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The increase in T helper 17 cell (Th17)-mediated pro-inflammatory response and decrease
in regulatory T cell (Treg)-mediated anti-inflammatory effect aggravate renal tubular
epithelial cell (RTEC) injury. However, increasing evidence indicated that mesenchymal
stem cell (MSC) possessed the ability to control the imbalance between Th17 and Treg.
Given that Th17 and Treg are derived from a common CD4+ T cell precursor, we
summarize the current knowledge of MSC-mediated inhibition of the mammalian target
of rapamycin (mTOR), which is a master regulator of CD4+ T cell polarization. During CD4+

T cell differentiation, mTOR signaling mediates Th17 and Treg differentiation via hypoxia-
inducible factor-1a (HIF-1a)-dependent metabolic regulation and signaling pathway, as
well as mTOR-mediated phosphorylation of signal transducer and activator of
transcription (STAT) 3 and 5. Through interfering with mTOR signaling, MSC restrains
CD4+ T cell differentiation into Th17, but in turn promotes Treg generation. Thus, this
review indicates that MSC-mediated Th17-to-Treg polarization is expected to act as new
immunotherapy for kidney injury.

Keywords: mesenchymal stem cell, kidney injury, regulatory T cell, T helper 17 cell, mTOR
INTRODUCTION

Renal tubular epithelial cell (RTEC) injury due to ischemia–reperfusion injury (IRI), nephrotoxicity
and other causes lead to a rapid decline in renal function and over-activated inflammatory immune
response. If the inflammatory damage to RTEC was not controlled timely, a continuous renal injury
would result in renal fibrosis and failure (1–3). Unfortunately, current pharmacological
interventions have failed to prevent intrarenal inflammatory cascade. However, increasing studies
showed that a diverse mesenchymal stem cell (MSC) population could form a balanced
inflammatory microenvironment and protect injured RTEC by regulating mammalian target of
org May 2021 | Volume 12 | Article 6841971
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rapamycin (mTOR)-mediated balance between pro-
inflammatory T helper 17 cell (Th17) and anti-inflammatory
regulatory T cell (Treg) (4–7).

In this review, we will introduce the imbalance between Th17
and Treg in RTEC injury, subsequently discuss MSC control for
Th17 and Treg balance, and ultimately integrate current major
mechanisms of MSC regulation on mTOR-mediated Th17 and
Treg differentiation.
THE IMBALANCE AND FUNCTIONS OF
TH17 AND TREG IN RTEC INJURY

Th17 characterized by the expression of specific transcription
factor RAR-related receptor g thymus isoform (RORgt) plays a
vital role in RTEC damage by producing IL-17 and other pro-
inflammatory cytokines (8, 9). However, through the specific
immunoregulatory functions, Treg that express the transcription
factor forkhead box protein P3 (Foxp3) can inhibit Th17-
mediated inflammatory response, promote inhibitory cytokine
secretion, and ultimately protect renal injury (5, 6, 10).

Th17-Dominant Kidney Damage
Numerous studies indicated that Th17 participated as the main
kidney infiltrating inflammatory mediator in RTEC injury due to
ureteral obstruction, acute kidney injury, chronic kidney disease,
etc (11–14). Moreover, some studies reported that the Th17
number and Th17/Treg ratio were positively associated with
the level of renal injury. Meanwhile, Th17 deficient mice due to
IL-17 or RORgt null significantly alleviated RTEC injury (15).

The predominant Th17 exerted a robust pro-inflammatory
response in renal injury via the expressions of IL-17 and C−C−
motif chemokine receptor (CCR) 6 (9, 16–18). For example,
Kaneko et al. reported that Th17-secreting IL-17 bound to the
corresponding receptor and promoted the expression of C-Cmotif
chemokine ligand (CCL) 20, which attracted pro-inflammatory
lymphocytes, dendritic cells, monocytes, and neutrophils to RTEC
and ultimately led to immune-mediated damage to the kidney (9).
Moreover, IL−17 was also found to increase CCL2 and IL−8
expressions in human proximal RTEC (19). Meanwhile, in
obstructive renal injury, Th17 may contribute to the fibrotic
transition from acute kidney injury to chronic kidney disease
due to IL-17A expression (11, 12). In addition, some studies
indicated that Th17 exerted distinct effector functions by
necessarily migrating to target organs, which was mediated by
chemokines [such as CCL20] and corresponding receptors [such
as CCR6] (16, 19, 20). Moreover, Th17 was reported to induce
CCL20 expression in RTEC, promoting the recruitment of other
leukocytes to the kidney (19).

