
constantly associated with RT-induced toxicity. In mice
exposed to localized colon irradiation, depletion of monocytes
and macrophages using clodronate is associated with a major
reduction of colon infiltration by T lymphocytes, an 1.4-fold
decrease of colon vascularization and lower collagen deposition
in crypts, suggesting a reduction of the fibrotic process (96). In
mice, irradiation of the upper region of the right lung (20 Gy as
single dose or fractionated) leads rapidly (72 hours) to
infiltration by macrophages and neutrophils and later to
collagen deposition and fibrosis (week 26) (97). Interestingly,
in mice, soy isoflavones increase Arg1+ immunosuppressive
macrophage survival, avoid immunostimulatory phenotype
activation in interstitial macrophages, and reduce neutrophil
recruitment following 10 Gy irradiation to the lung (98).
Similarly, treating mice with the anti-inflammatory fucoidan
reduces the accumulation of macrophages and neutrophils
after 10 Gy irradiation that is associated with decreased
expression of CXCL1, TIMP1, MCP1 and MIT2 (99). These
modifications in the early response to RT are particularly
important because lung fibrosis was strongly decreased in this
model. Co-inhibition of PDGF and TGFb in mice during and
after lung irradiation (20 Gy) strongly reduces lung fibrosis and
increases mouse survival. Similar results and the concomitant
reduction of immunosuppressive macrophage infiltration in
lungs were obtained by blocking connective tissue growth
factor (CTGF) in mice (100, 101). CTGF blockade might
abrogate TGFb downstream effects (cell mobility and
epithelial-to-mesenchymal transition, EMT) on MSCs,
fibroblasts and endothelial cells (101), and deeply remodels the
lung immune infiltration following RT (102). In a rat model of
RT-induced gut toxicity, 25 Gy irradiation of the gut led to
increased expression of MMP2, MMP9, VEGF, TGFb,
endostatin and angiostatin. These factors might strongly
influence the behavior of endothelial cells (103). In conclusion,
most cellular responses associated with lung fibrosis are caused
by or linked to infiltration by macrophages with a pro-
inflammatory phenotype.

Endothelial Cells
The establishment of an effective anti-tumor immune response
depends on the functionality of the tumor vasculature. Yet,
ionizing radiation profoundly modifies blood vessel
functionality by activating ATM signaling, oxidative stress
responses and DAMP signaling in endothelial cells that
ultimately drive NRF2, AP-1 and NF-kB activation [for review
Frontiers in Immunology | www.frontiersin.org 6
see Baselet et al. (104)]. Interestingly, genetic engineering allows
the specific sensitization to RT of the vasculature or of tumor
cells through the conditional knockout of the Atm gene in cancer
or endothelial cells in a mouse model of lung adenocarcinoma.
Strikingly, RT anti-tumor activity is not increased in mice where
Atm was knocked out specifically in endothelial cells, despite the
massive destruction of the tumor vasculature. Conversely, Atm
knockout specifically in cancer cells strongly increases the
response to RT (105). Hence, in some RT modalities,
endothelial cells can be killed by radiation, but this does not
seems to contribute significantly to the sensitivity to RT. It is
noteworthy that regarding ATM signaling in a tumor context,
Zhang et al. demonstrated that ATM regulates IFN signaling in
pancreatic cancer such that its inhibition induces TBK1
activation and IFN-I production that is further enhanced by
RT (106). In vivo, the authors showed that ATM silencing
increased IFN signaling as well as PD-L1 expression.
Consequently, ATM-deficient tumors are sensitized to
combination therapy with PD-L1 blockade and RT. The
regulation of IFN signaling by ATM represents a connection
between the radiation-induced DDR and innate immunity that
can be exploited to enhance the efficacy of immune checkpoint
blockade therapy.

