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Immunosenescence is a process associated with aging that leads to dysregulation of cells
of innate and adaptive immunity, which may become dysfunctional. Consequently, older
adults show increased severity of viral and bacterial infections and impaired responses to
vaccinations. A better understanding of the process of immunosenescence will aid the
development of novel strategies to boost the immune system in older adults. In this review,
we focus on major alterations of the immune system triggered by aging, and address the
effect of chronic viral infections, effectiveness of vaccination of older adults and strategies
to improve immune function in this vulnerable age group.
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INTRODUCTION

Life expectancy is currently higher than ever and by 2050 the number of individuals over 65 years
of age is estimated to be more than 1.6 billion worldwide (https://www.who.int/news-room/fact-
sheets/detail/ageing-and-health). Aging is associated with progressive changes involving all organ
systems including the immune system, collectively affecting the ability to mount protective immune
responses to various infectious pathogens and to vaccination (1–9). Therefore, age-related diseases
and conditions are of major public health concern and should prompt the development of more
effective therapies and vaccines to prevent or mitigate the impact of infectious diseases that are a
major cause of morbidity and mortality in older adults (10–13). For instance, the recent outbreak of
COVID-19 caused by SARS CoV-2 has highlighted the increased severity of this virus infection in
older adults, resulting in disproportionally high morbidity and mortality rates (14–19).

The term “immunosenescence” refers to alterations and dysregulation of the immune system
that take place during aging. It is a multifaceted, biological process causing a progressive
malfunctioning of cells of innate and adaptive immunity. Changes in both composition and
function of immune cells characterized by up- or down-regulation of surface markers, defects in cell
signaling and alterations of cell populations are hallmarks of immunosenescence. On the one hand,
genetic background, microbiome, diet, co-morbidities and/or environmental factors are thought to
play a role in the aging process (20, 21). Immunosenescence has also been reported in some animal
species including non-human primates and dogs (22–24). On the other hand, it should be
considered that: (i) many older adults remain healthy until advanced age (>90 years of age);
(ii) in some cases “dysfunctional” immune cells can function properly when stimulated adequately,
e.g., with the use of vaccines designed for use in older people; (iii) altered response not always
translates into being harmful (25, 26).
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The innate immune system plays a key role as the first line of
defense against pathogens and promotes the adaptive immune system
togenerate long-lastingprotective immunity. Incaseofvaccination, the
functionality of innate immune cells at the site of administration (e.g.,
macrophages, dendritic cells, neutrophils) is of importance and largely
dictates theoutcomeofvaccination. Inolderadults, ithasbeenreported
that antigen processing and presentation capacities are reduced and
neutrophil cytokine production is altered, leading to dysfunctional
chemotaxis and activation of other immune cells (27–33). Upon
infection or vaccination, a small number of naive CD4+ and CD8+ T
cells recognize a cognate peptide/MHC complex presented by antigen
presenting cells, which undergo activation, proliferation and
differentiation into effector cells. After the contraction phase, the
majority of the effector cells (90-95%) die by apoptosis and only a
small fraction of the CD4+ and CD8+ T cell effector population
differentiate into memory cells (34–36). These cells are responsible
for maintaining long-term immunity and protective recall responses.
Older individuals experience a decrease in the number of naive T cells
due to reduced hematopoiesis and thymus involution, which impairs
the response to novel antigens, including vaccine antigens (37–41).
Nonetheless, naive T cells from individuals older than 70 years still
exhibit highly diverse T cell receptor (TCR) specificities, albeit reduced
compared to those of younger adults (38, 40, 42). Furthermore,
immunosenescent T cells are characterized by an impaired
proliferation rate, resistance to apoptosis, downregulation of co-
stimulatory surface molecules (e.g., CD27 and CD28), telomere
shortening and expression of KLRG-1 and CD57 (43–55). Under
normal circumstances, the fine-controlled balance between pro-
inflammatory and anti-inflammatory cytokines maintains the
physiologic function of inflammation. In older people, dysregulation
of cytokine production with a progressive tendency toward a pro-
inflammatory phenotype (e.g., IL-6, IL-15, IFN-g), is believed to play a
key role in the inability to control systemic inflammation. This chronic
low-grade of uncontrolled inflammation is defined as “inflammaging”
(56–64). Recent studies have shown that persistence of chronic
inflammation is associated with various environmental and
metabolic factors (e.g., diet, nutrition and gut microbiota) (65–67).
Pro-inflammatory cytokines are also secreted in response to oxidative
stress,DNAdamage andautophagy [reviewedelsewhere (68, 69)].The
processes of immunosenescence and inflammaging are intertwined
with each other. On the one hand, senescent cells, which accumulate
during aging, are characterized by a pro-inflammatory cytokine
secretion pattern, leading to inflammaging. On the other hand, an
increase of such inflammatory mediators drives altered adaptive
immune responses, contributing to immunosenescence. Both
processes are therefore involved in a vicious cycle that impairs
functioning of the immune system in older adults (70–72). In
addition, chronic infections (e.g., caused by cytomegalovirus)
contribute to the enhancement of both, immunosenescence and
inflammaging. Such pathogens trigger a low but continuous
inflammatory response in the host, as well as a clonal expansion of
differentiated/memory T cells at the cost of naive T cell compartment,
contributing to an impaired immune response to novel pathogens
(73–78).

The secondarmof the adaptive immune response ismediatedby
humoral immunity. Humoral immunity is a key correlate of
Frontiers in Immunology | www.frontiersin.org 2
protection against infectious pathogens and the induction of
specific antibodies and the development of specific B cell memory
are pivotal to provide protection against reinfection and contribute
to the success of vaccination. Aging has a profound impact on
diversity of the B cell repertoire. Impaired somatic hypermutation
and isotype switching, together with a reduction in the number of
plasma cells, affect the magnitude and quality of the antibody
response induced by infection or vaccination (41, 79–82).