Treg-Weak Renoprotection
A recent study of single-cell RNA-seq of renal immune cells
showed that Treg in regenerating renal existed the high
expression of tissue repair- and pro-angiogenesis-related genes.
This finding suggested that Treg provided potential kidney
protection from kidney damage (21). Indeed, Treg was reported
to exert a key role in preventing kidney injury and facilitating renal
Frontiers in Immunology | www.frontiersin.org 2
repair (22–24). For instance, Treg can prevent inflammatory cell
accumulation and promote anti-inflammatory M2-macrophage
generation, which exerted a renoprotective function during acute
or chronic renal injury (5, 10). In addition, some studies reported
that Treg depletion in mice enhanced inflammatory response and
aggravated kidney injury (25–28). Moreover, the deficiency of
Foxp3 in Rag1-/- mice also caused severe kidney damage (28).
These studies indicated Treg renoprotection.

Unfortunately, Cao et al. reported that low percentages of Treg
in intrarenal leucocytes existed in mice renal at 24 h after IRI (25).
Moreover,Donget al. also founddecreasedTregnumber inpatients
with acute kidney injury (29). Meanwhile, increasing studies
indicated that lower Treg infiltration, compared with Th17,
existed in the injured kidney (30–32). Some studies also found
that the adoptive transfer of Treg reduced pro-inflammatory IFN-g
and TNF-a generation, improved kidney function, and relieved
acute tubular necrosis after migration to the postischemic kidney
(33–35). These transferred cells were also able to inhibit innate
immune-related renal injury via switching ATP into adenosine
mediated by CD73 on the surface of Treg. Subsequently, the
adenosine bound to the A2a receptor and then enhanced the
expression of PD-1, which exerted a vital renoprotective effect
during IRI (34, 36).
THE BALANCE BETWEEN TH17
AND TREG CONTROLLED BY MSC

MSC is a fibroblast-like cell population extracted from fat, bone
marrow, umbilical cord, and other tissues, with an immune
privilege due to low immunogenicity (8). Recent studies showed
that the most intriguing role of MSC was the immunomodulatory
effect on the CD4+ T cell polarization, with induction of Treg and
suppression of Th17 differentiation (9, 37). For example, in an
arthritis model, human MSC infusion could reduce Th17 number,
promote Treg generation and enhance IL-10 production (38).
Ghannam et al. reported that MSC induced a regulatory Th17
generation with RORgt downregulation and FOXP3 upregulation,
which suppressed T cell proliferation and alleviated inflammation
(39). Therefore, MSC-mediated Th17-to-Treg polarization creates
anti-inflammatory processes and then protects injured RTEC.

The Enhancement of Treg Effect
Hu et al. reported that MSC infusion increased Treg proportion
in the renal and spleen, protecting the injured kidney (40, 41).
Moreover, Casiraghi et al. found that transfer of MSC expanded
Treg proportion in lymphoid organs and further prolonged
kidney allograft survival (42). Similarly, autologous transfer of
MSC to patients after kidney transplantation possessed the
ability to generate Treg (43). Indeed, it was demonstrated that
Treg depletion eliminated MSC protection for organ injury (44).

It is well established that Treg and Th17 derive from a
common CD4+ T cell precursor, which offers the potential for
MSC-mediated CD4+ T cells differentiating into Treg but not
Th17 (45). For instance, English et al. reported that CD4+ T cells
and MSC coculture suppressed lymphocyte proliferation due to
an increased Treg differentiation (46). Meanwhile, Liu et al.
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reported that the coculture of T cells and mice MSC showed a
significant increase in Foxp3 expression and Treg proportion
(47), which was similar to the human MSC coculture experiment
(48). Moreover, both in vivo and in vitro, MSC favored Treg
generation and their immunosuppressive function (49).

The Attenuation of Th17 Effect
Numerous studies indicated that the inhibition of Th17 and
corresponding function could act as effective methods of
protecting renal injury (12, 50–52). In vitro experiments from
rat and human indicated that MSC possessed the ability to
decrease Th17 generation from naive T cells and inhibit IL-17
and IL-22 secretion from Th17 (39, 53). Meanwhile, in vivo, the
application of MSC suppressed EAE progress by reducing the
secretion of IL-17 and IL-23 (54).

