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Reduced total and memory B-cell numbers in peripheral blood long term after
hematopoietic stem cell transplantation (HSCT) are associated with an increased
incidence of infections and immune complications. Using novel modelling strategies,
baseline factors influencing B-cell reconstitution can be comprehensively studied. This
study aims to investigate the numerical total and memory B-cell reconstitution in children
and the association with baseline determinants 0.5-2 years after allogeneic HSCT. Eligible
for inclusion were children transplanted in our center between 2004-2017 who received a
first HSCT for malignant or non-malignant disorders. The continuous absolute counts of
total and memory B-cells were evaluated as outcome measure. Exploratory analysis at
one year was done to identify possible determinants. Linear mixed effect modelling was
used to analyze the association of these determinants with total and memory B-cell
reconstitution 0.5-2 years after HSCT. In a cohort of 223 evaluable patients analyzed at
1-year after HSCT donor age, stem cell source, donor type, recipient age and conditioning
were identified as significant determinants for total and memory B-cell numbers.
Multivariable analysis revealed that both donor and recipient age were inversely
correlated with the size of total and memory B-cell reconstitution. In contrast, no
correlation was found with stem cell source, donor type and conditioning. Making use
of linear mixed modelling both stem cell donor and recipient age were identified as
independent determinants of total and memory B-cell reconstitution 0.5-2 years
after HSCT.

Keywords: B lymphocyte, allogeneic, hematopoietic stem cell transplantation, immune reconstitution, pediatric,
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HIGHLIGHTS

• Using a novel linear mixed model approach we demonstrated
that B-cell and memory B-cell numbers 0.5-2 years after
HSCT are influenced by time after transplantation, donor
age and recipient age.

• Stem cell source, donor type and conditioning do not influence
the B-cell and memory B-cell numbers 0.5-2 years after HSCT.
INTRODUCTION

Allogeneic hematopoietic stem cell transplantation (HSCT) is a
curative treatment for patients with congenital and acquired
disorders of the hematopoietic system. After HSCT, balanced
recovery of the repopulating hematopoietic system is required to
ensure lasting protective immunity and immune tolerance (1).

Typically, innate immune reconstitution precedes the
recovery of the adaptive immune system. Full reconstitution of
the hematopoietic system, especially B-cell immunity, can take
up to 2 years or even longer. Immune reconstitution after
allogeneic HSCT has been studied extensively with the main
focus on T-cell reconstitution. Only limited information is
available about B-cell reconstitution.

Following HSCT, proper B-cell reconstitution is required
to provide optimal protective immunity against pathogens
as well as balanced immune regulation. Deficiencies therein
may result in lasting immunoglobulin (Ig) dependency,
increased risk of infections, impaired vaccine responses and
immune dysregulation, leading to considerable morbidity and
mortality (2–4). Identifying baseline factors that influence the
reconstitution pattern of peripheral B-cells could be instrumental
to predict clinical and immunological transplant outcome, and to
timely anticipate complications. So far, several transplant factors
have been described to influence the numerical B-cell
reconstitution in children including stem cell source, donor
type and conditioning regimen [reviewed in (5)]. The impact
of donor and recipient age as independent parameters on B-cell
or memory B-cell reconstitution in pediatric HSCT recipients is
largely unresolved. Still, evidence from the normal pediatric
population shows dynamic age-dependent changes of the B-
cell and memory B-cell populations during childhood (6).

Up to now, identification of determinants of B-cell and
memory B-cell reconstitution after HSCT has been mainly
performed with a suboptimal approach using single time point
outcomes. This could potentially lead to data loss, as other time
points are excluded, and precludes to study the influence of
determinants on the pattern of reconstitution. Moreover,
investigating the trajectories with multiple measurements per
subject would provide a better view of the reconstitution kinetics
after HSCT. Mixed effects models are designed to meet this
requirement (7). As a first step, we studied in, to our knowledge,
the largest pediatric cohort to date the numerical B-cell and
memory B-cell reconstitution during the first half to two years
after pediatric stem cell transplantation and their association
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with baseline factors using these mixed effects models after
allogeneic HSCT.
METHODS