Aging also has amajor impact on the severity of viral and bacterial
infections, resulting in amore severe course and often fatal outcome in
the older population. Furthermore, effectiveness and longevity of
vaccination, the main preventive measure against infections, are
gradually reduced in the aging population. Certain viruses can
establish a low level of viral replication and cause persistent and
often latent infections. In immunosenescent adults, these viruses can
reactivate andcause a severe infection that can lead to recurrent disease
of increasingseverity.Varicella zostervirus (VZV) infection isanotable
example of this. VZV, an a-herpesvirus, usually causes infections
during childhood (chickenpox) and then becomes persistent and
latent. Virus reactivation leads to shingles, also known as herpes
zoster (HZ), and possible further serious complications (83–88).
Another example is the human cytomegalovirus (CMV), which is
highly prevalent in adults worldwide. CMV, a b-herpesvirus, also
establishes life-long latent infection and is generally considered to
promote T cell immunosenescence (89–91). CMV infection leads to
continuous or chronic antigen presentation, resulting in increased
numbers of highly differentiated T cells with a reducedTCR repertoire
(62, 92–96).

In addition, other (respiratory) viruses, such as respiratory
syncytial virus (RSV) and influenza viruses (IVs), cause more
severe respiratory disease with complications and mortality in
older adults, especially in association of co-morbidities (97–102).
Although effective influenza vaccines are available, their
effectiveness is not optimal in older people. Attempts to develop
more immunogenic vaccine formulations for this age category
have resulted in somewhat more effective influenza vaccines (103–
106). In contrast, a registered RSV vaccine is still not available,
although several candidate RSV vaccines are in various stages of
development (107–110).

In this review, we discuss the current understanding of age-
related changes affecting immune cells and how that influences
protective immune response to virus infection and vaccination.
Moreover, we will give an insight into strategies that are
currently used, or under development, to improve immune cell
functions and vaccine efficacy in older adults.
AGE-ASSOCIATED IMMUNE
CELL DYSFUNCTIONS

The immune system is complex and involves the interplay of
many different cell types that collectively afford protection
against infectious pathogens. Aging negatively influences the
function of immune cells resulting in increased severity of
infections and impaired responses upon vaccination. Although
there is an increasing interest in the development of therapeutic
May 2021 | Volume 12 | Article 681449
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and preventive strategies targeting older adults, many molecular
processes leading to immunosenescence are still not fully
understood. Additionally, a large body of knowledge has been
obtained from mouse models; however, it is not clear to what
extent this model faithfully represents the mechanisms controlling
these processes in humans. Furthermore, most studies have used
peripheral blood mononuclear cells (PBMCs) because of ease of
accessibility, but these do not account for potential changes of cells
residing in tissues. Consequently, more research is required to
obtain a better understanding of immunosenescence in aging
humans, which will guide the design of improved vaccines
tailored for use in the aging population.

Some of the factors that are known to play a role in
immunosenescence during aging include genomic instability,
telomere shortening, epigenetic modifications, changes of
intracellular signal pathways responsible for cell communication
and dysfunction of mitochondria [reviewed elsewhere (8, 111)].

Here we will focus on age-related changes of immune cells of
both innate and adaptive immunity, along with those induced
after infection or vaccination (Figure 1).

Innate Immune System
Dendritic cells (DCs) are critical for the induction of protective
immune responses against pathogens and represent the link
between innate and adaptive immunity. DCs are professional
antigen-presenting cells that provide activation signals to T cells
and are crucial for mounting a robust humoral response (112–114).
DCs can be activated by various stimuli including microbes,
apoptotic cells, and inflammatory cytokines. They sense
pathogens at the port of entry through pattern recognition
receptors (PRRs) (e.g., Toll-like receptors, C-type lectin receptors,
intracytoplasmic NOD-like receptors), and then migrate to the
lymphoid organs where they prime naive T cells and regulate B
cell responses. DCs are comprised of two major subsets of either
myeloid (mDCs; conventional/classical DC, cDC) or lymphoid
origin (plasmocytoid; pDCs). mDCs regulate pro-inflammatory
responses (e.g., via T-helper 1 and cytotoxic T lymphocyte
responses) upon bacterial and viral infections, and pDC produce
type I interferon, that can directly antagonize viral replication (115–
118). It has been shown that magnitude, functionality and signaling
of the pDCs are reduced in older people, and that has been
correlated with the increased occurrence of severe influenza virus
infections in this age group (30, 119, 120). Yet, impaired T cell
proliferation and IFN-g secretion have been observed upon
stimulation of aged pDCs with influenza virus (121).
Transcriptional analyses have demonstrated that PBMCs from
people over 65 years of age display a delayed and atypical
response after stimulation via some Toll-like receptors (TLR4 and
TLR7/8) compared to those from younger individuals (<40 years
old), which has a profound effect on the production of effector
molecules involved in T cell activation and proliferation, such as
IFN-g and TNF-a (122). Following TLR7/9 stimulation, pDCs of
older subjects produce less type I and III interferons and display a
reduced antigen presentation that impairs T cell activation (121).
An increased level of IL-6 and TNF-a secreted by “old” mDCs in
response to LPS, ssRNA, and self-DNA, has been associated to
Frontiers in Immunology | www.frontiersin.org 3
alteration in signaling pathways that lead to PI3K, NF-kB, or type I
IFN responses (123, 124). A decreased expression and/or function
of some TLRs in DCs and monocytes in older adults individuals has
also been reported (125–127). Moreover, epigenetic changes (e.g.,
methylation or phosphorylation) induce up-regulation of immune
checkpoint molecules on DCs that reduce the ability to migrate to
the secondary lymphoid, leading to an impaired T cell activation
(114, 128–132). The development of a robust and protective
antibody response with generation of high-affinity antibodies is
mediated by the ability of follicular DCs (fDCs) to capture and
retain, for extended periods of time, native antigen in the B cell
follicles within the germinal center. Studies have documented that
age-related defects in the germinal center formation and reaction
(e.g., retention of antigen complexes and reduced expression of the
FcgRII on fDCs), have a dramatic impact on generation of humoral
immunity (133).

