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Sorafenib is FDA-approved for the treatment of primary kidney or liver cancer, but its ability
to inhibit many types of kinases suggests it may have potential for treating other diseases.
Here, the effects of sorafenib on neuroinflammatory responses in vitro and in vivo and the
underlying mechanisms were assessed. Sorafenib reduced the induction of mRNA levels
of the proinflammatory cytokines COX-2 and IL-1b by LPS in BV2 microglial cells, but in
primary astrocytes, only COX-2 mRNA levels were altered by sorafenib. Interestingly,
sorafenib altered the LPS-mediated neuroinflammatory response in BV2microglial cells by
modulating AKT/P38-linked STAT3/NF-kB signaling pathways. In LPS-stimulated wild-
type mice, sorafenib administration suppressed microglial/astroglial kinetics and
morphological changes and COX-2 mRNA levels by decreasing AKT phosphorylation in
the brain. In 5xFAD mice (an Alzheimer’s disease model), sorafenib treatment daily for 3
days significantly reduced astrogliosis but not microgliosis. Thus, sorafenib may have
therapeutic potential for suppressing neuroinflammatory responses in the brain.
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INTRODUCTION

Neuroinflammation protects nervous tissue in the central nervous system (CNS) in response to a
variety of cues, including infection, traumatic brain injury, toxic metabolites, or autoimmunity (1).
In this process, microglia and astrocytes act as first responders (2). Microglia actively survey various
cues of the environment and significantly change their morphology in response to neural injury (3).
Activated microglia communicate with neighboring neurons and/or other glial cells, leading to the
activation of and morphological changes in astrocytes, the most abundant cell type in the brain and
supporters of neurons (4). Activated microglia and astrocytes release various proinflammatory
cytokines in the brain, including COX-2, IL-1b, IL-6 and iNOS (2), which is the first step in
intensifying neuroinflammation in the CNS. Therefore, the identification of therapeutic molecular
targets in the neuroinflammatory response would facilitate the development of drugs to prevent/
treat neuroinflammation-associated diseases.

Lipopolysaccharide (LPS) is an endotoxin that strongly activates the neuroinflammatory response in
the CNS. LPS, an outer membrane component of gram-negative bacteria, binds Toll-like receptors
org May 2021 | Volume 12 | Article 6843441
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(TLRs) in several cell types, most notably dendritic cells, microglia
and astrocytes (5). As a TLR ligand, LPS activates downstream
signaling pathways of TLRs, including mitogen-activated protein
kinase (MAP) kinase and protein kinase B (AKT) signaling and/or
the transcription factors signal transducer and activator of
transcription 3 (STAT3) and nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-kB). In turn, the activation of
these pathways initiates proinflammatory cytokine release and
neuroinflammation in glial cells. Emerging evidence indicates that
proinflammatory cytokine release by glial cells is a crucial marker of
neuroinflammation (6–8). Thus, inhibiting the LPS-evoked
neuroinflammatory response may prevent neuroinflammation.

Sorafenib, an anti-cancer drug used in the treatment of kidney
and liver cancer, inhibits several kinases, including vascular
endothelial growth factor receptor (VEGFR) kinases, platelet-
derived growth factor receptor (PDGFR) kinases, and rapidly
accelerated fibrosarcoma (RAF) kinases (9, 10). Sorafenib also
decreases MAP kinase signaling (i.e., ERK, JNK, and p38),
resulting in suppression of tumor growth in lymphoma
xenograft mice and cell death of thyroid carcinoma cells (11–
13). In addition, sorafenib reduces STAT3-associated IL-6 and
NF-kB-linked COX-2 levels in hepatocellular carcinoma cells and
APPswe mice, respectively (14–16). Sorafenib crosses the blood-
brain barrier (BBB) (13, 17), but whether sorafenib modulates glial
activation (microgliosis and astrogliosis) as well as LPS-induced
neuroinflammation in glia-specific cell lines, wild-type mice, and
5xFAD mice has not been comprehensively investigated.

Here, we show that sorafenib reduces the induction of COX-2
and IL-1b mRNA expression by LPS in BV2 microglial cells. In
primary astrocytes, sorafenib diminishes the increase in COX-2
mRNA levels induced by LPS but has no effect on other
proinflammatory cytokines modulated by LPS treatment.
Sorafenib also suppresses the LPS-induced increases in STAT3
and NF-kB phosphorylation levels in BV2 cells by inhibiting AKT
and P38 signaling. In addition, in LPS-injected wild-type mice,
sorafenib treatment significantly decreases microgliosis- and
astrogliosis-linked COX-2 levels and, consistent with the effects
observed in BV2 cells, reduces AKT phosphorylation. Moreover,
sorafenib administration daily for 3 days significantly reduces Ab-
induced astrogliosis but not microgliosis in 5xFADmice. Thus, the
anti-cancer drug sorafenib modulates LPS-induced glial activation
and neuroinflammatory responses both in vitro and in vivo.
MATERIALS AND METHODS

Ethics Statement
All experiments were approved by the institutional biosafety
committee (IBC) and performed in accordance with approved
animal protocols of the Korea Brain Research Institute (KBRI,
approval no. IACUC-19-00042).

Sorafenib
Sorafenib was purchased from Cayman Chemical (Ann Arbor,
MI, USA; Cat. No. 10009644) (Figure 1A). Based on the results
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of MTT assays, a sorafenib concentration of 5 mM (in DMSO)
was used for cell experiments. For animal experiments, sorafenib
was intraperitoneally (i.p.) administered at 10 mg/kg dissolved in
5% DMSO, 10% polyethylene glycol (PEG) 300, 20% Tween 80.

MTT Assay
The cytotoxicity of sorafenib in BV2 cells was assessed by
evaluating mitochondrial arrest using the MTT (3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay in
96-well plates. Cells (4 x 104 cells/well) were treated for 6 or 24 h
with sorafenib (0.1, 1, 5, 10, 20 or 25 mM) or vehicle (0.1, 1, 5, 10,
20 or 25 mM DMSO) without FBS. Then, MTT (0.5 mg/mL) was
added and incubated for 3 h protected from light. Finally, the
formazan crystals were dissolved with shaking in DMSO, and the
absorbance at 570 nm was measured in a SPECTROstar Nano
microplate reader (BMG Labtech, Germany).

Cell Culture
The microglial cell line BV2 (a generous gift from Dr. Kyung-Ho
Suk) was cultured in high-glucose DMEM (Invitrogen, Carlsbad,
CA, USA) with 5% fetal bovine serum (FBS, Invitrogen) at 37°C
and 5% CO2. Rat primary cortical astrocytes were isolated from
postnatal day 1 Sprague Dawley rats as previously described (7, 18).
In brief, the cortex was removed from the sacrificed mouse and
dissociated into single cells in high-glucose DMEM supplemented
with 10% FBS/penicillin-streptomycin solution. Cells plated in 75-
T flasks were then incubated at 37°C with 5% CO2 for 2 weeks.
Astrocytes were detached by agitating the 75-T flasks at 120 rpm
for 2 h, and after removing the conditioned medium, the cells were
centrifuged for 30 min at 2000 rpm and washed thrice with PBS.
Finally, the cells were resuspended in high-glucose DMEM with
10% FBS/penicillin-streptomycin and aliquoted in 12-well plates.

