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Background: Oral mucositis is the most common oral complication of cancer patients
receiving radiotherapy and/or chemotherapy, leading to poor quality of life. Limitations of
the current interventions on radiation-induced oral mucositis (RIOM) urge the
development of novel therapeutics. Here, we evaluated the treatment outcome of
probiotic Streptococcus salivarius K12 on RIOM mice, and oral microbiota that is
associated with the progress of RIOM was further investigated.

Methods: An experimental RIOM mouse model was established, and S. salivarius K12
was applied to the mouse oral cavity daily. Histological analyses were performed to
evaluate the severity of oral mucositis and the treatment outcome of S. salivarius K12. The
oral microbiota of mice was further analyzed by 16S rRNA sequencing, microbial culture
and qPCR.

Results : Irradiation induced conspicuous mucositis in the oral cavity of mice. S. salivarius
K12 treatment was beneficial for the healing of RIOM, as reflected by reduced ulcer size,
increased basal layer epithelial cellularity and mucosal thickness, and elevated epithelial
proliferation and attenuated apoptosis. RIOM mice presented significant oral microbial
dysbiosis, with an overgrowth of oral anaerobes. S. salivarius K12 treatment reconstituted
the oral microbiota and decreased the abundance of oral anaerobes of RIOM mice. In
addition, S. salivarius K12 treatment inhibited NI1060 in Pasteurella genus and
downregulated the expression of nitrate reductase.

Conclusions: S. salivarius K12 treatment can alleviate RIOM and reconstituted the
dysbiotic oral microbiota in mice. S. salivarius K12 may represent a promising adjuvant
treatment to improve the quality of life of cancer patients receiving radiotherapy.
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INTRODUCTION

Oral mucositis, characterized by inflammation and mucosal
damage of oral mucosa, is the most common oral complication
of cancer patients receiving radiotherapy and/or chemotherapy.
The incidence of oral mucositis is almost 100% in head and neck
cancer patients receiving radiotherapy (1, 2). 85% of patients
receiving intensive chemotherapy for hematopoietic stem cell
transplant also develop oral mucositis (3). Oral mucositis
induced by radiotherapy/chemotherapy can cause pain,
dysphagia and malnutrition, seriously affecting the quality of
life of patients and interrupting anti-cancer treatment. Till now,
the management of oral mucositis is still challenging.
Interventions include growth factors, antibiotics, chlorhexidine,
cryotherapy, low-level laser therapy and anti-inflammatory
agents, but with limited efficacy (4). At present, only
keratinocyte growth factor-1 (palifermin) has been approved
by the US Food and Drug Administration to mitigate oral
mucositis in a very limited segment of the at-risk population
(5). Hence, there is still a need for the development of novel
therapeutics for the better management of oral mucositis.

The pathogenesis of mucositis induced by radiotherapy/
chemotherapy has been suggested in previous studies (6, 7).
Sonis et al. depicted the development of oral mucositis and
intestine mucositis as a dynamic process including five stages:
initiation, primary damage response, signal amplification,
ulceration and healing (6). Recent studies have suggested the
role of oral microbiota in the development and progression of
oral mucositis (8). Microbial dysbiosis, invasion and colonization
of oral mucosa were involved in the pathophysiology of oral
mucositis (9, 10). Pathogens contributed to the development of
oral mucositis by activating inflammatory responses through
pathogen-associated molecular patterns (PAMPs), which bind to
pattern recognition receptors (PRRs), subsequently activate NF-
ĸB and induce the release of pro-inflammatory cytokines (10).