Study Subjects
Eligible for inclusion were patients transplanted between April 2004
and January 2017 at the LeidenUniversityMedical Center (LUMC).
Inclusion criteria were children whom received a single bone
marrow (BM), peripheral blood stem cell (PBSC) or cord blood
(CB) HSCT from a matched family/sibling donor, haplo-identical
donor or a matched/mismatched unrelated donor. Indication for
transplantation was malignant hematological disease, non-
malignant hematological disorders, and inborn errors of
immunity. Because we wanted to investigate the full reconstitution
pattern of B-cell and memory B-cell numbers after HSCT, we tried
to exclude all possible complicated trajectories: death or relapse
within half a year post-HSCT, use of rituximab and graft-versus-host
disease more than grade II. Peripheral blood samples were routinely
obtained for analysis at several time points after HSCT. All available
blood samples between 0.5 and 2 years were used in the analysis.
Missing outcome values were excluded from analysis.
Transplantations were performed in line with the guidelines of the
European society of Blood and Marrow Transplantation. Approval
for obtaining and analyzing blood samples was given by the local
ethics committee (protocol P01.028). Informed consent was
provided by the patient and/or parent or guardian.

Flow Cytometry
Between October 1, 2004 and December 31, 2015, PBMC were
separated using ficoll-isopaque density gradient centrifugation.
PBMC were stained with CD45, CD14, CD33, CD235a, CD19,
CD27 antibodies. Four-color flow cytometry was performed on a
BD FACS Calibur II flow cytometer (Becton Dickinson Biosciences
[BD], Franklin Lakes, NJ). Between January 1, 2016 and January 1,
2019, leukocyte subsets (absolute leukocyte counts and differential)
were measured by an automated hematology analyzer, and
lymphocyte subpopulations (CD3+ T cells, CD3+CD4+ T cells,
CD3+CD8+ T cells, CD19+ B cells and CD16+/-CD56+ NK cells,
CD19+CD27+ memory B-cells) were measured by flow cytometry
in freshly collected blood samples as part of the patients’ routine
clinical follow-up. Data were analyzed using BD Cellquest software.
Lymphocytes were defined as CD45+ CD33/CD235a/CD14− cells
within the forward/sideward scatter lymphocyte gate. Total B-cells
were defined as CD19+ cells and total memory B-cells as
CD19+CD27+ cells within the lymphocyte gate and absolute cell
numbers per mL of peripheral blood were calculated.

Outcome
The outcome was the continuous count of total and memory
B-cells.

Statistical Analysis
To assess what potential factors are associated with higher or lower
B-cell counts we started with determinant analysis at 1 year.
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Median and interquartile ranges were used to describe continuous
variables. Donor and recipient age were categorized in 0-5, 5-10,
10-15 and >15 years. The variables were compared on total and
memory B-cell count using the Wilcoxon signed-rank test or
Kruskal-Wallis test. We constructed a regression model in which
the variables from analysis at 1 year were selected. To assess the
trajectories with multiple measurements per patient, Mixed effects
models were used to investigate the patterns of total and memory
B-cell count after HSCT. The total and memory B-cell count were
the outcomes of the model. To satisfy the model assumptions, the
total B-cell and memory B-cell count was transformed with the
natural logarithm. As independent variable, the time after HSCT
was included. Time was allowed to have a non-linear effect, using a
natural cubic spline. Adding splines in a model enables flexibility,
capturing the trend in the data with more precision. The spline
knots were set on 9 and 13 months. Residual plots were used to
validate the models’ assumptions.

The statistical analyses were performed with R software
version 3.6.2 using the nlme (linear mixed effects model)
software package (8, 9).
RESULTS

Included Patients
Between April 2004 and January 2017, 359 patients received a first
HSCT at the LUMC (Figure S1). First, 68 patients were excluded
(19%) because of death or relapse of disease within 6 months after
HSCT. Subsequently, 44 patients (12%) were excluded from the
cohort because of the use of rituximab, a B-cell depleting
monoclonal antibody. Acute graft versus host disease (aGvHD)
above grade 2 was present in 21 patients (6%). These patients were
also excluded, because of the intensive and prolonged
immunosuppressive treatment associated with aGvHD. Finally,
3 patients (0.8%) were excluded who had no engraftment or from
whom no blood samples were available in the period of analysis.
This resulted in a sample population of 223 patients (Figure S1).
From these patients, we obtained 1531 data points for total B-cell
numbers of all 223 patients and 993 data points for memory B-cell
numbers of 219 patients. The mean follow up time of the cohort
was 1.7 years with a median of 6 measurements per patient for
total B-cell numbers. For memory B-cell numbers, the mean
follow up time was 1.4 years with a median of 4 measurements
per patient.