Reverse Transcription PCR (RT-PCR) and
Real-Time PCR
TRIzol (Invitrogen) was used to extract total RNA from cells. For
BV2 cells, Superscript cDNA Premix Kit II (GeNetBio, Daejeon,
Korea) and Prime Taq Premix (GeNetBio) were used for RT-
PCR. For primary astrocytes, Fast SYBR Green Master Mix
(Thermo Fisher Scientific, CA, USA) and a QuantStudio 5
Real-Time PCR System (Thermo Fisher Scientific, San Jose,
CA, USA) were used for real-time PCR. Normalization was
performed according to the Gadph cycle threshold (Ct) value,
and the fold change in sorafenib-treated cells was calculated
relative to the vehicle-treated control. The sequences of the
primers are given in Tables 1 and 2. The RT-PCR data for
groups in which LPS treatment did not induce proinflammatory
responses were excluded.

Immunocytochemistry (ICC)
Immunocytochemistry of BV2 cells was conducted according to
a previously methodology (6, 7). In brief, cells were fixed for
10 min in 4% PFA, washed thrice with PBS, and then incubated
with either anti-CD11b (Abcam, Cambridge, UK) and anti-p-
STAT3S727 (Abcam) or anti-CD11b and anti-p-NF-kBS536 (Cell
Signaling Technology, Danvers, MA, USA) antibodies overnight
(Table 3). After washing the cells with PBS for 10 min, Alexa
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Fluor 488-conjugated anti-mouse and Alexa Fluor 555-
conjugated anti-rabbit antibodies (1:200, Molecular Probes,
USA) were incubated for 1 h at room temperature. After
washing thrice with PBS for 10 min, the cells were mounted
with DAPI (Vector Laboratories, CA, USA), and fluorescence
microscopy images were acquired (DMi8, Leica Microsystems,
Wetzlar, Germany) and analyzed using ImageJ.

Wild-Type Mice
Adult wild-type C57BL6/J male mice (8 weeks old, 25-30 g; Orient-
Bio Company, Gyeonggi-do, Korea) were housed in a pathogen-
Frontiers in Immunology | www.frontiersin.org 3
free facility with food and water ad libitum and a photoperiod of
12 h. In all experiments, mice were randomly allocated to the
vehicle or sorafenib treatment group. To examine the preventive
effects of sorafenib on LPS-induced neuroinflammatory responses,
wild-type mice were intraperitoneally (i.p.) administered vehicle
(5% DMSO, 10% PEG 300, 20% Tween 80) or sorafenib (10 mg/
kg) daily for 3 consecutive days. Thirty minutes after the last
injection, LPS (10 mg/kg, i.p.) or PBS was administered, and 8 h
later, the mice were anesthetized and transcardially perfused
with PBS followed by 4% paraformaldehyde (PFA). To
assess the therapeutic effects of sorafenib on LPS-evoked
A B

D E F

G IH

J

C

FIGURE 1 | Sorafenib decreases LPS-induced proinflammatory cytokine levels in vitro. (A) Structure of sorafenib. (B, C) The cytotoxicity of sorafenib due to
mitochondrial arrest was assessed by the MTT assay in BV2 microglial cells treated for 6 or 24 h with a range of concentrations (0.1, 1, 5, 10, and 20 or 25 mM) or
vehicle (1% DMSO) (6 h, n= 6/dose; 24 h, n= 5/dose). (D) Scheme for pre-treatment of BV2 cells with sorafenib. (E, F) RT-PCR analysis of proinflammatory cytokine
levels in BV2 cells treated as described in (D) (n=7/group). (G) Scheme for post-treatment of BV2 cells with sorafenib. (H, I) RT-PCR analysis of proinflammatory
cytokine levels in BV2 cells treated as described in (G) (n= 14/group). (J) Real-time PCR analysis of proinflammatory cytokine levels in cultured primary astrocytes
(n= 4/group). *p < 0.05, **p < 0.01.
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neuroinflammatory responses, wild-type mice were administered
LPS (10 mg/kg, i.p.) or PBS, and 30 min later, sorafenib (10 mg/kg,
i.p.) or vehicle was administered three times at 2-h intervals (i.e.,
sorafenib was injected 30 min, 2.5 h, and 4.5 h after LPS or PBS
injection). Eight hours after LPS injection, the mice were
anesthetized and transcardially perfused. The in vivo
experimental design is summarized in Figures 3A, 6A, 8A.
Frontiers in Immunology | www.frontiersin.org 4
5xFAD Mice
5xFAD mice were used to determine the effects of sorafenib on
Ab-induced neuroinflammatory responses; these mice carry five
familial AD mutations (APPSw, Lon, Flo, PS1M146L, L286V)
under the control of the Thy1 promoter, resulting in
overexpression of Ab. 5xFAD mice (Stock No. 34848-JAX;
B6.Cg-Tg (APPSwFlLon,PSEN1*M146L*L286V)6799Vas/
Mmjax) were purchased from Jackson Laboratory (Bar Harbor,
ME, USA). Genotyping of each mouse was performed using
genomic DNA extracted from a tail snip. Only male mice were
used in this study.

Immunofluorescence Staining (IF)
The brains of wild-type and 5xFAD mice fixed as described above
were sectioned at a thickness of 30 mm with a cryostat microtome.
The sections were incubated with 10% normal goat serum (Vector
Laboratories) for 1 h at room temperature, immunostained
overnight at 4°C with primary antibodies (Iba-1, GFAP, COX-2,
p-AKT, p-STAT3), and incubated with secondary antibodies for
2 h at room temperature. Images of sections mounted on glass
slides with DAPI (Vector Laboratories) were acquired by
fluorescence microscopy (DMi8, Leica Microsystems, Wetzlar,
Germany) and analyzed by ImageJ (NIH). Quantification was
performed using 2-3 brain slices per mouse and a total of 18-24
brain images/per group (4 mice/group). The primary and
secondary antibodies are listed in Table 3.

Western Blotting (WB)
The potential effects of sorafenib on LPS-mediated AKT and P38
signaling were assessed in BV2 microglial cells treated with 200
ng/ml LPS or PBS for 45 min followed by 5 mM sorafenib or
vehicle (1% DMSO) for 5.5 hr. The cells were then incubated in
lysis buffer (ProPrep, iNtRON Biotechnology, Inc., Seongnam,
Korea) supplemented with protease and phosphatase inhibitor
TABLE 1 | Sequences of primers used for RT-PCR.

Gene name Sequence

IL-1b Sense 5’-AGC TGG AGA GTG TGG ATC CC-3’
Antisense 5’-CCT GTC TTG GCC GAG GAC TA-3’

IL-6 Sense 5’-CCA CTT CAC AAG TCG GAG GC-3’
Antisense 5’-GGA GAG CAT TGG AAA TTG GGG T-3’

COX-2 Sense 5’-GCC AGC AAA GCC TAG AGC-3’
Antisense 5’-GCC TTC TGC AGT CCA GGT TC-3’

iNOS Sense 5’-CCG GCA AAC CCA AGG TCT AC-3’
Antisense 5’-GCA TTT CGC TGT CTC CCC AA-3’

GAPDH Sense 5’-CAG GAG CGA GAC CCC ACT AA-3’
Antisense 5’-ATC ACG CCA CAG CTT TCC AG-3’
TABLE 2 | Sequences of primers used for real time-PCR.