Monocytes and tissue-resident macrophages, which can be
monocyte-derived or embryo-derived, are phagocytic cells,
primarily involved in the innate immune response against
infectious pathogens and also involved in the maintenance of
tissue homeostasis (134). Age-related defects in the macrophage/
monocyte lineage function are predominantly mediated by the
dysregulation of cellular signaling, which affects antigen
presentation and response to inflammatory stimuli (135–137).
Macrophages are usually divided in two subsets M1 (pro-
inflammatory) and M2 (anti-inflammatory/immune regulatory)
and aging alters their polarization and function (137–139). Due to
the difficulty in obtaining and studying tissue-resident macrophages
and their highly diverse tissue-dependent phenotypes, it is still not
completely understood which macrophages/tissue are more affected
by aging (140–142). Macrophages may also contribute to the
chronic inflammatory state in older adults and lead to the
progression of age-associated diseases. Although no differences
have been found in the number of peripheral blood monocytes in
older adults compared to younger subjects, there is an age-
dependent upward shift in the proportion of monocyte subsets
with an inflammatory profile. For example, ‘non-classical’
CD14lowCD16+ monocytes specifically increase with age and
display reduced HLA-DR and CX(3)CR1 surface expression
(143). Upon TLR stimulation, monocytes display age-dependent
differences, both at transcriptional and functional levels, resulting in
a differential expression of surface molecules and cytokine
production (144). These age-related alterations have been mainly
associated to impaired monocyte TLR responses, although few
studies show a rather enhanced inflammatory response (125,
144–146). For example, a positive correlation was found between
surface expression of B7 co-stimulatory molecules before influenza
vaccination and the vaccine induced antibody response, but
interestingly, this correlation was weaker for older vaccinees (147–
149). Furthermore, expression of MHC class II molecules was lower
in aged human monocytes and mouse macrophages (150–153).
Moreover, aged human monocytes have shortened telomeres,
reduced phagocytic capacity and high level of intracellular TNF-
a (154).

Neutrophils are phagocytic cells that migrate from blood to
infected tissues and rapidly respond to invading pathogens by
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activating adhesion, chemotaxis, phagocytosis as well as release
of oxidants, proteases and other molecules (155–158). However,
an excessive accumulation of neutrophils and hyper-
responsiveness can be detrimental and cause tissue injury, as
recently documented in subjects with lethal COVID-19 (159,
160). Although no difference has been found in the number of
neutrophils between young and older adults, aged neutrophils
Frontiers in Immunology | www.frontiersin.org 4
exhibit a dysfunctional phagocytic and chemotactic capacity (28,
161, 162). In aged mice, these dysfunctional cells expand and
accumulate in lymph nodes due to impaired apoptosis (163,
164). Phenotypically, up-regulation of CD45, TLR4, CD24,
CXCR4, CD11b, CD11c, CD49d, ICAM and down-regulation
of CXCR2, CD62L, L-lectin, LY6C/G have been documented in
aged human neutrophils (156, 165). In addition, altered
FIGURE 1 | Simplified representation of the phenotypical and functional changes affecting cells of the innate and adaptive compartment during aging. TLR, toll like
receptor; MHC, major histocompatibility complex; CXCR, C-X-C chemokine receptor; ICAM, intercellular adhesion molecule; LY6C/G, lymphocyte antigen 6 complex
(locus C/G); NET, neutrophil extracellular trap; BCR, B cell receptor; TCR, T cell receptor; KLRG-1, killer-cell lectin like receptor G1; CTLA-4, cytotoxic T-lymphocyte
antigen 4; PD-1, programmed cell death protein 1; TIM-3, T cell immunoglobulin and mucin domain-containing protein 3; LAG-3, lymphocyte-activation gene 3. The
figure was created with BioRender.com.
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cytokines secretion profiles, generation of reactive oxygen species
(ROS) and associated microbial killing have been reported,
although these findings might largely be stimulus-dependent
(28, 166, 167). Age dependent impaired formation of neutrophil
extracellular traps (NETs), structures able to capture and
immobilize pathogens, may explain why older adults are more
susceptible to invasive bacterial infections (29, 168, 169).

Natural killer (NK) cells are cytotoxic innate cells that eliminate
infected, transformed and senescent cells (170–175). In addition,
they also exert immunoregulatory activities by secreting cytokines
and chemokines, which can activate and modulate the adaptive
immune responses (176–178). Like other cells, NK cells are subject
to age-related changes in, for instance, number, function,
phenotype and redistribution (179, 180). As an example, there is
an increased number of highly differentiated mature CD56dim cells
accompanied with a decline of immature CD56bright subset as well
as reduced NK cell activity, which may lead to impaired immune
regulation (181–184).

Adaptive Immune System
Profound age-related changes in the immune system are
observed in cells of adaptive immunity. In this section, we will
describe major alterations affecting aged T and B lymphocytes.

T Lymphocytes
T cells recognize antigens derived from pathogens or tumors via
their T cell receptor and develop antigen-specific memory responses
or tolerance (185). Upon activation, naive T cells proliferate,
differentiate and generate effector T cells that can help to kill
infected cells and/or to activate other cells (e.g., macrophages),
and B cells. T cell precursors are generated within the bone marrow
whereas their maturation and selection take place in the thymus.
The thymus undergoes an involution process starting after puberty
that gradually induces its atrophy (186, 187). Epithelial cell structure
and cell turnover are altered and there is a shift toward adipose
tissue that results into a reduced thymopoiesis, as well as altered
transcription factors and cytokine production (40, 188). As a
consequence, the output of newly generated naive T cells (CCR7+,
CD62L+, CD45RO-, CD45RA+, CD27+, CD28+), and therefore the
possibility to respond to novel pathogens, is impaired (38, 189, 190).
Despite the compensatory mechanism that promotes homeostatic
proliferation of existing naive cells, their frequency is reduced in the
periphery and in lymphoid organs (38, 42, 191–195). Coinciding
with the loss of naive T cells, highly differentiated effector/memory
T cells accumulate during aging, especially CD8+ T cells, many of
which are dysfunctional. In particular, altered cytokine production
profiles, reduced TCR clonal diversity and more self-reactive T cells
have been observed (196–200) together with a general decline of the
proliferative capacity in response to TCR stimulation, with CD4+