Patient Characteristics
Patient characteristics are summarized in Table 1. The subjects
in the sample population were predominantly male (69.5%) with
a median age of 8.7 years. The median donor age (CB excluded in
this analysis) was 24.6 years and there was a balanced use of male
and female donors in the group (male 50.2% vs female 49.8%).
Most patients were transplanted with a bone marrow graft
(78.5%), and had an unrelated donor (53.8%). Indication for
transplantation was in most cases malignant disease (48.9%). In
207 (92.8%) patients myeloablative conditioning (MAC) was
used and in 16 (7.2%) reduced intensity conditioning (RIC).
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Determinant Analysis at 1 Year
We investigated donor age (CB excluded), recipient age, stem cell
source, donor type and conditioning as potential influencing
factors on total and memory B-cell numbers at 1 year after
HSCT. With the exception of conditioning and B-cells, all
investigated determinants were significantly associated with
total B and memory B-cell numbers 1 year after HSCT
(Figures 1A–J). Subsequently, we investigated the determinants
further in a multivariable analysis.

B-Cell Reconstitution
To study the dynamics of total and memory B-cell patterns
over time in our sample population, we quantified cell numbers
of all patients between 0.5-2 years after transplantation. Total
and memory B-cell numbers increase over time after HSCT.
The average total B-cell numbers increase in the first year
after HSCT (Figure 2A). From 1 year after HSCT onwards,
the B-cell numbers stabilize. The average memory B-cell
numbers show a different profile with a continuous declining
increase over two years (Figure 2B). Both for total as well
as memory B-cell numbers considerable variability is seen up
to 2 years after HSCT (Figures 2A, B). The total and memory
B-cell numbers are correlated at 1 year and 2 years after HSCT
(1 year after HSCT R=0.84 and 2 years after HSCT R=0.7,
Figures 2C, D)

Linear Mixed Effects Modelling
We developed a model with time, donor age, recipient age, stem
cell source, donor type and conditioning as independent
variables. CB was left out of the analysis. Effect estimates can
be seen in Table S1 and in Figures 3A–J we plotted the effect of
donor age, recipient age, stem cell source, donor type and
conditioning for cell number trajectories over time.
TABLE 1 | Patient characteristics.

Total = 223

Recipient age Year 8.7 (0.2 -17.9)
Recipient sex Male 155 (69.5%)

Female 68 (30.5%)
Donor age (CB
excluded)

Year 24.6 (1.75-
56.8)

Donor sex Male 112 (50.2%)
Female 111 (49.8%)

Stem cell source BM 175 (78.5%)
CB 22 (9.9%)
PBSC 26 (11.7%)

Donor type Identical related 83 (37.2%)
Haplo-identical 20 (9.0%)
Unrelated 120 (53.8%)

HSCT indication Malignant hematological disease 109 (48.9%)
Non-malignant hematological
disorders

82 (36.8%)

Inborn errors of immunity 32 (14.3%)
Conditioning MAC 207 (92.8%)

RIC 16 (7.2%)
May 2021 | Volume 12
BM, bone marrow; CB, cord blood; PBSC, peripheral blood stem cells; MAC,
myeloablative; RIC, reduced intensity conditioning. Data is presented as number with
percentage (%) or as median with minimum and maximum range.
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FIGURE 1 | (A–J) Determinant analysis at 1 year. BM, bone marrow; CB, cord blood; PBSC, peripheral blood stem cells; Haplo, haplo-identical; IRD, identical
related donor; UD, unrelated donor; MAC, myeloablative; RIC, reduced intensity conditioning. P value from the Wilcoxon signed-rank test or Kruskal-Wallis test
comparing categories and total and memory B-cell numbers. Data is presented as median with interquartile ranges.
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Time After HSCT
Time after HSCT (0.5-2 years) has a significant influence on the
reconstitution of total and memory B-cell numbers. Total B-cells
increase significantly between 6-9 months (P< 0.001, Table S1),
9-13 months (P< 0.001) and 13-24 months (P< 0.001). Memory
B-cell numbers show a similar trend, they increase significantly
between 6-9 months (P< 0.001), 9-13 months (P< 0.001) and 13-
24 months (P< 0.001).