Gene name Sequence

IL-1b Sense 5’-TTG ACG GAC CCC AAA AGA TG-3’
Antisense 5’-AGG ACA GCC CAG GTC AAA G -3’

IL-6 Sense 5’-CCA CGG CCT TCC CTA CTT C-3’
Antisense 5’-TTG GGA GTG GTA TCC TCT GTG A-3’

COX-2 Sense 5’-CCA CTT CAA GGG AGT CTG GA -3’
Antisense 5’-AGT CAT CTG CTA CGG GAG GA-3’

iNOS Sense 5’-GGA TCT TCC CAG GCA ACC A-3’
Antisense 5’-TCC ACA ACT CGC TCC AAG ATT-3’

GAPDH Sense 5’-TGG GCT ACA CTG AGG ACC ACT-3’
Antisense 5’-GGG AGT GTC TGT TGA AGT CG-3’
TABLE 3 | List of antibodies used in this study.

Primary antibodies

Antigen Host species Dilution Manufacturer Catalog no. Analysis

Iba-1 Rabbit polyclonal 1:500 Wako 019-19741 IF
GFAP Rabbit polyclonal 1:500 Neuromics RA22101 IF
IL-1b Rabbit polyclonal 1:200 Abcam AB9722 IF
COX-2 Rabbit polyclonal 1:500 Abcam AB15191 IF
p-AKTS473 Rabbit polyclonal 1:500 Cell Signaling 9271 WB/IF
AKT Rabbit polyclonal 1:500 Cell Signaling 9272S WB
p-STAT3S727 Rabbit polyclonal 1:500 Abcam AB86340 ICC/IF
p-NF-kBS536 Rabbit polyclonal 1:500 Cell Signaling 3033S ICC
p-P38T180/Y182 Rabbit polyclonal 1:1000 Abcam 9211 WB
P38 Rabbit polyclonal 1:1000 Abcam 9212 WB
CD11b Rat monoclonal 1:200 Abcam AB8878 ICC
Secondary antibodies
Antibody Dilution Manufacturer Catalog no. Analysis
Goat anti-rabbit IgG, Alexa Fluor 488 1:200 Invitrogen A11008 IF
Goat anti-rabbit IgG, Alexa Fluor 555 1:200 Invitrogen A28180 IF, ICC
Goat anti-chicken IgG, Alexa Fluor 488 1:500 Invitrogen A11001 IF
Goat anti-rat IgG, Alexa FITC 1:200 Invitrogen A18866 ICC
Goat anti-rabbit IgG, HRP conjugate 1:10000 Enzo ADI-SAB-300-J WB
Goat anti-mouse IgG, HRP conjugate 1:10000 Enzo ADI-SAB-100-J WB
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for 5 min, followed by centrifugation at 12,000 rpm. The
supernatants were collected, and protein concentrations were
measured by the BSA protein assay. The quantified proteins were
mixed with 4x SDS sample buffer and separated by
electrophoresis on an 8% SDS-PAGE gel for 2 h. The proteins
were then transferred to a polyvinylidene difluoride (PVDF)
membrane, followed by blocking with 5% skim milk (for total
AKT and total P38) or 5% BSA (for p-AKT and p-P38) for 1 h.
Next, the membranes were incubated with primary antibodies at
4°C overnight, washed for 5 min four times with TBST, and
incubated with peroxidase-conjugated secondary antibodies for
1 h at RT. Finally, the membrane was washed with TBST for
5 min, and the target proteins were visualized using ECL
Western Blotting Detection Reagent (GE Healthcare, Chicago,
IL, USA). Fusion Capt Advance software (Vilber Lourmat) was
used for image analysis. The primary and secondary antibodies
are listed in Table 3.

Statistical Analysis
Comparisons of two groups were performed with unpaired two-
tailed t-tests with Welch’s correction; multiple comparisons were
performed by one-way ANOVA (parametric or non-paramatric)
(Prism 7, GraphPad Software, USA). Post hoc analysis
was conducted with Tukey’s or Dunn’s multiple comparison
test; p < 0.05 was considered significant. The normal distribution
of data from in vitro and in vivo experiments was verified using
the Kolmogorov-Smirnov or Shapiro-Wilk normality test
(Supplementary Tables 2, 3). Data are presented as the mean
± SD (*p < 0.05, **p < 0.01).
RESULTS

Sorafenib Decreases LPS-Induced COX-2
and IL-1b mRNA Levels in Microglial Cells
The anti-cancer drug sorafenib is a multi-target kinase inhibitor
(Figure 1A). In the present study, we examined the effects of
sorafenib on neuroinflammation. First, mitochondrial arrest
resulting from sorafenib cytotoxicity was assessed in vitro in
BV2 microglial cells using the MTT assay. No cytotoxicity was
observed after 6 or 24 h at sorafenib concentrations of 0.1 to
10 mM, but cytotoxicity was evident at 20–25 mM sorafenib
(Figures 1B, C). Based on these data, we selected a sorafenib
concentration of 5 mM as an intermediate concentration with no
apparent cytotoxicity for all subsequent in vitro experiments.

To investigate the effects of sorafenib on the proinflammatory
response induced by LPS, BV2 microglial cells were exposed first
to vehicle (1% DMSO) or 5 mM sorafenib for 30 min and then
200 ng/ml LPS or PBS for 5.5 h. Proinflammatory cytokine levels
were assessed by RT-PCR (Figure 1D). Sorafenib pretreatment
prevented the increase in COX-2 and IL-1bmRNA levels evoked
by LPS but did not alter IL-6 and iNOS mRNA levels
(Figures 1E, F and Supplementary Figure 1A).

To examine the potential therapeutic influence of sorafenib on
the proinflammatory response, BV2 microglial cells were exposed
first to 200 ng/ml LPS or PBS for 30 min and then to vehicle (1%
Frontiers in Immunology | www.frontiersin.org 5
DMSO) or 5 mM sorafenib for 5.5 h (Figure 1G). Sorafenib
posttreatment significantly reduced the increase in COX-2 and
IL-1b mRNA levels under LPS stimulation but did not alter IL-6
and iNOS levels (Figures 1H, I and Supplementary Figure 1B).
Thus, either pre-treatment or post-treatment with sorafenib can
regulate the LPS-evoked increase in proinflammatory cytokines in
microglial cells.

Sorafenib Reduces LPS-Induced COX-2
mRNA Levels in Primary Astrocytes
The effects of sorafenib on the proinflammatory response were
further investigated in primary astrocytes. The cells were first
treated with 200 ng/ml LPS or PBS for 30 min and then vehicle
(1% DMSO) or 5 mM sorafenib for 5.5 h. Real-time PCR was
performed to assess proinflammatory cytokine levels. Sorafenib
posttreatment significantly decreased the LPS-induced increase
in COX-2 mRNA expression but not IL-1b, IL-6 and iNOS
mRNA levels (Figure 1J). In summary, sorafenib appears to
selectively regulate the LPS-induced increase in COX-2 mRNA
expression in primary astrocytes.