Furthermore, Th17 was reported to possess the ability to
transdifferentiate into Foxp3-IL−10+ type 1 Treg (Tr1) with
suppressive properties (55, 56). Moreover, MSC also was found to
promote Foxp3 expression with increased IL-10 secretion, but
suppress RORC expression with reduced IL-17 and IL-22 in
differentiated Th17. Meanwhile, MSC stimulated by inflammatory
cytokine showed a high CD54 expression, which contributed to the
adhesion of Th17 to MSC and the induction of T cell with
regulatory features (39). These findings suggest a new approach of
treating injured RTEC by intervening pathogenic Th17 into
suppressive Th17.

In addition, some studies indicated that Treg also possessed
the ability to inhibit Th17-mediated kidney injury (12, 45, 57,
58). Particularly, recent studies reported a specialized Treg type
17 that colocalized with Th17 and exclusively inhibited Th17-
mediated effect via spatial interaction, IL-10 production, and
CCR6 expression (19, 59).
MSC-MEDIATED MTOR INHIBITION
REGULATING TH17/TREG AXIS

Mechanistically, MSC regulates the balance between Th17 and
Treg predominantly via indoleamine 2, 3-dioxgenase (IDO) and
TGF-b secretions as well as other mechanisms, which mimic the
rapamycin effect of inhibiting mTOR, including mTOR complex
1 (mTORC1) and 2 (mTORC2) (8, 9, 60–65). Accumulating
evidence indicates that mTOR, a serine/threonine kinase, acts as
a key regulator of metabolic programmers and signaling
pathways in CD4+ T cell differentiation (62, 66, 67). For
example, stimulating mTOR activation in CD4+ T cell drove
glycolytic metabolism and promoted RORgt expression.
However, MSC-mediated mTOR downregulation during CD4+

T cell differentiation induced Treg generation by fostering
oxidative metabolism and Foxp3 transcription. Thus, MSC-
mediated mTOR inhibition in CD4+ T cell promotes Th17-to-
Treg polarization, conducive to protecting injured RTEC (5, 6, 8,
62–64) (Figure 1).

MSC Inhibition on mTOR Signaling
Several studies showed that MSC-producing IDO could inhibit
Th17 differentiation, induce Treg generation, and subsequently
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prevent renal injury (9, 61, 64). IDO is the main enzyme for
promoting tryptophan catabolism into kynurenine. However,
tryptophan was reported to possess the ability to activate the Rag
complex, which recruited and linked mTORC1 to Rheb on the
lysosomes. Subsequently, mTORC1 was activated due to the
spatial regulation of Rheb and Rag (68–70). These findings may
explain the phenomenon that IDO-mediated tryptophan
exhaustion caused mTORC1 (as a nutrient sensor) inhibition,
which further suppressed Th17 number and function but
promoted Treg generation. Moreover, IDO depletion or
tryptophan supplement reversed the effects (9, 61, 62, 64).

In addition to IDO, TGF-b secreted by MSC plays a role for
inducing Treg generation due to mTOR inhibition (8, 61, 63).
Priyadharshini et al. found that exposure of Treg to TGF-b
repressed S6 and Akt phosphorylation targeting mTORC1 and
mTORC2, respectively. Moreover, TGF-b reprogrammed Treg
metabolism by inhibiting PI3K-mediated mTOR signaling (63).
These results are in line with the report that Smad3
phosphorylation mediated by the interaction between TGF-b/
TGF-b receptor limited CD4+ T cell proliferation and inhibited
classic PI3K/Akt/mTOR pathway, which resembled rapamycin
inhibition of mTOR signaling (65). Moreover, in vitro, the
stimulation of TGF-b altogether with all-trans retinoic acid
promoted the expression of a set of microRNAs such as
microRNA-15b/16, which inhibited Akt/mTOR signaling and
further induced Treg generation (71, 72).