Exposure of human coronary artery endothelial cells to 10 Gy
irradiation (single dose or five fractions of 2 Gy) leads to higher
modifications of the DDR, immune response, apoptosis and
inflammatory response gene expression profi le upon
fractionated treatment. DDR and the expression of DNA repair
genes were decreased in irradiated cells, while expression of
ICAM1, VCAM1, CXCL10, CXCL11, CXCL12, CXCL16, CCL2,
CCL5, CCL20, CCL23, IFNE, IFNA4, IL1A, IL1B, IL15, TGFB1,
TGFB1, CXC4, CXCR7 and FAS was increased (107). In TNFa
pre-activated endothelial cells, exposure to low radiation doses
(0.3 to 0.6 Gy) reduces leukocyte adhesion, unlike moderate
doses (2-5Gy). This suggests that differences in radiation doses
might confer to endothelial cells the capacity to support (<2Gy)
or reduce (<0.5Gy) immune cell extravasation (108). Similarly, 2-
6 Gy irradiation of endothelial cells increases cancer cell/
endothelial cell adhesion in vitro, and this effect is enhanced by
pre-incubation with TNFa. Furthermore exposure of human
umbilical vein endothelial cells (HUVEC) to 2 or 4 Gy photon
irradiation increases the endothelial cell monolayer permeability
for tumor cells through a mechanism involving ADAM10-
mediated degradation of VE-cadherin (109). Thus, through the
induction of an inflammatory response, radiation reduces the
endothelial barrier permeability and promotes the release of pro-
inflammatory factors that orchestrate the architecture of the
tumor immune microenvironment. The exact contribution of
endothelial cells to the induction or the suppression of an
effective anti-tumor immune response upon RT remains
unclear. Nevertheless, the implication of these cells in RT-
induced cardiac toxicity is well established through the
induction of cell death, premature senescence and pro-
thrombotic reactions (110, 111). Moreover, deletion of
plasminogen activator inhibitor type-1 in endothelial cells
protects mice from RT-induced colitis through a reduction of
May 2021 | Volume 12 | Article 680503

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Constanzo et al. Radiation-Induced Immunity and Toxicities
macrophage accumulation and collagen deposition in the
irradiated colon (112). Similarly, inhibition of radiation-
induced CCL2 signaling preserves lung endothelial cell
function in irradiated mice, reduces macrophage and
neutrophil contribution to lung fibrosis, and metastatic
colonization (113).

Fibroblasts and Mesenchymal Stem Cells
After cancer cells, fibroblasts are the main cell population in the
TME of many solid cancers. They play a crucial role in the TME
and cancer progression, and they are usually referred to as
cancer-associated fibroblasts (CAFs). CAFs are considered to
be extremely resistant to RT, and indeed they are not killed by
exposure to high radiation doses (18 Gy) (114, 115). Fibroblasts
are normally in a resting state with low transcriptional and
metabolic levels, but they can change to a more active phenotype
following RT. Once activated, fibroblasts start to produce and
secrete many factors, such as cytokines, ROS, nitric oxide (NO)
and extracellular matrix components (116), that strongly
influence the TME effects on immune and cancer cells. CAFs
have been extensively described as suppressor cells for both
innate and adaptive immune responses. After a single dose (18
Gy) or fractionate irradiation (3 x 6 Gy), CAFs can inhibit the
migratory capacity and pro-inflammatory cytokine secretion of
immunostimulatory macrophages, redirecting them toward an
immunosuppressive phenotype (117). RT-treated CAFs (1 x 18
Gy or 4 x 2 Gy) also suppress Tcell function and migration
through the secretion of soluble factors that inhibit IFNg and
TNFa production by T cells (114).

The CAF secretome after irradiation influences also cancer
cells behavior. Upon activation induced by irradiation (1.8, 9, or
18 Gy), CAFs isolated from human colorectal cancers secrete
IGF1 that then activates the mTOR pathway in cancer cells, thus
promoting their survival and proliferation, especially at high
radiation dose (115). Similarly, in a model of pancreatic ductal
adenocarcinoma, conditioned medium from irradiated
fibroblasts (5 Gy) increases iNOS/NO signaling in cancer cells,
activating the production of pro-inflammatory cytokines
through NF-kB signaling. The activation of this pathway
increases cancer cell aggressiveness, with higher cell growth,
migration invasion and metastatic potential (118). CAFs
promote cancer cell aggressiveness also by secreting factors
that induce EMT. For instance, upon exposure to 4 Gy, CAFs
secrete CXCL12 and IL-6 that drive EMT in pancreatic cancer
cells, making them more prone to migration and invasion (119).
Also, RT-induced-CAF-dependent IL-6 expression plays a
crucial role in EMT of esophageal adenocarcinoma cells, as
shown by monitoring the effect of conditioned medium of
fibroblas t s i so la ted from pat ients a f ter trea tment
(chemotherapy and radiotherapy) (120). This CAF-dependent
mesenchymal phenotype is also associated with resistance to
radiotherapy (120). Most importantly, CAFs influence the TME
also by remodeling its structure (121) through the production of
collagen, fibronectin and other extracellular matrix (ECM)
components (122). Following RT, this process is accompanied
by downregulation of metalloproteinase expression and
culminates in the accumulation of ECM components.
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ECM restructuration and the pro-inflammatory and highly
oxidative microenvironment created by CAFs can lead to tissue
fibrosis (121)