memory T cells more prone to this loss of function (201, 202). An
increased frequency of a subset of memory CD8+ T cells with a
naive phenotype (TMNP) that secretes effector molecules (e.g., IFN-
g, Granzyme B) in response to chronic viral stimulation has been
associated with aging. The frequency of these cells positively
correlates with the severity of West Nile and influenza virus
infections (203). Furthermore, regulatory T cells (Tregs) with up-
regulated check point molecules, such as cytotoxic T lymphocyte
Frontiers in Immunology | www.frontiersin.org 5
antigen 4 (CTLA-4), are more abundant in older adults than in
young individuals and that may affect the crosstalk between T cells
and DCs, since Tregs can prevent the maturation of DCs (9, 204–
206). Age-dependent changes in T cells have, directly or indirectly,
an effect on their effector functions (201). For example, the
frequency of CD8+ T cells expressing perforin and granzyme B is
reduced in older individuals, which correlated with an increased risk
of severe influenza (207–209). Aged T cells can be phenotypically
identified based on the expression of surface markers and
intracellular molecules (e.g., transcription factors and cytokines).
The co-stimulatory molecule CD28 is decreased and subsets of
CD4+CD28− and CD8+CD28− T cells emerge in older adults (46,
210). Chronic activation of T cells also induces downregulation of
CD28 expression and that has been associated with impaired
vaccine responses (207, 211–214). Loss of CD27, upregulation of
CD57 and KLRG-1, reduced expression of granzyme B together
with telomere shortening and expression of a senescence-associated
secretory phenotype (SASP), are the major hallmarks of senescent T
cells (43, 46, 51, 211, 215–218). The immunosenescent T cells with a
SASP phenotype play an autocrine role and promote the
recruitment of pro-inflammatory innate cells that, due to aging,
are not very efficient at eliminating the senescent cells. These
concomitant phenomena also contribute to the establishment
of inflammaging.

Dysfunction of T cells caused by T cell exhaustion has been
reported in various chronic viral infections and cancers [reviewed
in (219)] (75, 220–223). Chronic antigenic stimulation induces
upregulation of inhibitory receptors such as programmed cell
death 1 (PD-1), cytotoxic T lymphocyte antigen 4 (CTLA-4), T
cell immunoglobulin and mucin domain-containing protein 3
(TIM-3), and lymphocyte activation gene 3 (LAG-3), that
impair TCR signaling pathways and therefore immune T cell
functions (e.g., proliferation, transcriptional signature). SAT-B1, a
chromatin organizer, is downregulated in aged T cells and its
expression negatively correlated with PD-1 expression in virus-
specific CD8+ T cells (224).

Although exhaustion and senescence are two distinct
phenomena that differ phenotypically and functionally, both
contribute to the decline of T cell functionality during aging.
Therefore, both of these processes should be considered when
developing potential novel strategies to overcome dysfunctional
immune responses in this age group (225).

B Lymphocytes
B cells undergo profound changes during aging leading to a
reduced protective vaccine efficacy and reduced control of
infections. They are responsible for antibody production and
have effector as well as regulatory functions. Although total B
cell counts remain relatively stable in the adult population, a
reduced output of naive B cells from the bone marrow (BM) has
been reported in mouse and human studies (226–229). Decreased
production of IL-7 by stromal cells in the BM, reduces the size of
the B cell progenitor population and affects B lymphopoiesis (230–
232). The function of hematopoietic stem cells (HSCs) declines
with age and shifts toward the generation of non-lymphoid cells,
therefore reducing the source of B cell progenitors. Recently, a
population of old age-associated B cells (ABC) has been identified
May 2021 | Volume 12 | Article 681449
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in mice (233–237). These cells produce pro-inflammatory
cytokines, in particular TNF-a, that affect the generation of
mature B cells (233). In humans, accumulation of B cells with
similar characteristics has been described in the peripheral blood
of older individuals (238, 239). The reduced generation of naive B
cells together with a progressive accumulation of dysfunctional
memory B cells in the periphery, contributes to a contraction of
the B cell repertoire diversity that limits the ability to recognize
and respond to novel antigens.

Alterations of the immunoglobulin (Ig) class-switch
recombination (CSR) and somatic hypermutation (SHM), may
negatively affect the generation of high-affinity antibodies and
germinal center formation, both of which are very important
mechanisms for the induction of protective and long-lasting
immune responses. Age-related reduction and instability of the
transcription factor E47 affects the enzyme activation-induced
cytidine deaminase (AID) that is involved in the regulation of
CSR and SHM (62, 240). Downregulation of AID and E47,
caused by the pro-inflammatory microRNAs (miR-155 and
miR-16), has been observed in B cells from aging individuals
(241). Reduction in size and output of the germinal centers, as a
consequence of a sub-optimal T cell help to B cells, have been
reported upon infection and vaccination (79, 133, 242–244). As
demonstrated in older adults and aged mice, inflammation also
leads to a decrease of chemokine CXCL12 production, which
may impair the recruitment and accumulation of plasma cells in
the bone marrow, the major site for antibody production (245,
246). The altered architecture of the spleen in older age
negatively influences the humoral responses. For example,
marginal zone of old mouse spleens showed a dysfunctional
antigen recognition and migration of B cells due to an impaired
functionality of splenic stromal cells (247). Decrease of IgM and
IgD serum levels, probably due to the shift to a more
differentiated and effector B cell population has been observed
in humans (248–250). Finally, it has been reported that senescent
B cells can produce auto-antibodies, which may lead to the
development of autoimmune diseases (229, 251–253).
ROLE OF VIRAL INFECTIONS
IN OLDER ADULTS

Immunosenescence accounts for an increased susceptibility to
viral infections such as those caused by influenza viruses and
RSV and reduced vaccine efficacy in this age group. In addition,
chronic stimulation of the immune system operated by viruses
establishing latent infections, that can re-activate from time to
time, may further impair the overall immune status in
older individuals.