Probiotics which consist of beneficial viable bacteria and
bacterial components, have shown various beneficial effects on
human health, particularly via modulating the disease-related
dysbiotic microbiota (11, 12). Streptococcus salivarius is a
commensal bacterium in the oral cavity, and the S. salivarius
K12 strain that was originally isolated from the oral cavity of a
healthy child, has been well recognized as an oral probiotic being
used for the treatment of multiple oropharyngeal pathogen-
related diseases including oral candidiasis, pharyngitis, and
halitosis (13–15). S. salivarius K12 has a regulatory effect on
oral microflora (15, 16), likely due to its potent production of
bacteriocin-like inhibitory substances (BLISs) including
Lanibiotics salivaricin A and salivaricin B. The production of
BLISs contributes to the competitiveness of S. salivarius K12 over
pathogens and thus benefits the oropharyngeal health (17). The
regulatory effects of S. salivarius K12 on oral microbiota imply its
potential use in the treatment of RIOM. Hence, we hypothesize
that radiation can alter oral microbiota and predispose the host
to oral mucositis, and S. salivarius K12 can alleviate mucositis by
modulating the oral microbiota. To validate this hypothesis, we
established a RIOM mouse model, and analyzed the ecological
Frontiers in Immunology | www.frontiersin.org 2
impact of radiation on the oral microbiota. In addition, beneficial
effects of S. salivarius K12 on the healing of oral mucositis were
further evaluated.
MATERIALS AND METHODS

Radiation-Induced Oral Mucositis
Mouse Model
Seven-week-old male BLAB/c mice were purchased and
housed under specific pathogen-free conditions. All animal
procedures in this study were approved by Ethics Committee
of State Key Laboratory of Oral Diseases, Sichuan University,
Chengdu, China. This study conformed to the “Animal
Research: Reporting of In Vivo Experiments” guidelines for
preclinical studies.

After one week of environment acclimation, the mice were
randomly divided into three groups (N=11 per group, 5 for
macroscopic analyses and 6 for histological analyses and microbial
analyses): irradiation-free (control), irradiation+Saline (IR+Saline)
and irradiation+ S. salivarius K12 (IR+K12). The mice were
immobilized for irradiation with chloral hydrate. The technique
and set-up for head-only radiation treatment in mice were modified
based on previously published studies (18). Custom-made lead
shields were used for mice to limit the radiation to the heads.
Mice received a high dose, single fractionated 28Gy X-ray radiation
directly to their head region at rate of 3.5 Gy/min. Except for the
control group, the mice received X-ray radiation. Post-irradiation
mice recovered on heated pad before return to vivarium.

Treatment With Probiotics
Probiotics solution was prepared by dissolving probiotics tablets,
which contain 1×1010 CFU of viable bacteria per tablet according
to the manufacturer’s instruction (NOW Foods, USA), in
sterilized saline to a concentration of 1X1010 CFU/ml of S.
salivarius K12. 100 µl probiotic solution (1×109 CFU of S.
salivarius K12 per day) was applied to the oral cavity of mouse
using a micropipette from day -3 to day 8. After administration,
food and water were unavailable within the next 30 min to
keep the probiotics in mouth as long as possible. The mice in
IR+Saline group were treated with saline as placebo. All mice
were sacrificed at day 9. The microbial samples were taken
before sacrifice.

Macroscopic and Histological Analyses
Mice were sacrificed and the whole tongue was then removed
from oral cavity. Excised tongues were stained with 0.05%
toluidine blue to visualize the ulceration (19). Excised tongues
of mice were stained with 0.05% toluidine blue for 10 min and
rinsed with 10% acetic acid for 1 min to visualize the ulceration
(19). Ulcers were visible as a deep blue color after staining. Then,
the percentages of stained area to whole area of tongue surfaces
were measured by pixels on Image J software to determine the
ulcer area.
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Paraffin sections were prepared for histological analyses. For
staining based on hematoxylin and eosin (H&E), cell
proliferation (PCNA), or apoptotic cells (TUNEL), specimens
were fixed in 4% paraformaldehyde and embedded in paraffin.
After deparaffinization, sections were stained with hematoxylin
and eosin to confirm the histologic changes. To measure the
epithelial thickness, two sites in five randomly chosen
hematoxylin and eosin-stained sections (six specimens/group)
were measured. The basal layer cellularity was measured by
counting the absolute number of cells at basal layer at the area
of interest in five randomly chosen sections (six specimens/
group). To confirm the tissue-regenerative activity (cell
proliferation) of damaged tissues, sections were stained with
rat monoclonal anti-mouse PCNA (1:100; Abcam, Cambridge,
UK). For the apoptosis assay, TUNEL (terminal deoxynucleotidyl
transferase dUTP nick and labeling) staining was performed with
a TUNEL kit (Beyotime, China) according to manufacturer’s
protocol to detect apoptotic cells. Slides were mounted with
coverslips using DAPI Fluoromount-G (Southern Biotech,
China). To quantify of cell proliferation (PCNA) and apoptotic
activities, the absolute number of positive cells at the area of
interest in five randomly chosen sections (six specimens/group)
were counted.