Donor Age
Patients transplanted with younger donors have a significantly
increased total and memory B-cell trajectories at 6 months. This
difference remains visible up to 2 years after HSCT (Figures 3A, B).
For total B-cells, we found no significant difference between the
trajectories of patients receiving a graft of 0-5 years old donor and
5-10 years (P=0.56, Table S1, Figure 3A). However, the adjusted
mean trajectory was decreased for those receiving grafts with
donor age 10-15 years and also for those receiving grafts with
donor age >15 years compared to donor age 0-5 years (P=0.01,
P=0.001). The trajectories of memory B-cells in patients receiving
a graft of 0-5 years and 5-10 years old donor were not significantly
different (P=0.51, Figure 3B). The adjusted mean trajectory was
less for those receiving grafts with donor age 10-15 years and
donor age >15 years compared to donor age 0-5 years (P=0.009,
P=0.004). The linear association of total and memory B-cells and
donor age can be seen in Figures S2 A, B.

Recipient Age
Recipient age 5-10 is associated with a lower total B-cell number
mean adjusted trajectory 0.5-2 years after HSCT compared to the
reference recipient age of 0-5 years (P=0.04, Table S1, Figure
3C). Recipient age 10-15 was not significantly different (P=0.07),
but patient older than 15 years again had lower total B-cell
numbers (P=0.04). Patient age 5-10 years did not significantly
influence memory B-cell numbers (P=0.11, Figure 3D). But
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patients between 10-15 years and older than 15 years show
lower memory B-cell numbers after HSCT compared to
reference (P<0.001). The linear association of total and
memory B-cells and recipient age can be seen in Figure S3 A, B.

Stem Cell Source, Donor Type and Conditioning
There were no significant variations in the trajectories with
respect to the total and memory B-cell numbers and the use of
different stem cell sources (BM, PBSC), donor type (identical
related, haplo-identical or unrelated donor) and conditioning
used prior to HSCT (MAC or RIC) (Table S1, Figures 3E–J).
DISCUSSION

This study aimed to identify baseline characteristics that influence
the total and memory B-cell reconstitution after HSCT in children.
We used a comprehensive analysis approach, taking into account
the grouped nature of our data with linear mixed modelling.
Making optimal use of all available data from each patient, we
found an inverse correlation with donor age and recipient age.
Stem cell source, donor type and conditioning revealed no
significant association with total and memory B-cell
reconstitution trajectories in multivariable analysis.

Our data show that donor age has an inverse relationship with
total and memory B-cell reconstitution. The effect of donor age
on the total and memory B-cell reconstitution could be a
reflection of physiological age-associated quantitative changes.
Age dependent dynamics are observed in all B-cell subsets of the
normal pediatric (donor)population (6) and could determine the
pattern of immune reconstitution together with recipient age,
time after HSCT and possibly environmental factors. In line with
these findings, it will be interesting to address the potential
association between donor age and infection susceptibility or
protective vaccination responses after HSCT in future studies.
A B

D

C

FIGURE 2 | (A–D) The effect of time on total (A) and memory B-cell (B) numbers after HSCT. The correlation of memory B-cells and total B-cells 1 year (C, n=223)
after HSCT and 2 years (D, n=86) after HSCT. Data is presented as individual trajectories and dots in black and as the average reconstitution in red. R is the
Pearson’s correlation coefficient.
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FIGURE 3 | (A–J) Cell number trajectories of total B-cells and memory B-cells and the effect of baseline factors over time. Yrs, years; BM, bone marrow; CB, cord
blood; PBSC, peripheral blood stem cells; Haplo, haplo-identical; IRD, identical related donor; UD, unrelated donor; MAC, myeloablative; RIC, reduced intensity
conditioning. Lines represent mean predicted values, shaded areas the 95% CI’s.
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Although several other studies have analyzed the effect of donor
age on B-cell reconstitution, our study is the first to use the mixed
model approach to investigate the influence of donor age on the
total and memory B-cell reconstitution after HSCT (10–12).
Avanzini et al. and Gonzalez-Vicent et al. studied the percentage
of B-cells instead of absolute B-cell numbers, and found no
association with donor age (10, 11). Storek et al. reported a
correlation between peripheral B cell counts and the number of B
cell precursors as detected in bone marrow during the first year
after HSCT (12). However the latter were not related to the
numbers of CD34 cells in the graft, the stem cell source, and
donor and recipient age. Together, this suggests that both age-
related donor cell-intrinsic factors and quantitative changes in
composition of the donor graft may have an impact on B cell
reconstitution. As younger donors appear to be associated with
improved B-cell reconstitution, this aspect may be taken into
consideration during the process of donor selection.