Additionally, Yoo et al. demonstrated that MSC suppressed
CD25 expression on the surface of T cells via increased liver
kinase B1 and AMP-activated protein kinase phosphorylation
induced by low adenosine triphosphate (ATP) concentration
(66). Liver kinase B1, a serine/threonine kinase, can increase
phosphorylation of AMP-activated protein kinase and then
inhibit mTORC1 signaling, which ultimately reduces
inflammatory cytokine secretion in T cells (60, 66).

mTOR-Mediated Th17/Treg Axis
Increasing studies showed that mTOR-low populations of CD4+ T
cells with increased oxidative phosphorylation were likely to become
Treg with high signal transducer and activator of transcription
(STAT) 5 and Foxp3 expression, while mTOR-high populations
with enhanced hypoxia-inducible factor-1a (HIF-1a)-mediated
glycolysis were enriched for Th17 with high STAT3 and RORgt
expression (22, 73, 74). Moreover, the transfer of Treg pretreated by
pharmacological mTOR inhibition to kidney injury mice following
by IRI can improve the renal function recovery and reduce kidney
fibrosis due to enhanced immunoregulatory effect of Treg (75).
These studies indicated that mTOR inhibition played a vital role in
renal protection by promoting Treg but not Th17 differentiation,
which involved mTOR-dependent energy metabolism and protein
translation networks.

mTOR/HIF-1a-Mediated Metabolic Reprogramming
With CD4+ T cell activation, some glycolytic molecules, such as
glyceraldehyde-3-phosphate dehydrogenase, lactate dehydrogenase
andglucose transporterswereupregulated topromoteglucoseuptake
due to the increased bioenergetic demands (66). The process can be
regulated by mTOR-mediated signaling, such as the transcription
May 2021 | Volume 12 | Article 684197
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factor HIF-1a expression (76). For example, mTORwas reported to
promote STAT3 activation, which increased HIF-1a expression via
direct binding of STAT3 to the HIF-1a gene promoter region (45,
62). Subsequently, increased HIF-1a can mediate oxidative
phosphorylation switching into aerobic glycolysis by targeting
glycolytic genes such as glycolytic enzymes hexokinase 2,
monocarboxylic acid transporter member 4, and glucose
transporter 1, which are vital for Th17 differentiation and IL-17
expression (22, 62). Consequently, HIF-1a-mediated glycolytic
Frontiers in Immunology | www.frontiersin.org 4
molecules act as main metabolic checkpoints to regulate CD4+ T
cell polarization. For instance, HIF-1a deficiency in CD4+ T cells
resulted in less Th17 and IL-17 generations by diminishing glycolytic
molecule expression (22, 45, 62). In addition, the glucose analogue 2-
deoxyglucose was also reported to promote Treg differentiation but
dampen the generation of Th17 during CD4+ T cell polarization by
inhibiting key glycolytic molecules (22). Therefore, HIF-1a-
dependent metabolic reprogramming mediated by mTOR
signaling distinguishes the lineage decisions between Treg and Th17.
A

B

FIGURE 1 | Mesenchymal stem cell (MSC) protects kidney injury via mTOR-mediated Th17-to-Treg polarization. (A) MSC inhibits mTOR signaling during CD4+ T
cell differentiation via IDO and TGF-b secretions as well as other mechanisms, which restrains Th17 differentiation, but promotes Treg generation. Consequently,
MSC-mediated Th17-to-Treg polarization alleviates kidney injury. (B) TGF-b phosphorylates Smad3, which inhibits PI3K/Akt/mTOR pathway. TGF-b also inhibits S6-
mediated mTOR signaling. Moreover, TGF-b promotes microRNA expression, which can inhibit Akt/mTOR pathway. IDO can deplete tryptophan (Try), which results
in mTOR inhibition mediated by the Rag and following Rheb. Additionally, MSC-mediated low ATP concentration increases kinase B1, subsequently phosphorylates
AMPK, ultimately inhibits mTOR signaling. However, mTOR signaling can inhibit microRNA-155 and SOCS3 expression, but promote HIF-1a generation. Briefly,
microRNA-155 inhibits SOCS1 expression, which can restrain STAT5 phosphorylation. The phosphorylation of STAT5 not only restrains STAT3 phosphorylation, but
also upregulates Foxp3 expression, which promotes Treg differentiation. SOCS3 can promote STAT5 phosphorylation, but inhibit STAT3-mediated HIF-1a and
RORgt expression, which ultimately reduces Th17 differentiation. Moreover, STAT3 possesses the ability to inhibit Foxp3 expression. HIF-1a can promote RORgt
expression and increase histone acetylation (His) with RORgt collaboration, which possesses the ability to induce Th17 differentiation. Meanwhile, HIF-1a inhibition
can promote Treg but not Th17 differentiation by mediating glycolysis (Gly) switching into the oxidative phosphorylation (Oxi).
May 2021 | Volume 12 | Article 684197
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mTOR/HIF-1a-Mediated Signaling Pathway
In addition to metabolic regulation, mTOR-mediated HIF-1a also
directly binds to RORgt gene promoter region and subsequently
promotes RORgt transcription. Moreover, HIF-1a with RORgt
collaboration activates p300-mediated histone acetyltransferase,
which increases histone acetylation, opens up the chromatin
structure, and ultimately facilitates Th17 differentiation (45, 77).
Additionally, HIF-1a was reported to activate the process that
promoted the degradation of Foxp3, which inhibited the
differentiation of Treg. Foxp3 degradation may explain that
Foxp3+RORgt+ Treg/TH17 precursors committed to the
differentiation of Th17 by diminishing Foxp3 transcription (45).
Moreover, HIF-1a could drive the IL-23 receptor upregulation, vital
for IL-17andTh17generation (22, 78).These resultswere in linewith
the report thatHIF-1a has high expression during the differentiation
of Th17, while Treg showed a low level of HIF-1a (26).
Correspondingly, HIF-1a absence mediated by mTOR inhibition
impaired Th17 differentiation as well as IL-17 and IL-23 receptor
expressions, but upregulated Foxp3 expression (22, 79). Meanwhile,
Foxp3 upregulation antagonizes RORgt expression and Th17
generation. Furthermore, Shi et al. also indicated that Ctla4 and
Gpr83molecules on the surface ofTregwereupregulateddue toHIF-
1a absence (22). Therefore, mTOR-mediated HIF-1a signaling
would be expected to act as a key regulator of CD4+ T
cell polarization.