16S rRNA Sequencing
Bacterial DNA was extracted from oral samples from the mice.
DNA library was prepared with uniquely barcoded primer
targeting the V3/4 region of the 16S rRNA as described
previously (20). The library construction and sequencing data
analyses were performed as previously described (21). The oral
swabs from the mice were sequenced at Majorbio Co. (Shanghai,
China). 338F (5’- ACTCCTACGGGAGGCAGCAG-3’) and
806R (5’- GGACTACHVGGGTWTCTAAT-3’) primers were
used to amplify the V3/V4 region of 16S rDNA. Barcoded 16S
rDNA amplicon sequencing was performed through Illumina
MiSeq platform. Sequences were trimmed using Trimmomatic
(22) based on quality scores of 20, and pair-end reads were
merged into longer reads by FLASH (23). Unqualified sequences,
too short or contained ambiguous residues, were removed.
Operational taxonomic units (OTUs) were clustered using
Usearch version 7.0 (http://drive5.com/uparse/) at the 97%
similarity level, and final OTUs were generated based on the
clustering results. All sequencing data were uploaded to NCBI
SRA database with an accession number SRP276563.

The pre-processed sequencing data was further analyzed
with the following statistical methods. (1) Alpha diversity
analysis was based on Shannon index. (2) PCoA (principal
coordinates analysis) was used to compare the beta diversity
within groups. Two non-parametric analyses for multivariate
data, multivariate analysis of variance (Adonis) and analysis of
similarities (ANOSIM) using distance matrices, were used to
examine the community difference within groups. (3) Taxonomic
annotations were assigned to each OTU’s representative sequence
by blasting with the oral “CORE” reference database. The relative
abundances of bacterial taxa at genus levels were analyzed and
compared. All analyses were performed with I-Sanger online
tools (http://www.i-sanger.com/).
Frontiers in Immunology | www.frontiersin.org 3
Quantitative Real-Time PCR
The qPCR amplification was performed on a StepOnePlus™

Real-Time PCR System (Applied Biosystems). For quantification
of total bacterial load, the reaction mixture (25 ml) contained
SYBR® Premix Ex Tag II (Takara Bio), microbial genomic DNA
(2 ml), and forward and reverse primers (10 mM each). Threshold
cycle (CT) values were determined, and relative ratio of 16S
and 18S was calculated based on the 2–DDCT method (24). NI1060
was quantified with the protocol described previously (25).
For quantification of the expression level of napA, microbial
RNA was extracted with TriZol Reagent (Invitrogen) according
to the manufacturer’s instructions. Reverse transcription of RNA
into cDNA was performed with the PrimeScript RT Reagent Kit
with gDNA Eraser (Takara Bio). The expression levels of napA
were measured with that of the control group as control. The
sequence of the primers (16S, 18S and napA) used referred to the
previous study (24).

Anaerobic Bacteria Cultivation
Oral mucosa of mice was swabbed for 30 s and the swabs were
then inserted into Eppendorf tubes containing 100 µL of
Wilkins-Chalgren medium (Oxoid). The samples were serially
diluted and plated on blood agar for two days under anaerobic
conditions at 37°C. Colonies were enumerated to determine the
colony-forming units (CFUs) of total cultivatable oral anaerobic
bacteria (24).