A promising approach to overcome RIF is based on the use of
MSCs (123). MSCs migrate to the injured tissue also thanks to
the expression of CXCR1 that binds to IL-8 produced by RT-
damaged cancer cells (124, 125). There, they can regenerate the
damaged tissue through their ability to differentiate into various
cell types. Several evidences highlight MSC important
contribution to RT-induced vascular injury repair by
differentiating into endothelial cells (124, 126). MSC role in
RIF repair is also mediated by their immunomodulatory
secretome that counteracts inflammation and oxidative stress
in fibrotic tissue caused by CAFs and cancer cells (127, 128).
Inhibition of RT-derived inflammation by MSCs also decreases
the risk of lung metastases after irradiation (124). Moreover, in a
mouse model of melanoma, the response to RT (2 Gy) is
enhanced by associating local or systemic injection of MSCs
(129). Similar results were obtained in a mouse model of
irradiated glioblastoma (10 Gy) (125). Hence, MSC
administration appear to be a key strategy to counteract RT
side effects and improve its outcome.

Altogether, these observations highlight that common
mechanisms are involved in RT-induced anti-cancer immunity
and side effects. Indeed, the amplification of the anti-tumor
immunity and deleterious fibrosis and necrosis are the
consequence of bystander transmission of ROS-induced cell
stress through macrophages, endothelial cells, fibroblasts and
MSC sterile-inflammatory responses. A new component, called
STING-mediated innate immune signaling, has recently be
added to this complex anti-cancer immunity-side effects cross-
talk. Accumulating evidences tend to position this pathway at the
interface between RT-induced immunity and toxicity.
THE STING PATHWAY IN RT INDUCED
IMMUNITY

To detect pathogens, the mammalian innate immune system has
evolved distinct sensing strategies, including extranuclear DNA
recognition. Nucleic acid-sensing is based on cytosolic receptors
that detect extranuclear DNA or extracellular RNA as DAMP
signals. These pathways can trigger cell death in malignant cells
and recruit immune cells into the TME, and are investigated as
promising adjuvants in cancer immunotherapies (130). To date,
one of the major pathways that mediate the immune response to
DNA is governed by the DNA-sensing enzyme cyclic guanosine
monophosphate–adenosine monophosphate (cyclic GMP–
AMP) synthase (cGAS) (131, 132). cGAS is activated upon
binding to double-stranded DNA (dsDNA). Activated cGAS
converts adenosine 5´-triphosphate (ATP) and guanosine 5´-
triphosphate (GTP) into cyclic GMP–AMP (cGAMP). Cyclic
GAMP acts as a secondary messenger that binds to and activates
stimulator of interferon genes (STING), ultimately triggering a
variety of inflammatory effector responses (133). In addition,
retinoic acid inducible gene-I (RIG-I) and melanoma
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differentiation-associated protein 5 (MDA5) might induce
growth inhibition or apoptosis of different cancer cell types
upon activation by RNA ligands in an IFN-dependent or
-independent manner (134). This review focuses only on the
cGAS-STING pathway.
Radiation Induces Cytosolic Double-
Stranded DNA Accumulation That Is
Sensed by the cGAS-STING Pathway
Radiation-induced chromosomal aberrations represent an early
marker of late effects, including cell killing and transformation
(135). Micronuclei are small nuclei found in the cytoplasm in
addition to the primary cell nucleus of mammalian cells and are
produced during mitosis by various mechanisms (e.g. acentric
fragments, multicentric chromosomes, etc.) (136). When
damaged cells go through mitosis, micronuclei may follow four
major possible fates: degradation, reincorporation, extrusion,
and persistence (137). Micronuclei may be degraded in the
cytoplasm after collapse of their nuclear envelope, leading to
irreversible loss of compartmentalization during interphase, and
are characterized by chromatin compaction (138). Hatch and
colleagues observed multiple foci or a single large focus of
accumulated g-H2AX in approximately 60% of disrupted
micronuclei located in the cytosol of cancer cells, indicating
that DNA damage accumulation is strongly correlated with
micronucleus disruption (138). In the context of ionizing
radiation, micronucleus production increases in function of the
irradiation dose (139) and is correlated with cell killing.
Moreover, Piron et al. demonstrated that mis- or un-repaired
DNA double strand breaks might lead to micronucleus
formation and to mitotic death of damaged cells (140).
However, these data suggest that acute cell death associated
with low doses and low dose-rate of 125I-labeled antibodies
(Auger electron emitters) is not due to defective detection of
DNA damage by the cells. Impaired repair of double strand
breaks might be involved in the low dose-rate efficacy of TRT
using 125I-labeled antibodies in a non-dependent dose-effect
relationship (140).