Sorafenib Suppresses LPS-Induced AKT/
P38 Phosphorylation and Nuclear STAT3/
NF-kB Phosphorylation
AKT and the MAPK signaling kinase P38 play important roles
in glial cell activation by modulating the secretion of
proinflammatory cytokines (19). We recently reported that in
BV2 microglial cells, another anti-cancer drug and multikinase
inhibitor, regorafenib, alters AKT and P38 signaling and LPS-
induced neuroinflammation (8). To assess the ability of sorafenib
to regulate AKT and/or P38 signaling in vitro, BV2 microglial cells
were treated with 200 ng/ml LPS or PBS for 45 min
before treatment with 5 mM sorafenib or vehicle (1% DMSO)
for 45 min. AKT and P38 phosphorylation were measured by
Western blotting of total extracted proteins with anti-p-AKTS473/
AKT and anti-p-P38T180/Y182/P38 antibodies (Figure 2A).
Sorafenib posttreatment significantly decreased the LPS-induced
increases in p-AKTS473 and p-P38T180/Y182 without changing the
total levels of AKT and P38 induced by LPS in this cell line
(Figures 2B, C and Supplementary Figure 2).

We then investigated the potential involvement of the
transcription factors STAT3 and NF-kB in sorafenib-associated
neuroinflammatory responses. BV2 microglial cells were first
treated with 200 ng/ml LPS or PBS for 30 min before treatment
with 5 mM sorafenib or vehicle (1% DMSO) for 5.5 h
(Figure 2D). Subsequent immunocytochemistry analysis with
anti-CD11b and anti-p-STAT3S727 or anti-p-NF-kBS536

antibodies revealed that sorafenib posttreatment significantly
reduced the LPS-induced increase in nuclear p-STAT3S727

(Figure 2E). Interestingly, sorafenib posttreatment also
significantly decreased LPS-induced nuclear p-NF-kBS536 levels
(Figure 2F). In summary, sorafenib affects LPS-induced p-AKT/
p-P38-linked signaling and its associated transcription factors, p-
STAT3 and p-NF-kB, to modulate neuroinflammatory responses
in microglial cells.
May 2021 | Volume 12 | Article 684344
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Sorafenib Pretreatment Inhibits LPS-
Induced Microgliosis in Wild-Type Mice
To examine the effects of sorafenib on LPS-evoked gliosis in vivo,
we selected a sorafenib dose of 10 mg/kg based on previous
studies (20–22). To assess the potential toxicity of this dose of
sorafenib in vivo, wild-type mice were intraperitoneally (i.p.)
injected with sorafenib (10 mg/kg/day) or vehicle daily for 3
Frontiers in Immunology | www.frontiersin.org 6
consecutive days. Thirty minutes after the final injection of
sorafenib, LPS (10 mg/kg, i.p.) or PBS was administered, and
immunofluorescence staining of brain sections was performed
with an antibody against caspase-3, a marker of apoptotic cell
death (Figure 3A). We found that sorafenib pretreatment
significantly decreased the LPS-induced increase in caspase-3
levels in the cortex but had no significant effect in the
A

B

D

E

F

C

FIGURE 2 | Sorafenib downregulates the LPS-induced increases in p-AKT/p-P38 and nuclear p-STAT3/p-NF-kB levels. (A) Scheme for sequential treatment of BV2
cells with LPS and sorafenib. (B, C) Western blotting analysis of BV2 cells treated as described in (A) with anti-p-AKTS473, anti-AKT, anti-p-P38T180/Y182, and anti-
P38 antibodies (n=6/group). (D) Scheme for sequential treatment of BV2 cells with LPS and sorafenib. (E, F) Immunocytochemistry analysis of BV2 cells treated as
described in (D) with anti-CD11b and anti-p-STAT3S727 antibodies (number of cells (n); Vehicle, n=428; LPS, n=357; LPS+sorafenib, n=361) or anti-CD11b and anti-
p-NF-kBSer536 antibodies (Vehicle, n=461; LPS, n=584; LPS+sorafenib, n=416). *p < 0.05, **p < 0.01, Scale bar = 20 mM.
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hippocampus (Figures 3B, C). According to these results, 10 mg/
kg sorafenib does not appear to have cytotoxic effects in
the brain.

Next, to determine the effects of sorafenib on LPS-induced
microglial activation in vivo, we assessed levels of ionized
calcium-binding adapter molecule 1 (Iba-1), a critical marker of
microglial activation in vivo that initiates neuroinflammation
defense mechanisms (23). Pretreatment of sorafenib
significantly decreased the LPS-induced increase in Iba-1
immunofluorescence intensity in the cortex and hippocampus
(CA1, DG, and CA3) (Figures 3D, E). Consistent with this
finding, the number of Iba-1-positive cells and the percentage
of the area that was stained in the cortex and hippocampus were
significantly reduced in mice administered sorafenib after LPS
induction (Figures 3D, E). Thus, sorafenib downregulates LPS-
Frontiers in Immunology | www.frontiersin.org 7
induced increases in microglial kinetics, morphological activity,
and migration to sites of inflammation in the brain.

Pretreatment of Sorafenib Suppresses
LPS-Induced Astroglial Kinetics,
Morphological Activity, and Migration and
COX-2 Levels in Wild-Type Mice
Astrocytes are neuron-supporting cells that modulate the LPS-
mediated neuroinflammatory response by regulating nervous
system repair (24). Astrocyte activation in response to
infection or inflammation cues is essential for pathogen
clearance and proinflammatory cytokine release and involves
changes in astrocyte kinetics, morphology, and migration (25).
To determine if sorafenib alters LPS-evoked astrogliosis in vivo,
glial fibrillary acidic protein (GFAP) immunofluorescence
A

B

D E

C

FIGURE 3 | Pretreatment of sorafenib inhibits LPS-induced microgliosis in wild-type mice. (A) Scheme for treatment of wild-type mice with sorafenib followed by
LPS. (B, D) Immunofluorescence staining of brain slices from wild-type mice treated as described in (A) with an anti-caspase-3 and anti-Iba-1 antibody.
(C, E) Quantification of the data in (B, D) (analyzed number of brain slices/images (n); Caspase-3: Vehicle, n=21; LPS, n=18; Sorafenib + LPS, n=21, Iba-1: Vehicle,
n=18; LPS, n=19; Sorafenib + LPS, n=19). *p < 0.05, **p < 0.01. Scale bar = 200 mM.
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intensity, the number of GFAP-activated cells, and the
percentage of GFAP-stained area were measured in brain
sections from wild-type mice injected as described above with
10 mg/kg sorafenib or vehicle followed by 10 mg/kg LPS or PBS.
Pretreatment of sorafenib significantly reduced the LPS-induced
increases in GFAP immunofluorescence intensity and area of
staining in the cortex and hippocampus (CA1, DG, and CA3)
(Figures 4A, B). However, the LPS-induced increase in the
number of GFAP-labeled cells was only decreased in the cortex
by sorafenib treatment (Figures 4A, B). These data indicate that
sorafenib reduces LPS-induced activation of astrocyte kinetics,
morphological changes, and atrocytic migration in the wild-type
mouse brain.