Statistical Analysis
For 16S rRNA sequencing data, statistical analyses were
performed with I-Sangers online tools (http://www.i-sanger.
com/) (25, 26). The differences in beta diversity (revealed by
PCoA) within groups were compared; the alpha diversity data
and genus-level microbial composition data were analyzed by
Wilcoxon rank-sum test for two group comparison and Kruska-
Wallis H test with the Dunn’s test for three group comparisons.
All other data were statistically analyzed by GraphPad Prism 6.
Differences between groups were analyzed by one-way analysis of
variance test followed by Tukey’s test. A two-tailed P<0.05 was
considered significant.
RESULTS

S. salivarius K12 Ameliorates Radiation-
Induced Oral Mucositis in Mice
The body weights of mice that received irradiation decreased
sharply, while S. salivarius K12 treatment alleviated the body
weight loss (Figure 1A). The total body weight loss of S.
salivarius K12 treatment group (-8.33g) was significantly less
than that of irradiated mice (-12.05g) on the 9th day after
irradiation (Figure 1B). In the oral cavity of irradiated mice,
conspicuous mucositis, particularly on the lingual mucosa was
observed as reflected by toluidine blue staining (Figure 1C).
Topical application of S. salivarius K12 significantly reduced the
severity of oral mucositis in irradiated mice (Figure 1C–E).
Specifically, the relative area of mucositis including ulcers was
June 2021 | Volume 12 | Article 684824

http://drive5.com/uparse/
http://www.i-sanger.com/
http://www.i-sanger.com/
http://www.i-sanger.com/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Wang et al. Probiotic Alleviates Oral Mucositis
significant reduced in the IR+K12 group (9.03%) as compared to
that in the IR+Saline group (77.42%) (Figure 1D). The relative
ulcer area in tongues of the S. salivarius K12-treated mice
(5.02%) was also significantly lower than the IR+Saline group
(20.21%) (Figure 1E). H&E staining showed conspicuous
mucosal hypoplasia and ulceration in the tongue of irradiated
mice, while S. salivarius K12 treatment partially restored the
integrity of the lingual mucosa (Figure 2A). Topical use of S.
salivarius K12 also significantly increased mucosal thickness
(Figures 2B, C) and basal layer epithelial cellularity in both
ventral and dorsal tongues (Figures 2D, E).

Further immunohistology showed that irradiation attenuated
the proliferation of basal layer epithelial cells and induced
significant apoptosis in both ventral and dorsal tongue of
RIOM mice as compared to the irradiation-free controls
(Figure 3). S. salivarius K12 treatment significantly rescued
this pathology, as increased number of PCNA+ proliferative
cells in the baser layer epithelium (Figures 3A–C) and
decreased number of TUNEL+ apoptotic cells (Figures 3D–F)
were observed in both dorsal and ventral tongues of the IR+K12
group compared to the IR+Saline group.

S. salivarius K12 Modulates Oral
Microbiota in RIOM Mice
16S rRNA sequencing data showed that the oral cavity of RIOM
mice harbored a microbiota with lower alpha diversity relative to
Frontiers in Immunology | www.frontiersin.org 4
the irradiation-free controls (Figure 4A). Principal coordinates
analysis (PCoA) based on Bray-Curtis distance showed that the
oral microbiota of RIOM was distinct from that of irradiation-
free controls (Figure 4B), indicating an altered microbial
structure. Further analysis of the top 15 abundant bacterial
taxa revealed genus-level differences between RIOM mice and
irradiation-free controls (Figure 4C). The oral microbiota of
RIOM mice had significantly increased abundance of
unclassified_f_Pasteurellaceae, Pasteurella, Muribacter,
Corynebacterium and unclassified_O_Lactobacillales and lower
levels of norank_f_Bacteroidales_S24-7_group, Rhodococcus, norank
_c_Cyanobacteria, Lactobacillus, Lachnospiraceae_NK4A136_group
and Escherichia-Shigella as compared to the irradiation-free controls.