We found that younger recipient age was associated with
higher total and memory B-cell counts after HSCT pointing to a
potential role of non-hematopoietic/microenvironmental factors.
In mice studies, transplanted young hematopoietic stem cells
engraft at a lower efficiency in aged recipients, give rise to a
lower percentage of donor derived B-cells and seem to adversely
impact mature B-cell production short term, but not long term
after HSCT (13, 14). Transplanting hematopoietic stem cells into a
younger microenvironment might thus contribute to a numerical
increase of the B-cell reconstitution as observed in our study.
Further studies will be required to unravel the age-related
mechanisms responsible for the hematopoietic cell-intrinsic as
well as microenvironmental determinants of B cell development.

RIC regimens are frequently used in children either because the
underlying disease or the pre-existing co-morbidities prohibits a
MAC approach. Conditioning with RIC is associated with better
survival in these subgroups, due to favorable toxicity profile and
thus lower transplant-related mortality (15, 16). Since RIC results
in less myeloablation it is more likely for autologous hematopoietic
precursors including B-cell lineage, to survive. In this study we did
not have the opportunity to investigate whether B-cell chimerism
had an impact on numerical B-cell reconstitution. Still, in our
study RIC and MAC had similar B-cell and memory B-cell
reconstitution profiles.

This study demonstrates that there is no significant difference
in B-cell reconstitution beyond 6 months after HSCT between BM
and PBSC as stem cell source, which is in line with previous
reports (17, 18). In contrast, CB has a significantly higher B-cell
and memory B-cell numbers 1 year after HSCT, which is in line
with other studies (2, 19). The difference could be explained by the
higher number of B lymphocyte progenitors found in CB with a
better in vitro and in vivo B-cell reconstituting capacity compared
to bone marrow grafts (20). Our study shows that there was no
significant difference between identical related, unrelated or haplo-
identical donors with respect to numerical B-cell or memory B-cell
reconstitution. This observation could be relevant in the context of
donor selection and the increasing use of haploidentical donors.

In this retrospective study in which we focused on the
quantitative reconstitution, memory B-cells were defined
based on positivity of the classical markers CD19 and CD27.
Frontiers in Immunology | www.frontiersin.org 7
The CD19+CD27+ memory B-cell population includes both
non-switched and switched memory B-cells. Furthermore,
CD27- memory B-cells, accounting for approximately 2.5-8.2%
of all B-cells in the healthy pediatric population, are not included
here (21). This study was a single center analysis. In the future,
the general concept of model-based evaluation of clinical
parameters should preferably be implemented in prospective
studies. Detailed data on the other B-cell subsets (transitional,
naïve, non-switched and switched), the B-cell receptor repertoire
(both naïve and antigen selected) and the quality of humoral
immune response e.g. vaccine responses or infection rate
after HSCT gathered through multicenter prospective cohort
studies will increase our understanding of the fitness of the
reconstituting adaptive immune system. More specifically, this
could validate the findings in this study, gain new insights in
successful adaptive immune reconstitution and stimulate the
integration of model-informed evaluation in daily clinical
practice with the aim to optimize clinical and immunological
outcome after HSCT.

In conclusion, using a linear mixed modelling approach we
demonstrated in a large pediatric cohort that donor age, recipient
age as well as time after HSCT have a significant impact on the
reconstitution pattern of total and memory B-cell numbers 0.5-2
years after HSCT.
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