To verify the effects of sorafenib on the LPS-induced increase
in COX-2 levels observed in Figure 1, brain sections from wild-
type mice treated as described in Figure 3A were subjected to
immunofluorescence staining with an anti-COX-2 antibody.
Pretreatment of sorafenib significantly reduced the LPS-induced
increase in COX-2 immunofluorescence intensity in the cortex
and hippocampus (CA1, DG, and CA3) (Figures 4A–C).
Frontiers in Immunology | www.frontiersin.org 8
These data confirm that sorafenib regulates LPS-mediated
COX-2 levels in wild-type mice.
Pretreatment of Sorafenib Decreases
AKT and STAT3 Phosphorylation in
Wild-Type Mice
The induction of AKT and STAT3 signaling by LPS has been linked
to the regulation of microglial and astrocyte activation in vivo (26).
The effects of sorafenib on neuroinflammation-mediated
phosphorylation of AKT and STAT3 were assessed in wild-type
mice treated as described in Figure 3A with 10 mg/kg sorafenib or
vehicle followed by 10 mg/kg LPS or PBS. Immunofluorescence
staining of brain sections was performed using anti-p-AKTS473 and
anti-p-STAT3S727 antibodies. Pretreatment of sorafenib significantly
reduced p-AKTS473 levels in the cortex and hippocampus stimulated
by LPS (Figures 5A, B). In addition, pretreatment of sorafenib had
no effect on LPS-induced p-STATS727 levels in the cortex but
significantly reduced hippocampal LPS-induced p-STATS727 levels
compared with LPS treatment (Figures 5C, D). Thus, sorafenib
A

B C

FIGURE 4 | Pretreatment of sorafenib suppresses LPS-induced astrogliosis and COX-2 levels in wild-type mice. (A) Immunofluorescence staining with anti-GFAP
and anti-COX-2 antibodies of brain slices from wild-type mice treated with sorafenib followed by LPS. (B, C) Quantification of the data in (A) (analyzed number of
brain slices/images (n); GFAP: Vehicle; n=16; LPS, n=18; Sorafenib + LPS, n=17, COX-2: Vehicle, n=16; LPS, n=18; Sorafenib + LPS, n=17). *p < 0.05, **p < 0.01,
Scale bar = 200 mM.
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pretreatment modulates the phosphorylation of AKT and STAT3 in
a brain region-specific manner in wild-type mice injected with LPS.
Posttreatment of Sorafenib Inhibits LPS-
Induced Microgliosis and Astrogliosis in
Wild-Type Mice
Since exposure to sorafenib before LPS injection regulates LPS-
mediated gliosis in vivo, we investigated whether posttreatment
of sorafenib alters LPS-evoked neuroinflammation. As described
in Figure 6A, wild-type mice were i.p. injected with 10 mg/kg
LPS or PBS followed 30 min later by three i.p. injections of 10
mg/kg sorafenib or vehicle at 2 h intervals. Eight hours after the
initial LPS or PBS injection, the mice were sacrificed, and
immunofluorescence staining of brain sections was performed
with an anti-Iba-1 or anti-GFAP antibody (Figure 6A).
Posttreatment of sorafenib significantly decreased the LPS-
induced increase in Iba-1 immunofluorescence intensity in the
cortex and hippocampus (CA1, DG, and CA3) (Figures 6B, C).
The number of Iba-1-positive cells and the percentage of the
stained area in the cortex and hippocampus were also
significantly decreased when LPS injection was followed by
sorafenib treatment in wild-type mice (Figures 6B, C). Similar
to Iba-1, posttreatment of sorafenib significantly reduced the
LPS-induced increase in GFAP immunofluorescence intensity in
Frontiers in Immunology | www.frontiersin.org 9
the cortex and hippocampus (Figures 6D, E). In addition, the
LPS-mediated increase in GFAP-labeled cells and the percent
area of staining were significantly decreased in the hippocampus
but not the cortex (Figures 6D, E) in the presence of sorafenib.
These data indicate that posttreatment with sorafenib
downregulates the neuroinflammatory response by inhibiting
glial activation in the brain.

Posttreatment of Sorafenib Regulates
LPS-Induced AKT Phosphorylation in
Wild-Type Mice
To determine if posttreatment of sorafenib affects LPS-evoked
neuroinflammatory-associated signaling, wild-type mice were
injected with 10 mg/kg LPS or PBS and then injected with 10
mg/kg sorafenib or vehicle as described in Figure 6A.
Immunofluorescence staining of brain sections from the mice
was performed with anti-p-AKTS473 and anti-p-STAT3S727

antibodies. Posttreatment with sorafenib significantly decreased
LPS-induced increase in AKT phosphorylation in cortex and
DG but not CA1 and CA3 (Figures 7A, B). Moreover,
posttreatment of sorafenib had no effect on LPS-induced p-
STATS727 levels in the cortex and hippocampus (Figures 7C, D).
These data indicate that posttreatment with sorafenib modulates
AKT signaling but not STAT3 to alter LPS-mediated
neuroinflammation in wild-type mice.
A

B D

C

FIGURE 5 | Pretreatment of sorafenib decreases LPS-mediated AKT and STAT3 phosphorylation in wild-type mice. (A, C) Immunofluorescence staining with anti-p-
AKTS473 and anti-p- STAT3S727 antibody of brain slices from wild-type mice treated with sorafenib followed by LPS. (B, D) Quantification of the data in (A, C)
(analyzed number of brain slices/images (n); p-AKT S473: Vehicle, n =16; LPS, n=16; Sorafenib + LPS, n=14, p-STAT3 S727, Vehicle, n=23; LPS, n=22; Sorafenib +
LPS, n=20). *p < 0.05, **p < 0.01, Scale bar = 200 mM.
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Sorafenib Upregulated the LPS-Mediated
Decrease in Shank-1 Intensity in
Wild-Type Mice
Systemic inflammation and neuroinflammation can impact
cognitive and synaptic function (27). Since pre-and
posttreatment of sorafenib decreased LPS-mediated gliosis in
wild-type mice, we examined whether sorafenib modulates
learning and memory-related proteins. For these experiments,
wild-type mice were injected with sorafenib followed by
LPS as described in Figure 3A, and brain sections were
immunostained with anti-synaptophysin (a presynaptic
marker), anti-PSD-95 (a postsynaptic marker), or anti-shank-1
antibodies. Sorafenib pretreatment did not alter the
immunofluorescence intensity of synaptophysin in wild-type
Frontiers in Immunology | www.frontiersin.org 10
mice treated with LPS (Supplementary Figures 3A, B), and a
trend toward increased PSD-95 immunofluorescence intensity
was observed (Supplementary Figures 3C, D). Interestingly,
pre-exposure to sorafenib rescued the LPS-induced decrease in
shank-1 immunofluorescence intensity in the cortex and
hippocampal DG (Supplementary Figures 3E, F). These data
suggest that sorafenib pretreatment may positively or negatively
modulates synaptic function in LPS-induced wild-type mice.