Human Cytomegalovirus
Human cytomegalovirus (HCMV) is a b-herpes virus that causes
lifelong latent infections in a large proportion of the human
population. The mechanisms involved in HCMV latency are still
poorly understood and despite extensive literature on howHCMV
infection influences the adaptive immune response in older adults,
this is still a matter of debate (254). Immunologically, HCMV
Frontiers in Immunology | www.frontiersin.org 6
infection is characterized by inflation of HCMV-specific memory
T cells, mostly CD8+, with proliferation of oligoclonal T cells (96,
255–262). The accumulation of these terminally differentiated
apoptosis-resistant CMV-specific T cells clones is believed to
compromise the overall T cell repertoire diversity. Chronic
HCMV infection also triggers an increased secretion of pro-
inflammatory cytokines that favors cell damage and contributing
to inflammaging, although its impact in older adults is still unclear
(263–266). CMV-seropositivity has been associated with reduced
immune response to (influenza) vaccination in older adults, but
also in younger subjects (267, 268). Increased cardiovascular
problems and mortality rate have been also reported in CMV+

older individuals. However, data are often inconclusive and
associations are still controversial, not confirmed and do not
need to have a causal relationship (267, 269–274). In contrast,
CMV positivity may exert a beneficial effect by improving CD8+ T
cell polyfunctionality, as demonstrated in healthy young
individuals (263, 275, 276). Thus, chronic HCMV infections
may have an impact on immune responses induced in older
people after infection or vaccination. More studies are warranted
to further investigate this association, which may guide the
development of effective therapeutic strategies.

Varicella Zoster Virus
Varicella zoster virus (VZV) belongs to the a-herpesvirus family
(277). This virus is highly infectious (about 90% of adults are
infected) and produces “varicella”, also known as “chickenpox”, a
self-limiting disease which is commonly experienced during
childhood and is characterized by widespread vesicular rash
and fever, that usually resolves in 1-2 weeks (278–280). Despite
a robust primary response, VZV is not eliminated from the body
and can remain in the spinal and cranial sensory ganglia in a life-
long latent state (84, 281). The mechanisms leading to latency
and subsequent reactivation are still to be unraveled. However, a
recent study has suggested VLT-ORF63 transcripts from VZV as
potential inducers of reactivation (282). In addition, cell-
mediated immunity appears to play an important role in the
immune response to VZV and also latency (283–285).
Reactivation occurs in 10-20% of seropositive individuals and
causes the so-called “herpes zoster” (HZ) or “shingles”, a painful
rash that mainly affects older adults and immunocompromised
individuals, in which VZV-specific immune control has declined
below a critical level (286). Even if VZV primary infection could
lead to complications (e.g., bacterial infections, encephalitis,
hemorrhage and pneumonia), a later reactivation process may
trigger severe neurological complications, including post-herpetic
neuralgia (PHN) (84, 286–289). PHN can last for years, or become
permanent, with age being the most important risk factor
correlating with its development. Importantly, the severity of
HZ has been associated with a reduced frequency of VZV-
specific effector memory T cells, highlighting the crucial role of
cell-mediated immunity (290).

Three vaccines are currently licensed for preventing VZV
associated disease. The most widely used VZV vaccine is a
live attenuated vaccine based on the OKA-strain that can be
administered in one- or two-dose regimens during childhood
(286, 291–293). Although this vaccine is very effective (up to 98%)
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in protecting from severe VZV infection, it does not prevent
latency and reactivation of the virus. Moreover, it is not suitable
for immunocompromised individuals, due to a less favorable
safety profile (294).

Two vaccines, Zostavax™ and Shingrix™, have been developed
to prevent HZ (shingles). Zostavax™ is a live attenuated vaccine
licensed in 2006 for individuals >50 years of age and contains 14-
fold more of the OKA-strain than needed to prevent varicella.
Several studies have indicated that the efficacy afforded by this
vaccine wanes with age and appears to be inferior to that obtained
with Shingrix™ (295–297). For this reason, the Zostavax™ is,
effective July 2020, no longer available for use in the US. A new
Zostavax™-based vaccine inactivated by gamma irradiation is
under clinical investigation. Data obtained during the phase III
clinical trial indicated that the vaccine is well tolerated with no
significant safety issues. However, the immune response is not as
strong as those induced with other vaccines and it should also be
administered in a four-dose regimen (298–300).

Shingrix™ is a recombinant adjuvanted vaccine licensed in
2017 for people >50 years of age. The vaccine contains the
recombinant glycoprotein E (gE) formulated with the AS01B
adjuvant system. The gE is involved in viral replication, cell to
cell virus transfer and is highly expressed in VZV infected cells,
being also the primary target of the T cell response (279, 301–
303). This vaccine is able to generate strong humoral and cell-
mediated immunity, therefore overcoming the decline of the
VZV-specific response observed in older individuals. The efficacy
of this vaccine for preventing HZ and possible complications,
such as PHN, is high irrespective of age and, importantly, the
vaccine-induced immunity is long lasting and can persist up to 9
years (25, 304–306). When compared to the live-attenuated vaccine,
Shingrix™ induced higher frequency of gE-specific CD4+ and CD8+

memory T cells in older adults (307). VZV-specific CD4+ T cells
have been associated with a positive vaccine outcome (308).
Shingrix™, unlike Zostavax™, has shown a favorable safety
profile in immunocompromised and transplant recipients (25,
305, 306, 309, 310). However, Shingrix™ reactogenicity, due to
the adjuvant, appeared to be higher compared to other vaccines
used for older individuals, although serious adverse events and
immune-mediated diseases were not increased in the vaccinees. The
success of this vaccine for older adults may reside in the use of an
adjuvant that provides a proper activation of the innate immune
system, which is pivotal for the induction of an effective and long-
lasting adaptive immune response.