mTOR/STATs-Mediated Signaling Pathway
Several studies showed that mTORC1 could activate STAT3 by
inhibiting the suppressor of cytokine signaling (SOCS) 3
expression, which could repress STAT3 phosphorylation or induce
proteasomaldegradationof STAT3(76, 80, 81).Moreover,mTORC1
inhibited STAT5 activation by downregulating microRNA-155, an
inhibitor of the SOCS1 (82–84). Similarly, mTORC1 inhibition was
reported to increase the phosphorylation of STAT5 by inhibiting
SOCS3 expression (76, 85).

Accumulating studies showed that STAT3 induced RORgt and
IL-17 expressions, while the deficiency of STAT3 impaired the
expressions of RORgt and IL-17, but increased Foxp3 expression
(62, 76, 86, 87).However, throughcompetitionwithSTAT3, STAT5
could bind to IL-17a gene sites, subsequently modifying the IL-17
gene locus due to a decrease in histone-3 lysine-4 trimethylation
(IL-17 expression promoter) and increase in histone 3 lysine 27
trimethylation (IL-17 expression inhibition) (62, 87). Moreover,
STAT5 activation was reported to promote the differentiation
of Treg by upregulating the expression of Foxp3 (76, 88, 89).
Interestingly, several studies indicated that Foxp3+RORgt+
Frontiers in Immunology | www.frontiersin.org 5
Treg/TH17 precursors under an anti-inflammatory environment
(such as high TGF-b levels without IL-6) showed a high Foxp3
expression that antagonized the binding of RORgt to DNA via an
exon 2-encoded sequence interaction, which inhibited IL-17
expression and further pushed T cell differentiation towards the
Treg. Reversely, given that STAT3 activation stimulated by pro-
inflammatory cytokines (such as IL-21 or IL-6 with low TGF-b
levels) overcame Foxp3 antagonism of RORgt, the precursors
tended to IL-23 receptor upregulation and subsequently pushed T
cell differentiation into Th17 (45, 90). Therefore, the activation of
STAT3 or STAT5 mediated Th17 or Treg differentiation.
CONCLUSIONS AND PERSPECTIVES

Currently, MSC has been extensively reported as a promising
therapy for renal injury due to its renoprotection for injured
RTEC (91–93). However, the therapeutic effect of MSC was
greatly weakened in the light of the fact that a majority of MSC
were stuck in the lungs after adoptive transfer, with a small part
reaching to the spleen, liver, renal, and other organs (1, 94). In
view of a similar mechanism of mTOR inhibition, the transfer of
MSC combination with rapamycin was also reported to exert
immunosuppressive effect and protect injured RTEC to a higher
degree (66). Although MSC-mediated Th17-to-Treg polarization
mainly depended on mTOR inhibition, the immunoregulatory
mechanism was complex and not fully understood. Therefore, a
successful application would rely on deep exploration and
further resolution of the unanswered question.
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