Sorafenib Suppresses Ab-Mediated
Astrogliosis in 5xFAD Mice
Both pre- and post-treatment with sorafenib effectively
downregulated LPS-mediated neuroinflammation in vitro
and in vivo. To determine the effects of sorafenib on
A

B

D E

C

FIGURE 6 | Posttreatment of sorafenib inhibits LPS-induced microgliosis and astrogliosis in wild-type mice. (A) Scheme for the treatment of wild-type mice with LPS
followed by sorafenib. (B, D) Immunofluorescence staining with anti-Iba-1 and anti-GFAP antibodies of brain slices from wild-type mice treated as described in (A).
(C, E) Quantification of the data in (B, D) (analyzed number of brain slices/images (n); Iba-1: Vehicle, n=21; LPS, n=23; LPS + Sorafenib, n=18, GFAP, Vehicle, n=23;
LPS, n=22; LPS + Sorafenib, n=20). **p < 0.01. Scale bar = 200 mM.
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neuroinflammatory responses in a mouse model of Alzheimer’s
disease (AD), 5xFAD mice were treated with sorafenib (10 mg/
kg/day, i.p.) or vehicle daily for 3 consecutive days, and
immunofluorescence staining were conducted with an anti-Iba-
1 or anti-GFAP antibody (Figure 8A). Three consecutive days of
sorafenib administration did not alter Iba-1 immunofluorescence
intensity and the percent area stained (Figures 8B, C). However,
Ab-induced GFAP immunofluorescence intensity in the cortex
and hippocampus was significantly reduced (CA1, DG, and
CA3) (Figures 8D, E). Consistent with these observations,
sorafenib administration significantly decreased the percent
area of GFAP in the hippocampus (CA1, DG, and CA3) but
not the cortex (Figures 8D, E). These data suggest that 3
consecutive days of sorafenib administration selectively
modulates Ab-mediated astrogliosis in the brains of
5xFAD mice.
DISCUSSION

In this study, we demonstrated that sorafenib, a multikinase
inhibitor and anti-cancer drug, decreases the levels of
proinflammatory cytokines as well as microglial and astrocyte
activation induced by LPS. In BV2 microglial cells, sorafenib
diminished the LPS-induced increases in COX-2 and IL-1b levels
by modulating P38/AKT and NF-kB/STAT3 signaling. Sorafenib
also decreased the LPS-induced increase in COX-2 levels in
primary astrocytes. In vivo, pre- and posttreatment of
sorafenib decreased LPS-induced changes in microglial
kinetics, number, and morphology. LPS-induced astrocyte
Frontiers in Immunology | www.frontiersin.org 11
activation was also reduced by pre- or posttreatment of
sorafenib, although pretreatment of sorafenib effect on
astrocyte number. In wild-type mice, sorafenib administration
significantly reduced the LPS-induced increase in COX-2 levels
by altering AKT/STAT3 signaling. Moreover, in 5xFAD mice,
sorafenib treatment (daily for 3 days) significantly suppressed
astrogliosis but not microgliosis. Taken together, our findings
suggest that sorafenib could be a novel therapy for relieving
neuroinflammatory response-associated glial activation in
the brain.

We and others have recently found that several small
compounds and herbal extracts can modulate LPS-evoked
neuroinflammatory responses in vitro and in vivo. For
instance, the multitarget kinase inhibitor dasatinib, whose
targets include Bcr-Abl and the Src kinase family, decreases
LPS-induced COX-2 and IL-6 levels via the AKT/STAT3
signaling pathway (6). Apamin (APM), a selective antagonist
of small conductance calcium-activated potassium (SK)
channels, inhibits LPS-stimulated TLR4 activation throughout
CaMKII/ERK and NF-kB/STAT3 phosphorylation in BV2 and
primary microglial cells (28). In addition, ALWPs, a mixture of
Antler and LWPs, suppresses the LPS-induced increase in IL-1b
by downregulating FAK/NF-kB signaling pathways (29). These
findings suggest that LPS-mediated neuroinflammation could be
regulated by various signaling pathways linked to drug targets.

In the present study, we investigated the effects of sorafenib
on neuroinflammation. The kinase targets of sorafenib include
Raf-1, VEGFR2 (Flk1), and PDGFRb (30), which are all potent
inducers of proinflammatory cytokine release from microglial
cells and play significant roles in microglial-associated
neuroinflammatory responses (31–33). For instance, high-dose
A B

DC

FIGURE 7 | Posttreatment of sorafenib diminishes LPS-evoked AKT phosphorylation in wild-type mice. (A, C) Immunofluorescence staining with anti-p-AKTS473 and
anti-p-STAT3S727 antibodies of brain slices from wild-type mice treated with LPS followed by sorafenib. (B, D) Quantification of the data in A, C (analyzed number of
brain slices/images (n); p-AKT S473: Vehicle, = 14; LPS, n=24; LPS + Sorafenib, n=18, p-STAT3 S727, Vehicle, n=13; LPS, n=14; LPS + Sorafenib, n=20). *p < 0.05,
**p < 0.01, Scale bar = 200 mM.
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infusion of VEGF-A, which binds VEGFR2, leads to the release
of the proinflammatory cytokine MIP-1 alpha in the adult rat
cortex (34). In cultured T cells, VEGF treatment induces the
secretion of interferon gamma (IFN-g) (35). In addition, oral
administration of didymin (an activator of Raf-1 kinase inhibitor
protein (RKIP)) increases levels of TNF-a, IL-6, and IL-1b in
liver tissues and RAW 264.7 cells (36). In the brains of mice,
intra-ipsilateral and contralateral infusion of the PDGFRb
inhibitor Greevec decreases the intracerebral hemorrhage-
induced increase in TNF-a levels (37). Overall, these findings
suggest that the effects of sorafenib on LPS-induced
proinflammatory cytokine release may occur via modulation of
Raf-1, VEGFR and/or PDGFRb signaling.
Frontiers in Immunology | www.frontiersin.org 12
The effects of multikinase inhibitors, including those targeting
VEGFRs and PDGFRb (e.g., axitinib, nintedanib, dabrafenib,
regorafenib), are known to be associated with proinflammatory
cytokine release (38). For example, treatment of primary motor
cortical neurons with dabrafenib (an inhibitor of C-Raf/Raf-1
and B-Raf) reduces TNF-a and IL-12 levels (39). Regorafenib,
another multikinase inhibitor that inhibits VEGFR2 and
PDGFRb, strongly reduces the LPS-induced increases in COX-
2, IL-1b, IL-6, and TNF-a mRNA expression in BV2 microglial
cells (8). IL-6, TNF-a, and IFN-g expression in melanoma cells
are also suppressed by axitinib, a selective inhibitor of VEGFRs
and PDGFRs (40). In addition, the VEGFR, PDGFR and
fibroblast growth factor receptor (FGFR) inhibitor nintedanib
A
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FIGURE 8 | Sorafenib suppresses Ab-mediated astrogliosis in 5xFAD mice. (A) Scheme for the treatment of 5xFAD mice with sorafenib. (B, D) Immunofluorescence
staining with anti-Iba-1 and anti-GFAP antibodies of brain slices from 5xFAD mice treated as described in (A). (C, E) Quantification of the data in (B, D) (analyzed
number of brain slices/images (n); Vehicle: =21, Sorafenib: n= 18). **p < 0.01. Scale bar = 200 mM.
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reduces the secretion of several proinflammatory and fibrotic
cytokines (IL-1b, IL-8, IL-10 and CXCL13) in M1 macrophages
(41). Here, we found that pre- and post-treatment with sorafenib
significantly reduced the increases in COX-2 and IL-1b mRNA
levels in BV2 microglial cells treated with LPS (Figure 1). Taken
together, the present findings and previous work suggest that
sorafenib downregulates proinflammatory cytokine mRNA
levels by inhibiting VEGFR2 and/or PDGFRb activation. In
future work, we will determine whether sorafenib regulates
LPS-induced proinflammatory cytokine release by inhibiting
Raf-1, VEGFR2, and PDGFRb simultaneously or individually.