Accumulation of dsDNA in disrupted micronuclei present in
the cell cytosol can explain the activation of the cGAS-STING
pathway following RT (141). When the nuclear envelope of a
micronucleus collapses (138), the DNA content is detected by the
cGAS-based surveillance mechanism that links genome
instability to innate immune responses (141). Harding et al.
showed that cell cycle progression through mitosis following
dsDNA breaks induced by 10-20 Gy RT, leads to the formation
of micronuclei, which precede activation of inflammatory
signaling and are a repository for cGAS (142). For instance,
Vanpouille-Box et al. found that cytoplasmic dsDNA was about
ten times more abundant in TSA cells exposed to a single dose of
8 Gy or 3 fractions of 8 Gy (X-rays) compared with untreated
cells. This was associated with the release of IFN-b and increased
expression of IFNAR1 and CXCL10 (143). In addition, it is
unclear how cytoplasmic dsDNA is transferred from cancer cells
to immune cells, especially to DCs, although transfer via
exosomes has been suggested (144, 145).
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Radiation-induced pro-immunogenic effects in cancer cells
are observed in conventional RT with radiation doses from 2 Gy
up to 30 Gy or more; however, the optimal radiation regimen to
induce a clinically relevant anti-tumor immunity remains to be
defined (13, 146). The previous examples about micronucleus
and cytosolic dsDNA accumulation suggest a complex
relationship between irradiated tumor and host immune
system. Vanpouille-Box et al. investigated dsDNA content in
the cytosol of cells exposed to radiation (X-rays) doses ranging
from 0 Gy to 30 Gy in different murine and human cancer cell
lines (143). Surprisingly, they observed that dsDNA accumulates
in the cytosol up to a critical threshold when it abruptly decreases
at doses between 12 to 18 Gy. The authors demonstrated that
doses above this threshold do not confer immunogenicity,
mainly due to the dose-dependent upregulation of three-prime
repair exonuclease 1 (TREX1). TREX1 is a DNA nuclease with a
main role in the degradation of cytoplasmic double- and single-
stranded DNA (147). Vanpouille-Box et al. found in TSA cells
that upon RT (single doses above 12 Gy), cytosolic dsDNA is
cleared by TREX1, precluding the activation of the cGAS
pathway to induce type I IFN, therefore abolishing the RT-
induced anti-tumor immune response (143, 148).

Cytosolic leakage of mitochondrial DNA (mtDNA) also results
in activation of the cGAS–STING pathway (149–151).
Mitochondria are sources of ROS that plays a major role in the
induction and persistence of oxidative stress following exposure to
radiation (152). They are also involved in non-targeted radiation
effects (153, 154), suggesting their implication in radiation-induced
systemic responses. However, mtDNA is not the primary target of
radiation. Friedland et al. used track structure simulations to
demonstrate that the probability of DNA double strand breaks
induction in mtDNA is about 0.03% at 1 Gy of g-rays or densely
ionizing radiation (155). The involvement of mitochondria in late
radiation effects ismore likely to be an indirect consequence of ROS
generation after irradiation and of the nucleus–mitochondrion
signaling pathway. Nevertheless, mtDNA might leak in the
cytosol after a direct hit from a charged particle, such as beta
particles (e.g. 177Lu, 90Y radionuclides), alpha particles (external a
beam or 225Ac/213Bi radionuclides), or Auger electrons (e.g. 125I).