SARS CoV-2
Since the first reported case of COVID-19 in December 2019, the
severe acute respiratory syndrome coronavirus 2 (SARS CoV-2)
has infected more than 130 million people and caused over 3
million deaths worldwide (https://covid19.who.int/). SARS CoV-
2 is a positive sense single stranded RNA virus that uses its S
protein to bind and infect respiratory epithelial cells that express
its receptor angiotensin converting enzyme 2 (ACE-2), including
type II pneumocytes in the lung (311). Although the majority of
infected people only develop mild disease, some develop severe
disease often with a fatal outcome. Especially older people have
been affected disproportionally with high case fatality rates.
Frontiers in Immunology | www.frontiersin.org 7
In the US, for example, 80% of all fatal cases were older than
65 years of age (CDC - https://www.cdc.gov/coronavirus/2019-
ncov/need-extra-precautions/older-adults.html). Furthermore,
the more severe course of infection observed in older people
often requires hospitalization and treatment in intensive care
units (312–314). Studies to elucidate the molecular and cellular
mechanisms responsible for the worse outcome of SARS CoV-2
infection in aged people are ongoing. However, the strong
association between age and severity of infection seems to be a
common feature to other coronavirus infections (e.g., SARS CoV-
1 and MERS) and it has also been observed for other respiratory
viral pathogens, such as influenza viruses (315–318). Underlying
co-morbidities associated with aging (e.g., cancer, hypertension,
cardiovascular diseases diabetes or autoimmunity), genetic factors
and reduced ability to mount adequate adaptive immune
responses due to presence of dysfunctional aged immune cells,
may account for the severe clinical outcome (319, 320). Pre-
existing SARS CoV-2 cross-reactive T cells induced by previous
exposures to seasonal human common cold coronavirus are
readily detected in younger individuals, but are virtually absent
in older people, suggesting that this age group may not benefit
from a potential protective effect of these pre-existing cross-
reactive T cells (19). A chronic, low-grade inflammation
(inflammaging), the main hallmark of aging, has been suggested
to play a critical role in promoting “cytokine storm” and
consequent acute respiratory distress syndrome (ARDS), often
observed in older individuals (321–325). The downregulation of
the ACE-2 receptor together with a dysregulated angiotensin-II
pathways (renin-angiotensin-aldosterone system) may foster the
uncontrolled and exaggerated inflammatory response leading to
pulmonary damages, multi-organ dysfunction and ultimately,
death (326, 327).

The ongoingCOVID-19 vaccination campaign in older subjects
has already been shown very successful and significantly reduced
hospitalizations and mortality among people of this age group. It
also demonstrates that despite high age and associated
immunosenescence, successful vaccination is still possible in this
age group.

Influenza Virus
Seasonal influenza viruses are among the leading causes of
respiratory infections and responsible for 290,000-650,000 deaths
annually worldwide (100). Despite the high vaccine coverage
among individuals >65 years of age in some countries, this age
group accounts for the vast majority of deaths and hospitalizations
(CDC - https://www.cdc.gov/flu/index.htm). Although the
mechanisms underlying increased severity of influenza virus
infection in older individuals are still not fully understood, co-
morbidities such chronic and metabolic diseases, obesity,
immunosuppression, and frailty represent a risk for disease
severity and development of complications (328–330).

Age-related immunosenescence affects the functionality of B
andTcells, hindering anoptimal protective response upon seasonal
influenza vaccination. Current influenza vaccines mainly provide
protection through the induction of antibodies that antigenically
match the epidemic strains (331, 332). Several studies have
indicated that influenza-specific antibodies in older adults decline
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faster, failing to maintain long-lasting protective levels (333–336).
Moreover, these individuals exhibit a reduced accumulation of “de
novo”mutations in the Ig variable gene affecting the adaptability of
their antibody responses to influenza virus (337, 338). Therefore,
this age group mainly rely on cross-reactive memory B cells
generated early in life (339). Interestingly, a recent study has
shown that influenza virus infection predominantly recalls pre-
existing memory B cells against non-neutralizing epitopes in
contrast to vaccination that mainly targets memory B cells to
protective HA epitopes. One could speculate that boosting pre-
existing immunity may play a key role in susceptibility versus
protection upon influenza virus infection (339, 340). Additional
defects influencing the B cell responses to influenza virus infection
or vaccination are reviewed elsewhere (99).

T cells, especially CD8+, are an important correlate of protection
against influenza virus infections also providing heterosubtypic
immunity (341–344). In older adults, phenotypic and functional
defects in the virus-specific CD8+ responses upon influenza virus
infection have been demonstrated (214, 345, 346). In older adults
the number of IL-7Ralow effector memory CD8+ T cells, a subset
accumulating during aging, correlated with the vaccine-induced
immune response determined by antibody production. This
suggests a possible implication of the IL-7Ralow effector memory
CD8+ T cell population in the aging related alterations (346).

Several studies have indicated that the functionality of the
CD4+ T cells becomes compromised, including T follicular
helper cells, which are essential for an optimal B cell response.
Consequently, these functional defects impair the humoral
response induced by vaccination and the formation of B cell
memory (347–349). It was shown that repeated vaccinations may
lead to a reduced CD4+ T cell response, which correlates with a
reduced antibody response (350).

Strategies to increase vaccine efficacy in older adults have been
developed and include the use of a high dose antigen or adjuvant
and alternative administration routes and will be discussed in the
next section. These improved vaccines boost not only the humoral
but also cell-mediated immune responses, in contrast to the
standard vaccine (351). However, the mechanisms underlying the
success or failure of a vaccination strategy is still not completely
understood. It will also be important to gainmore insights into new
correlates of protection, other than virus neutralizing antibodies,
thatmay bemore suitable for predicting influenza vaccine outcome
in older adults and would guide the design of new generation
influenza vaccines (208).