Astrocytes control multiple processes in the CNS, including
synaptogenesis, neuronal differentiation, neuronal survival and
neuroinflammation (42). Under conditions of inflammation,
astrocytes communicate with microglia and regulate extracellular
proinflammatory cytokine homeostasis (42). Previous studies have
reported that proinflammatory cytokine levels are elevated in LPS-
induced rat and primary astrocytes (6, 7). Interestingly, the mRNA
and protein levels of VEGFRs are elevated in glioblastoma cells, and
soluble VEGFR1 is increased in astrocytic tumor cells compared
with normal astrocytes (43, 44). Similarly, phosphorylation of
PDGFRb (tyrosine 75) is significantly increased in astrocytes
located near breast cancer cells compared with normal astrocytes
(45). Moreover, we recently demonstrated that regorafenib, an
inhibitor of VEGFRs and PDGFRb, suppresses the LPS-induced
increase in COX-2 mRNA expression in primary astrocyte culture
(8). However, the functions of VEGFR2 and/or PDGFRb remain to
be verified using target-specific blockade or epigenetic knockdown
in astrocytes. In the current study, sorafenib only decreased the LPS-
induced increase in mRNA levels of COX-2 mRNA and not other
proinflammatory cytokines in primary astrocytes. Why do the
multikinase inhibitors sorafenib and regorafenib affect only LPS-
induced COX-2 mRNA levels? It is possible that multikinase
inhibitors mainly inhibit the activation of VEGFRs and PDGFRb
in astrocytes and critically regulate COX-2 gene expression in
response to LPS. Thus, sorafenib may modulate LPS-induced glial
proinflammatory cytokine expression by regulating the activities of
VEGFRs and/or PDGFRb.

LPS stimulates Toll-like receptor 4 (TLR4) signaling pathways
to induce proinflammatory cytokine release by microglia and
astrocytes (5). AKT and MAPK signal transduction are among
the main signaling pathways activated by TLR4 and share signals
with VEGFR2 and/or PDGFRb stimulation (5, 46, 47). AKT is a
serine/threonine-specific protein kinase that is phosphorylated at
S473 in the C-terminus or T308 in the kinase domain and plays a
key role as a multiple activator of LPS-induced signaling in
microglia (48). Vorolanib, an inhibitor of VEGFRs and
PDGFRs, significantly reduces p-VEGFR2 and p-AKT levels in a
dose-dependent manner in human umbilical vein endothelial cells
(HUVECs) (49). Interestingly, combination treatment with
vorolanib and gefitinib (an EGFR inhibitor) increases EGFR
mutation and inhibits angiogenesis by downregulating VEGFR-
linked AKT-STAT3 signaling (49). In addition, the VEGFRs and
PDGFRb inhibitor regorafenib significantly reduces the increase
in AKT phosphorylation in LPS-stimulated BV2 cells (8), and the
resulting decrease in AKT activation in turn decreases the
Frontiers in Immunology | www.frontiersin.org 13
induction of IL-1b and COX-2 mRNA expression (50). Here,
we showed that sorafenib, an inhibitor of VEGFRs and PDGFRb,
also significantly reduces AKT phosphorylation in BV2 cells
(Figure 2B), suggesting that sorafenib modulates LPS-mediated
AKT signaling to alter neuroinflammatory responses in microglia.

After identifying the involvement of LPS-linked AKT signaling
in the effects of sorafenib in microglia, we next investigated
whether sorafenib modulates P38 signaling, a key pathway in
the production of inflammatory mediators (51). For instance,
activation of p-P38T180/Y182 by Ras-Raf kinases stimulates the
release of proinflammatory cytokines from microglia (52, 53),
and the VEGFRs inhibitor nintedanib decreases p-P38
immunoreactivity in GC7901 and MKN45 cells (54). Co-
treatment of non-small cell lung carcinoma (NSCLC) cells with
VEGF and vandetanib or axitinib, both VEGFR inhibitors,
significantly suppresses the phosphorylation of P38 in a dose-
dependent manner (55). In addition, the PDGFRb inhibitor
AG1295 decreases P38 phosphorylation in aortic vascular
smooth muscle cells (56). Interestingly, in the present study,
sorafenib suppressed the LPS-induced increase in p-P38T180/Y182

in BV2 cells (Figure 2C). These data indicate that sorafenib
regulates P38 phosphorylation by inhibiting VEGFRs and/or
PDGFRb-linked P38 signaling in microglial cells. Further studies
will reveal whether sorafenib affects other signaling pathways
l inked to VEGFRs and/or PDGFRb in response to
neuroinflammatory responses in microglia.

The expression of proinflammatory cytokines is
transcriptionally regulated by phosphorylated STAT3 and NF-
kB in the nucleus in microglia (57). Several studies have
demonstrated that activated P38 and AKT phosphorylate
STAT3 at S727 and/or NF-kB at S536 (6, 7). Phosphorylation
at S727 enhances the transcriptional activity of STAT3 as well as
the transcript levels of several proinflammatory cytokines (i.e.,
TNF-a, IL-1b, IL-6, and COX-2) in microglial cells (6, 7).
Similarly, phosphorylation of p65, a component of NF-kB, at
S536 induces NF-kB import into the nucleus and activation of
LPS-mediated proinflammatory cytokine transcription (58). A
PDGFb-specific inhibitor, TKI258, reduces the PDGF-b-induced
increase in STAT3 phosphorylation in MiaPaCa2 pancreatic
cancer cells and endothelial cells (59). Interestingly, VEGFR2
overexpression increases the DNA binding affinity of NF-kB,
whereas the VEGFR2 inhibitors sunitinib and bevacizumab
suppress DNA binding by NF-kB in endothelial cells (60).
Moreover, the VEGFRs and PDGFRb inhibitor vorolanib
diminishes STAT3 and NF-kB phosphorylation in a dose-
dependent manner in NSCLC cells and xenograft mice (49).
We recently demonstrated that the multikinase inhibitor
regorafenib decreases nuclear p-STAT3S727 and p-NF-kBS536

levels in LPS-treated BV2 cells (8). Consistent with these
observations, in the present study, sorafenib significantly
decreased the LPS-stimulated increases in p-STAT3S727 and
p-NF-kBS536 levels in BV2 cells. Thus, it is possible that
sorafenib suppresses LPS-evoked p-STAT3 and p-NF-kB levels
by inhibiting VEGFRs and PDGFRb signaling in microglia.