Altogether, these observations highlights the facts that
radiation-induced micronuclei and dsDNA are required for
anti-tumor immunity induction via cGAS sensing and STING
activation. However, the radiation regimen (type of particles,
dose, fractions, etc.) to obtain these effects in patients is not
known yet. In 2014, a phase II clinical trial was started in patients
with NSCLC who progressed after chemotherapy and with at
least two measurable disease sites to determine whether radiation
and immunotherapy with ipilimumab can stimulate the immune
system and stop the growth of tumors that are outside the field of
radiation (NCT02221739). Patients receive ipilimumab within
24h of local RT initiation (6 Gy × 5 fractions, 3D-CRT or IMRT).
In the case of lack of response, a second phase II trial will be
performed with a new RT regimen (9.5 Gy × 3 fractions).

cGAMP in Bystander Immunity
The role of cGAS and STING in the bystander communication
between tumor and non-tumor cells is linked to the concept of
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cGAMP, a second messenger that activates the STING pathway.
Deng et al. demonstrated that exogenous cGAMP treatment
promotes the antitumor efficacy of radiation (156). In wild-type
mice, the cGAMP and radiation combination reduces tumor
burden more effectively than cGAMP or radiation alone.
Moreover, about 70% of mice in the combination arm showed
complete tumor regression at treatment completion (156). All
these data indicate that boosting STING signaling activation can
enhance tumor growth inhibition after irradiation. Moreover,
Liu et al. demonstrated that in mice grafted with B16-OVA
melanoma cells (intravenous injection to model lung
metastases), nanoparticle-cGAMP inhalation synergizes with
fractionated RT (8 Gy × 3 in the right lung) to generate a
potent antitumor immunity against melanoma metastases in
both irradiated and non-irradiated lungs (157). This
combination led to metastasis growth inhibition in the
irradiated and non-irradiated lung, and complete regression of
lung metastases in some mice, through TME remodeling (157).

Cytoplasmic cGAMP can diffuse to adjacent cells via gap
junctions (158, 159). Ablasser and colleagues clearly described a
unique immune signaling mechanism that comprises cGAMP
production by cGAS in the sensing cell, which is transmitted
through gap junctions to bystander cells, leading to remote
STING activation and subsequent antiviral immunity.
Noteworthy, type I IFN-dependent induction of antiviral
immunity in bystander cells takes considerably longer, given
the requirement of de novo transcription and translation.
Therefore, cancer cell-derived cGAMP following irradiation
could provide a fast antitumor immune response. These data
suggest that bystander activation and signal amplification could
have a beneficial role in RT; however, cGAMP transfer might at
the same time aggravate cancer resistance and the metastatic
potential of STING-dependent tumors. For instance, Chen et al.
demonstrated that functional CX43-based gap junctions between
cells allow cGAMP transfer from cancer cells to astrocytes (159).
This leads to the activation of the STING pathway and the release
of cytokines, including IFNa and TNF, which provide a growth
advantage to brain metastatic cells by protecting them against
physiological and chemotherapeutic stresses. Unlike the transfer
of cGAMP to bystander cells that intensifies the immune
response, cGAMP transfer from brain metastatic cells to
neighboring astrocytes triggers downstream signaling that
supports metastatic outgrowth.

Schadt et al. proposed that cGAMP, and not cytoplasmic
dsDNA, is transferred from cancer cells to DCs in a CX43-
dependent manner, thus enabling the production of type I IFN
and antitumor immunity priming (160). This connexin-
dependent transfer of cGAMP was corroborated by Pepin
et al., who observed the potentiation of macrophages cultured
with the conditioned medium of cGAMP producing cells (161).
Similarly, Marcus et al. showed that cGAMP, and not dsDNA, is
transferred from cancer cells to DCs (162). Indeed, experiments
using transplantable tumor models in STING- and cGAS-
deficient mice revealed that cGAS expression by tumor cells is
critical for tumor rejection by NK cells. Conversely, cGAS
expression by host immune cells is not necessarily required,
Frontiers in Immunology | www.frontiersin.org 9
suggesting that tumor-derived cGAMP is transferred to non-
tumor cells where it activates STING (162). These observations
raise questions about the molecular mechanism involved in the
fusion of sEVs purified from tumor cells with recipient
(bystander) cells. Indeed, it would be important to know what
surface molecules allow their fusion with the recipient cell
membrane for cGAMP or dsDNA delivery into the cytosol.
Alternatively, other mechanisms could also contribute, such as
formation of channels between the apposed membranes of a sEV
and the recipient cell (163).