Respiratory Syncytial Virus
Respiratory syncytial virus (RSV) belongs to the family of
Pneumoviridae and is the leading cause of lower respiratory tract
infection in infants and young children. RSVwas not recognized as
a potential problem in the adult population until outbreaks
occurred in long-term care nursing facilities (352, 353). RSV
causes significant burden of severe disease in older adults with
2-5% mortality rate (354). A relatively short-lived immunity after
natural infection together with suboptimal/dysfunctional response
of the “aged” immune system might be at the basis of the poor
outcome of infections later in life. Despite the large number of
candidate antivirals and vaccines against RSV in the pipeline, only a
Frontiers in Immunology | www.frontiersin.org 8
single antiviral treatment is approved, albeit with limited
effectiveness and no vaccine has been licensed yet (355, 356). The
correlates of immunological protection remain poorly understood
which represents amajor obstacle in RSV vaccine development, but
antibodies to the F andG envelope proteins contribute to protective
immunity (357–360). Both systemic and mucosal humoral
immunity have been associated with protection (361–363). The
frequency of RSV-specific CD4+ and CD8+ T cells is reduced in
older adults compared to that in young adults (364–366).
Furthermore, severity of the disease has been shown to correlate
with reduced RSV neutralizing antibody titers and low numbers of
CD8+ memory T cells (367, 368).
THERAPEUTIC APPROACHES TO
INCREASE IMMUNITY IN OLDER ADULTS

The immune system is subject to several changes throughout life, and
protects against infectious pathogens, but ultimately lose
functionality by e.g., immunosenescence. Immunosenescence is
partly influenced by external factors such as diet and infections, but
also has a genetic component (369–375). Centenarians, for instance,
seem to have gene variants that allow an optimized balance between
pro- and anti-inflammatory molecules (376). The genetic study of
this variation could reveal information about the immunosenescence
process and how it is triggered, opening a window of opportunity for
potential new therapeutic treatments (53). In addition, apersonalized
genetic analysis could help identify which treatment will be more
effective at overcoming immunosenescence on an individual basis.
These aging-related hallmarks are independent phenomena but
causally connected.

Several studies have provided important insights into the biological
mechanisms underlying the causes of immunosenescence and have
identified possible therapeutic targets (Figure 2) (377–379).

Senolytic Drugs
Senescent cells are induced by cellular stress, which can occur at any
age. Therefore, they can be found at any stage of life and play a
beneficial role in embryogenesis, tissue repair/remodeling and tumor
suppression in adulthood (380–382). Yet, secretion of soluble
mediators, such as chemokines, favors the removal of senescent
cells by other immune cells (e.g., macrophages and NKs) (383, 384).
This process becomes less efficient with aging and results in
accumulation of senescent, apoptosis-resistant cells that, together
with a pro-inflammatory phenotype, contribute to tissue dysfunction
and pathological manifestations (385). Chemotherapy/radiotherapy,
atherosclerosis, organ transplantations or smoking, are factors
among others, that accelerate immunosenescence, mainly by
inducing DNA and telomere damage (386–389). In this regard,
stimulation of cell death by using pharmacologically active small
molecules, also known as senolytic drugs, has been identified as a
promising anti-aging treatment (390). Someof thesedrugs inhibit the
pro-survival pathways, involving the BCL-2 family members, p53
and PI3K/AKT pathways, leading to selective apoptosis of senescent
cells (225, 391, 392). Dasatinib, a kinase inhibitor, and quercetin, a
flavonoid targeting the PI3K/AKT, have been proven effective in
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eliminating senescent cells both in vivo and in vitro (393). Fisetin,
another natural molecule, also appears to have senolytic properties
(394). In addition, inhibitors of the chaperon HSP90, downregulate
the anti-apoptotic PI3K/AKTpathwaywhereas a peptide altering the
interaction between the transcription factor FOXO and p53, induces
apoptosis of senescent cells (391, 395–398).

NF-kB Regulators
The SASP is heterogeneous, depending on the senescent cell type or
mechanism that have induced senescence. Yet, some SASP-
associated cytokines and growth factors are commonly secreted
by different senescent cells (e.g., IL-6, IL-8, TGF-b or activinA) (71,
399–402). Interestingly, the SASP has also been shown to include
secretion of extracellular vesicles, which seem to be involved in
intercellular communication and inflammatory exacerbation (403–
405). In this regard, another promising therapeutic approach for
targeting cellular senescence is the modulation of the NF-kB
regulators, such as p53 and p38 MAPK pathways and mTOR
(mammalian target of rapamycin), that can mitigate the
detrimental effect of the SASP by dampening the production of
pro-inflammatory cytokines (e.g., IL-1, IL-6 and IL-8) (406–408).
For example, the p38 MAPK pathway has been suggested to boost
immunosenescence by positively regulating IFN-g production in T
cells and by altering autophagy, which causes an increase of
dysfunctional cells (409, 410). First and second generation p38
inhibitors suppress SASP expression in senescent cells (411, 412).
Inhibition of the sestrin-dependent MAPK activation complex has
been shown to improve T cell activity in older adults, which could
Frontiers in Immunology | www.frontiersin.org 9
be associated with an increased vaccine efficacy (413). Caloric
restriction can also dampen the production of pro-inflammatory
cytokines by regulating the MAPK and NF-kB pathways
(414, 415). Inhibitors targeting the mTOR complex, such as the
immunosuppressant drug Rapamycin and its analogues, are
effective in improving the outcome of several diseases affecting
older individuals (e.g., respiratory viral infections), as wells as
vaccination (e.g., influenza vaccine) (407, 416). These drugs
reduce the SASP while improving the innate immune response.
For instance, both Rapamycin and a second-generation mTOR
inhibitor RTB101, are currently under clinical investigation as
possible COVID-19 treatment for adults aged >60 years of age
(NCT04584710 and NCT04409327). Metformin, a widely used
treatment for type II diabetes, also has been evaluated for its
inhibitory effect on the SASP and as immunomodulatory agent
(417). Although these drugs might offer the unique opportunity to
dampen detrimental effects of aging on the immune cells or induce
apoptosis of the senescent cells, it should be pointed out that their
safety profile is often a matter of concern.

Improved Vaccines
Vaccination is the most effective measure to prevent infections
and reduce the disease severity but unfortunately, their
effectiveness appears to be lower in older adults.