In vivo, neuroinflammation is initiated by the activation of
microglia and astrocytes to protect damaged neurons (2). Iba-1 is
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specifically expressed in microglia and is upregulated during
microglial activation (i.e., changes in microglial morphology and
location) in the brain (2). Similar to microglia, astrocytes can
change their morphology, size, and mobility and become
hypertrophic and hyperplastic upon LPS injection or other
injury (61). In assessing the effects of sorafenib pre- or
posttreatment on glial cell activation in wild-type mice in vivo,
we found that pre- and posttreatment of sorafenib decreased the
increases in Iba-1 immunofluorescence intensity, Iba-1-positive
cell number, and percent of staining area induced by LPS
(Figure 3, 6). Pretreatment with sorafenib had similar effects
on GFAP immunofluorescence intensity and percent of stained
area (Figure 4). Additionally, posttreatment of sorafenib
significantly suppressed GFAP immunofluorescence intensity,
cell number, and percent of stained area in LPS-treated wild-type
mice (Figure 6). How does pre- or posttreatment with sorafenib
modulate the neuroinflammatory responses induced by LPS in
vivo? Several studies have reported that multikinase inhibitors
targeting VEGFRs and PDGFRs downregulate glial activation (8,
62). For instance, regorafenib suppresses the LPS-induced
increases in Iba-1 and GFAP immunofluorescence intensity in
wild-type mice (8), and in RIP-Tag2 mice, injection with
VEGFRs and PDGFRb shRNAs significantly decreases Iba-1
and GFAP immunointensity (62). Another VEGFRs and
PDGFRs inhibitor, dabrafenib, significantly increases LPS-
induced neuroinflammatory response-linked cell survival by
inhibiting the hyperpermeability and leukocyte migration of
blood cells in C57BL/6 mice (63). Given these previous
observations, our findings suggest that pre- and posttreatment
with sorafenib affects LPS-mediated microglial and astrocyte
Frontiers in Immunology | www.frontiersin.org 14
activation by inhibiting VEGFRs and PDGFRb. Conversely, it
is also possible that sorafenib posttreatment inhibits LPS-
induced TLR4 activation to prevent VEGFRs and PDGFRb
signaling and alter LPS-mediated neuroinflammatory
responses. Interestingly, we observed that pretreatment but not
posttreatment of sorafenib altered the number of astrocytes in
the hippocampus in wild-type mice (Figures 4, 6). One
possibility is that VEGFRs and PDGFRb have limited
involvement in astrocyte migration, and thus pretreatment of
sorafenib has less of an effect on LPS-induced astrocytic
neuroinflammation than posttreatment in vivo. In future work,
we will further examine whether pre- and posttreatment of
sorafenib alters LPS-evoked astrocytic neuroinflammatory
responses in VEGFRs- and/or PDGFRb-dependent manner in
wild-type mice.

COX-2 is a typical proinflammatory marker and is released by
activated microglia and astrocytes at the beginning of
neuroinflammation (64). COX-2 expression supports the
inflammatory process and has a significant role in cell
proliferation, macrophage, and synoviocyte activation (2).
Systemic exposure to LPS significantly increases COX-2
mRNA and protein expression in the hippocampus and cortex
of mice (6, 7). In a mouse model of angiogenesis, injection of a
VEGFR2 inhibitor, microRNA-101, diminishes COX-2
expression (65), and in human intestinal microvascular
endothelial cells, curcumin reduces COX-2 mRNA levels by
inhibiting VEGF (66). In addition, in rat smooth muscle cells,
PDGF-induced expression of COX-2 is reduced by PDGFRb
inhibitors, and recombinant rat COX-2 cDNA is directly
required for PDGFR-dependent stabilization of COX-2 mRNA,
FIGURE 9 | Sorafenib affects LPS-stimulated neuroinflammatory responses in vitro and in vivo. In BV2 microglial cells and wild-type mice, sorafenib reduces the
effects of LPS on the mRNA levels of the proinflammatory cytokines IL-1b and COX-2 in microglia and COX-2 in astrocytes by modulating AKT/P38-associated NF-
kB/STAT3 signaling pathways. Accordingly, sorafenib may have therapeutic potential for neuroinflammation-related diseases.
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suggesting that PDGFR is required for regulating COX-2
expression (67). Importantly, we previously demonstrated that
the VEGFRs and PDGFRb inhibitor regorafenib significantly
decreases the increase in COX-2 levels induced by LPS in wild-
type mice (8). Consistent with these findings, sorafenib treatment
reduced the LPS-induced increase in COX-2 levels in wild-type
mice (Figure 4). It is possible that multikinase inhibitors like
sorafenib and regorafenib regulate COX-2 expression via
inhibition of VEGFR2 and PDGFRb in response to
neuroinflammation in vivo.

Studies in LPS-injected mouse models have shown that AKT-
linked STAT3 signaling contributes to the regulation of
proinflammatory responses in the brain (6, 7, 68). Xanthatin, a
VEGFRs and PDGFRb inhibitor, significantly reduces
neuroinflammation by inhibiting AKT/PI3K/STAT3 signaling
in a rat corneal alkali burn model (69). TKI258, another VEGFRs
and PDGFRs inhibitor, reduces p-AKT and p-STAT3 levels in
tumor xenograft nude mice (59). Similarly, we found that
sorafenib pretreatment decreased p-AKTS473 and p-STAT3S727

levels in LPS-injected wild-type mice (Figure 5). Interestingly,
sorafenib posttreatment reduced p-AKTS473 levels in LPS-
injected wild-type mice but not p-STAT3 S727 levels (Figure 7).
Together, our findings and previous work suggest that sorafenib
pre-or posttreatments differently regulate VEGFRs- and/or
PDGFRb-linked AKT and STAT3 signaling to modulate
neuroinflammation in LPS-induced wild-type mice.

Neuroinflammation may impact learning and memory as well
as synaptic function both directly and indirectly (70). Conflicting
effects of sorafenib on cognitive/synaptic function have been
reported. In APPswe mice (a mouse model of AD), sorafenib
treatment modulates neuroinflammatory responses to restore
working memory (15). On the contrary, negative effects of
sorafenib on cognitive function via disruption of metabonomic
pathways have been observed in cancer patients (71, 72).
Therefore, here we examined whether sorafenib alters LPS-
mediated pre- or postsynapse-linked proteins. In wild-type mice,
sorafenib treatment significantly reversed the LPS-mediated
alteration of shank-l fluorescence intensity but had no effects on
synaptophysin and PSD-95 (Supplementary Figure 3). Thus, the
present and previous findings indicate that sorafenib can regulate
synaptic/cognitive function positively and/or negatively in LPS-
treated mice and/or mouse models of AD. A limitation of this
study is that mice were only i.p. treated with sorafenib daily for 3
days at a dose of 10 mg/kg. This may not have been a sufficient
duration of treatment and/or dose to alter synaptic and cognitive
function. The effects of longer treatment periods and/or higher
doses of sorafenib on LPS-mediated synaptic and/or cognitive
function will be assessed in future work.

Despite the availability of several models for evaluating the
therapeutic potential of molecules (73, 74), the effects of sorafenib
on neuroinflammation have rarely been studied in non-LPS
models. To address this gap, we examined the effects of
sorafenib on neuroinflammation in 5xFAD mice, a model of
AD, which revealed that 3 consecutive days of treatments
significantly reduced Ab-mediated astroglial activation but not
Frontiers in Immunology | www.frontiersin.org 15
microglial activation (Figure 8). Further studies are needed to
determine if longer treatment periods (i.e., daily for 2 weeks or 4
weeks) and/or higher doses of sorafenib are able to alter Ab-
induced microgliosis.
CONCLUSION

In summary, sorafenib, a multikinase inhibitor whose targets
include VEGFR2 and PDGFRb, reduces the effects of LPS on
proinflammatory cytokine levels in BV2 cells and primary
astrocytes (Figure 9). In addition, sorafenib suppresses the
AKT/P38-linked STAT3/NF-kB signaling pathway, which plays
a role in proinflammatory cytokine release, in BV2 cells. In wild-
type mice, pre- and posttreatment of sorafenib significantly
reduces the stimulation of microglial and astrocyte activation
and COX-2 levels by LPS by inhibiting AKT signaling, and
sorafenib suppresses Ab-mediated astrogliosis but not
microgliosis in a mouse model of AD. Thus, we suggest that
sorafenib holds potential as a drug for protecting against acute
neuroinflammation in the brain.
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