Overall, these studies demonstrated that cancer cell
irradiation leads to cGAMP release in immune cells and that
STING has a major role in immune cells in radiation-induced
immunity, while it is not required in tumor cells. Furthermore,
Bakhoum et al. showed that the cGAS-STING pathway is
activated in human cancer cells with chromosomal instability.
Improper segregation of chromosomes during cell division leads
to the formation of unstable micronuclei, releasing their DNA
into the cytosol. In this study, Bakhoum et al. demonstrated that
inflammatory response involves activation of NF-kB signaling
and promotes metastasis in a STING-dependent manner (164).
Accordingly, our recent data suggests that STING expression in
lung cancer cells might contribute to tumor formation and that
low STING expression in these cells fails to induce type-I IFN
expression and potentially favors the establishment of an
immunosuppressive microenvironment (165). Figure 1
summarize the bystander communication between cancer cells
and immune cells.

The STING Pathway in the Induction of
the Senescence-Associated Secretory
Phenotype and of RT-Induced Adverse
Effects
Through DDR activation, ionizing radiation is a potent driver of
accelerated cancer cell senescence, a process that involves ATM,
ATR, DNA-dependent protein kinases (166), p53, P16INK4a,
p21WAF1, CHEK1 and CHEK2 (167), in breast cancer, colon
carcinoma, neuroblastoma and fibrosarcoma. Although
senescent cells have exited the cell cycle, they can maintain an
active metabolic activity and participate in resistance to therapy
and disease progression (168). Indeed, senescent cells can secrete
many different bioactive molecules, such as cytokines, proteases
and growth factors that influence and shape the surrounding
microenvironment. This has been described as Senescence-
Associated Secretory Phenotype (SASP) (169). Among the
many SASP factors, IL-6, CCL5, CXCL12, CCL2 and IL-8 have
a particularly important role in supporting cancer cell metastasis
formation and the establishment of an immunosuppressive
microenvironment, although in some cancer models they can
be found in the immune stimulatory secretome (Figure 2).

As RT can induce tumor cell senescence, NK cell recruitment
by SASP factors could be a general mechanism by which NK cells
help to clear tumor cells in response to senescence-inducing
therapies (170). Indeed, in a mouse model of radiation-induced
osteosarcoma, the retinoblastoma tumor suppressor gene (RB1)
is required for SASP expression and infiltration of NK T-cells in
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bones of mice exposed to carcinogenic doses of 45Ca (four
postpartum injections; low energy beta-emitting particles)
(171). Il-6 and MIP2 (the murine homolog of IL-8) induce
neutrophil accumulation in vivo (172), and MIP2 is also
implicated in NK T-cell recruitment to the spleen (173).
Kansara et al. showed that Cd1–/– mice, lacking NK T cells, are
predisposed to 45Ca-induced osteosarcoma development when
crossed with Trp53+/– mice, consistent with previous findings
that NK T-cells play an important role in sarcoma development
(174). Growth inhibition of IL-6-deficient osteosarcoma cell lines
in wild type mice is accompanied by NK T-cell infiltration,
further supporting a role for these cells in host-dependent tumor
suppression in vivo. Interestingly, in this model, IL-6 not only
recruits NK cells that limit tumor growth, but also reinforces the
senescence phenotype through autocrine and paracrine
mechanisms (171), indicating that bystander (initially) non-
senescent tumor cells can be targeted as well (Figure 2, left
panel). Better understanding how radiation induces SASP factors
(dose, fractions, etc.) production by osteoblasts could be
beneficial for the management of patients with bone metastases
treated with Xofigo™ (223Ra, alpha emitting particles) among
whom some reported jaw osteonecrosis (175).