The use of adjuvants as component of improved vaccines for use
in older people has proven to be another strategy to partially
overcome immunosenescence by increasing immunogenicity and
durability of vaccine induced immune responses. A licensed
FIGURE 2 | Simplified representation of different approaches that aim to overcome immunosenescence by increasing vaccine immunogenicity/efficacy or by using
therapeutics that can dampen the SASP effect or induce selective apoptosis of immunosenescent cells. BCG, Bacillus Calmette–Guérin; TLR, toll like receptor. The
figure was created with BioRender.com.
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influenza vaccine containing MF59®, an oil-in-water emulsion,
elicited higher antibody response in older individuals compared to
the standard influenza vaccine and, interestingly, a broader antibody
response also directed toward heterologous vaccine strains (103,
418, 419). Although the mode of action is not completely
understood, MF59® is believed to activate innate immune cells
and favor the germinal center reaction (420, 421). Another
emulsion-based adjuvant, AS03, has been licensed and used
during the 2009 H1N1 influenza pandemic (422). The adjuvant
system AS01, component of the herpes zoster vaccine, induces
antibody and cytotoxic CD8+ T cell responses and also activates
innate immune cells (423, 424). Several other adjuvants, including
Toll-like receptors agonists, are currently in thepre-clinical phaseor
undergoing clinical testing andhave been reviewed elsewhere (425).
Additional strategies, including the use of higher dose of vaccine
antigen or alternative routes of vaccine administration (e.g.,
intradermal instead of intramuscular), have been successfully
developed for influenza vaccines targeting the older population
(426, 427). The improved humoral and cell-mediated immune
response achieved with such vaccines has been recently
confirmed by a meta-analyses conducted on 39 clinical trials, and
in a head-to-head comparison clinical trial (351, 428). Promising
data have been reported in subjects of >60 years of age receiving a
candidate vaccine containing a recombinant HA nanoparticle
produced in insect cells and formulated with a saponin-based
Matrix-M adjuvant. This vaccine was well-tolerated and induced
a potent immune responses when compared to the standard high-
dose inactivated influenza vaccine (429).

A messenger RNA (mRNA) vaccine against SARS-CoV-2 has
been recently licensed and, interestingly, the immune responses
induced by this vaccine in older adults, who are most at risk for
developing severe disease, was similar to that obtained in younger
people with over 90% protective efficacy in adults of >65 years old.
Several factors may account for the excellent efficacy including an
adequate involvement and stimulation of the innate immune system
and increased vaccine uptake due to its formulation (430). More
studies are warranted to unravel the immunological mechanisms
governing this outstanding protective efficacy. Thesefindingsmay be
important for the future use of this vaccine platform to protect old
individuals from other viral and maybe also bacterial pathogens.

The data obtained with the “improved” and also with the
mRNA vaccines suggest that reduced vaccine efficacy might be
just a limitation of currently used vaccination strategies and that
intrinsic features of aging can be overcome with better vaccines. A
more detailed understanding of changes affecting the immune
system over time will provide fundamental insights into the
biology of immunosenescence and would greatly facilitate the
rational design of tailor-made vaccines for older adults. Moreover,
the presence of chronic diseases and frailty, defined as a decline of
function across multiple organ systems, may be better predictors
of poor vaccine immunogenicity than age alone (431).

“Trained immunity” or “innate immune memory” is a recent
and interesting concept that defines the ability of innate cells to
form immune memory and therefore displaying characteristics of
adaptive immunity (64, 432, 433). Epigenetic and metabolic
mechanisms are thought to be responsible for this phenomenon.
An increasing number of studies have shown that several vaccines
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such as those against smallpox, oral polio, measles and tuberculosis
(Bacillus Calmette-Guérin, BCG), induce non-specific protective
effects also against heterologous, “off-target”, infectious diseases
(434, 435). Interestingly, BCG vaccination reduces respiratory
infections in older adults and recent data have demonstrated
that the innate immune function is less affected by aging than
adaptive immunity, suggesting that trained immunity may be
functional in this age group (436, 437). Moreover, BCG
vaccination has been shown to increase the immunogenicity of
subsequent influenza vaccination, highlighting its adjuvant-like
property (438). In a recent review, “trained immunity” was
proposed as a new target to enhance immune responses in older
adults (439). Although data are still scarce and more insights are
needed, it may represent a valuable target also for designing better
vaccines. However, it cannot be excluded that the excess of
cytokines induced by activation of innate cells might have
negative effects on the immune system of older adults.
CONCLUSIONS

The ongoing COVID-19 pandemic and its tremendous impact
on older individuals highlights the need for the development of
therapeutic and preventive measures to protect this vulnerable
age group. Therefore, it is of utmost importance to advance our
understanding of the mechanisms (molecular, cellular, genetic,
environmental, etc.) responsible for aging and the development
of immunosenescence, which will aid developing novel medical
interventions. Intrinsic and extrinsic cell stress factors induce cellular
senescence, which is mainly characterized by cell cycle arrest (G0/G1)
andsecretionofsoluble factors (SASP) in theextracellularenvironment
(440). Despite recent technological advances, phenotypical
characterization of senescent cells is still challenging due to a lack of
defined and univocal/universal biomarkers but also for their
heterogeneous nature and dynamic evolution. It is still not clear how
many different subsets of senescent cells can be identified and their
distribution in tissues and periphery. Although some interesting
animal models to study cellular senescence have been developed,
their results might not be easily translated to the human situation
(441, 442). To obtain a better insight into the complexity of immune
ageing/immunosenescence and thus the possibility to decipher and
dissect mechanisms and cells involved, requires the use of multiple
scientific approaches and disciplines (e.g., high-resolution omics-
technologies, multiparametric analyses, system biology and big data
analyses). With the information obtained, better prophylactic and
therapeutic interventions can be developed to prevent deterioration of
the health status, often associated with aging and immunosenescence.
This way, the quality of life in this age group can be maintained and
mortality, including that caused by infectious agents, reduced.
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