Extranuclear DNA sensing via the cGAS-STING pathway
might play a major role in radiation-induced SASP. The
involvement of cGAS in senescence induction has been shown
in primary human lung cells (IMR90) in which cGAS and
STING knockdowns abolish expression of key SASP-related
markers (p16INK4a, IL-8, CXCL1,2,3, IL-6 and CCL2) upon
senescence induction with HRasV12 or etoposide. Senescence
induction is also reduced in STING knockout mice, as indicated
by the absence of hair greying three months after sublethal
Frontiers in Immunology | www.frontiersin.org 10
irradiation, and the impaired immunosurveillance against N-
Ras (liver tumor formation) (176). Senescence induction in p53-
proficient cells is an important protection mechanism against cell
transformation upon oncogenic signaling activation (PTEN loss,
Ras signaling). Hence, activation of the cGAS-STING pathway in
cells during oncogene-induced SASP is also tightly linked to the
expression of the cytoplasmic exonuclease MRE11, TREX1 and
DNase2 that rapidly degrade cytoplasmic DNA fragments (177,
178). Whereas DNases mediate the clearance of dsDNA, an
excessive amount of DNA escaping from DNases is responsible
for induction of type I IFN, through the activation of DNA
sensors such as the cGAS-STING pathway. Conversely, cGAS,
STING, TBK1 and IRF3 knockdowns are characterized by
reduced p21 expression in HeLa cells that leads to higher
mitotic activity and ultimately chromosomal instability (179).
Altogether, these observations demonstrate that the cGAS-
STING pathway might play an important role in maintaining
chromosome integrity through senescence induction, and that in
this context this pathway also contributes to SASP instauration
in cancer cells. However, senescence induction and SASP are
intrinsically linked to a functional p53 pathway, and the
functionality of the STING-IRF3 pathway in cancer cells
harboring p53 mutations has not been investigated yet.

On the other hand, SASP induction following ionizing
radiation promotes tissue fibrosis (180). For instance, type-II
pneumocyte (181) and alveolar stem cell (182) senescence
contributes to RIF in lungs. Similarly, endothelial cell
senescence induced by RT is causal in the establishment of
cardiovascular disease (183). Considering the critical role of
STING signaling in the expression of the complete SASP
phenotype, STING expression in endothelial cells and
FIGURE 1 | Summary of cancer-immune cell interactions after irradiation (EBRT, external beam radiation therapy; TRT, Targeted Radionuclide Therapy) and the
involvement of dsDNA,double-stranded DNA; MN, micronucleus; sEVs, small extracellular vesicles; and cGAMP, cyclic GMP–AMP in bystander immunity.
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pneumocytes might directly contribute to these RT-induced
deleterious effects. In vitro, irradiation (2 Gy) of human
coronary artery is sufficient to activate the STING pathway
and consequently type-I IFN expression (184). Furthermore,
STING contributes to cardiac hypertrophy and fibrosis in a
model of pressure-overload cardiac hypertrophy through the
recruitment of inflammatory macrophages and the release of
angiotensin-II (185). STINGmight also play an important role in
the endothelial cell response to RT. Indeed, tumor-derived
cGAMP can drive endothelial cell activation, leading to
upregulation of adhesion molecules (V-CAM1, I-CAM1) and
T-cell recruitment. Constitutive STING activation (due to a
mutation) drives microvessel thrombosis and pulmonary
syndrome development in infants through an autoimmune
reaction, leading to chronic inflammation and macrophage
recruitment (186). This reaction that involves endothelial cell
dysfunction and chronic sterile inflammation is reminiscent of
RT-induced lung fibrosis and maculopathy. All these data
Frontiers in Immunology | www.frontiersin.org 11
suggest that STING signaling in endothelial cells might
contribute to the anti-tumor immunity through recruitment of
immune cells. However, most of the observation made in vivo
and in patients suggest that endothelial cell STING signaling
could also be an important player in RT-induced cardiac toxicity
(187) and possibly lung fibrosis. The impact of STING
expression in fibroblasts on RT response remains to be
elucidated. Finally, these studies suggest that because many
current standard treatments for cancer can induce senescence,
which can have wide-ranging effects, some patients might benefit
from the addition of senolytic therapy to inhibit the pro-
tumorigenic stroma.

Altogether, these observations highlight the key position of
STING signaling following RT where it contributes to cancer
immunogenicity, DC activation and anti-tumor T-cell response,
while simultaneously playing a central role in SASP induction in
many cell types. This might be an initiating event towards the
aggravation of RT-induced cytotoxicity.
FIGURE 2 | Senescence-associated secretory phenotype (SASP) factors can support or suppress anti-tumor immune responses. On the left, in an
immunostimulatory scenario, SASP factors secreted by tumor cells and pericytes drive the recruitment of innate immune cells (macrophages, neutrophils, natural
killer (NK) and NK T cells) to mediate the clearance of senescent tumor cells. On the right, in an immunosuppressive scenario, SASP factors secreted mostly by
stromal cells recruit immature myeloid cells and myeloid-derived suppressor cells (MDSCs) to dampen the cytotoxic effect of NK cells and CD8+ T lymphocytes. Anti-
inflammatory mediators, including IL-6 and IL-8, are also secreted by senescent stromal and tumor cells, further increasing the immunosuppressive environment.
Senescent cells are represented by a gray cytoplasm, regardless of their origin. CCL, C–C motif chemokine ligand; CXCL, C–X–C motif chemokine ligand; NK natural
killer; NKT, natural killer T lymphocyte.
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CONCLUDING REMARKS

In the past decade, RT entered the era of personalized medicine,
thanks to the striking improvements in radiation delivery,
treatment planning optimization, and better understanding of
the cancer response. However, the next challenge is to identify
the optimal RT regimen to induce a clinically relevant anti-
tumor immune response. Indeed, bystander and abscopal effects
have been demonstrated in preclinical studies and in some
clinical cases, but the exact dose threshold and range need to
be defined in function of the tumor type and characteristics, and
the patient’s immune status. We hypothesize that radiation could
be used as an immunological adjuvant, by lowering the dose per
fraction (and/or the total dose) in “hot” tumors, specifically to
preserve the viability of intra-tumor lymphocytes. Conversely,
the dose could be increased in “cold” tumors. However, healthy
organs at risks and the TME often limit the radiation regimen
possibilities due to the high risk of adverse toxicities. For
instance, radiation reduces the endothelial barrier permeability,
facilitating the release of pro-inflammatory factors that
orchestrate the architecture of the tumor immune
microenvironment. Also, RT-activated macrophages have been
repeatedly associated with RT-induced toxicity. Therefore, it is
important to find how to modulate macrophage activation to
avoid deleterious phenotypes.

RT involves the activation of an anti-tumor response through
cytosolic dsDNA sensing by the cGAS-STING pathway.
However, a major open question is how to choose the most
effective radiation regimen to increase dsDNA accumulation
without reaching the critical threshold leading to the activation
of DNases, such as TREX1. Interestingly, tumor and immune
cells can communicate through the transfer of cGAMP and sEVs,
demonstrating that cGAS expression by host immune cells is not
necessarily required, while STING is.

Furthermore, there is still an important gap of knowledge on
the cGAS-STING pathway role in cancer cell SASP induction
upon RT. STING signaling following RT contributes to cancer
immunogenicity, DC activation and anti-tumor T-cell response,
while simultaneously playing a central role in SASP induction in
many cell types. SASP induction is involved and most probably is
Frontiers in Immunology | www.frontiersin.org 12
an initiating event in the aggravation of many RT-induced
cytotoxicity events. Radiation dose threshold and SASP are
linked through the expression of cytoplasmic DNases, such as
TREX1. Once again, the fine-tuning of radiation dose regimens
should allow an optimal anti-tumor immune response while
limiting adverse effects.
OUTSTANDING QUESTIONS

• What are the optimal radiation dose regimens and fractions?
• What is the best therapeutic window to enhance RT anti-

tumor immune response?
• How is the cGAS-STING pathway playing an important role

in cancer cell SASP induction upon RT?
• What is the impact of STING expression in fibroblasts

exposed to radiation?
• In which conditions inhibitors (e.g. ATM, STING) should be

concomitantly administered with RT?
• Whether and when, during cancer development, a senolytic

treatment or a drug targeting the SASP should be employed?
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43. Constanzo J, Masson-Côté L, Tremblay L, Fouquet JP, Sarret P, Geha S, et al.
Understanding the Continuum of Radionecrosis and Vascular Disorders in
the Brain Following Gamma Knife Irradiation: An MRI Study. Magnet
Resonance Med (2017) 78:1420–31. doi: 10.1002/mrm.26546
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