The oral microbiota of RIOM mice with/without S.
salivarius K12 treatment showed no difference in alpha
diversity (Figure 4A). PCoA based on Bray-Curtis distance
revealed differential clustering of the oral microbiota among the
IR+Saline, IR+K12, and irradiation-free controls, suggesting
partial reconstitution of microbial structure after S. salivarius
K12 treatment (Figure 4B). More importantly, S. salivarius K12
treatment altered the microbial composition of RIOMmice. An
enrichment of Pasteurella was observed in IR+Saline group as
compared to the irradiation-free controls, and S. salivarius K12
treatment reduced the amount of Pasteurella in the RIOM mice
(Figure 4C). Further species-specific qPCR analysis showed
that a periodontitis-associated pathogen NI1060 in the
A B

D

E

C

FIGURE 1 | Streptococcus salivarius K12 alleviates body weight loss and reduces tongue ulcer area in RIOM mice. (A) Average body weight loss. (B) Total body
weight loss. (C) Toluidine blue staining of harvested tongues. The area of mucositis with (red arrow) and without ulcer (green arrow) was stained blue. Blue arrow:
staining at the site of incision to remove tongue. (D) Quantitative analyses of mucositis area (mucositis+ulcer/whole surface area). (E) Quantitative analyses of ulcer
area (ulcer/whole surface area). Data are presented as mean ± SD. ***P < 0.001. N = 5 per group.
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Pasteurella genus was significantly enriched in IR+Saline
group, and S. salivarius K12 treatment significantly reduced
its abundance in the oral cavity of RIOM mice (Figure 4D).

S. salivarius K12 Suppresses the
Overgrowth of Oral Anaerobes in
RIOM Mice
Microbial samples from the oral swabs were further analyzed to
investigate the effect of S. salivarius K12 treatment on the oral
microbiota of RIOM mice. The oral cavity of IR+Saline mice was
colonized with twice the number of bacteria as compared to the
irradiation-free controls; while S. salivarius K12 treatment
significantly reduced the overall microbial load (Figure 5A).
More importantly, the IR+Saline group presented an increased
amount of cultivated anaerobic bacteria as compared to the
irradiation-free controls, and S. salivarius K12 treatment
significantly reduced the amount of cultivated anaerobic
bacteria in RIOM mice (Figure 5B). Consistently, an elevated
expression of gene encoding nitrate reductase (napA) was
observed in the oral microbiota of RIOM mice as compared to
that of irradiation-free controls, and S. salivarius K12 treatment
significantly downregulated napA expression (Figure 5C).
DISCUSSION

Radiotherapy is one of the most commonly used treatment
modalities for head and neck cancers, but with frequent
complications as oral mucositis. Limited evidence has
suggested the involvement of oral microbes in the development
of oral mucositis in this context (8, 27, 28). In the current study,
we demonstrated that radiation caused oral microbial dysbiosis
of RIOM mice. More importantly, topical use of probiotic
S. salivarius K12 ameliorated oral mucositis in RIOM mice by
Frontiers in Immunology | www.frontiersin.org 5
modulating the oral microbiota, representing a promising
approach to the management of RIOM.

The pathogenesis of radiation-induced oral mucositis remains
undefined, and the complex interaction between microbiota and
host has been suggested (9, 10, 29). Recently, increasing evidence
suggests that microbiota has played an important role in the
pathogenesis of mucositis (29, 30). Hu et al. analyzed the
supragingival plaque of eight nasopharyngeal carcinoma (NPC)
patients receiving head and neck radiotherapy and found that the
relative abundance of core microorganisms changed dynamically
during radiotherapy (27, 28). Zhu et al. revealed that bacterial
community structure altered progressively in NPC patients
during radiotherapy, accompanied with a marked increase of
certain Gram-negative bacteria. Patients who eventually
developed severe oral mucositis harbored a higher abundance
of Actinobacillus during the phase of erythema-patchy mucositis
(8). Reyes-Gibby et al. found that changes in the abundance of
genera, including 1) Cardiobacterium and Granulicatella at the
baseline; 2) Prevotella, Fusobacterium and Streptococcus
immediately before the development of oral mucositis; and 3)
Megasphaera and Cardiobacterium immediately before the
development of severe oral mucositis, over the course of
treatment in the patients with squamous cell carcinoma of the
head and neck were associated with the onset of severe oral
mucositis (31). These data suggest the involvement oral
microbial dysbiosis in the development of RIOM.

S. salivarius K12 was first isolated from the throat of a healthy
child, and is currently used as a probiotic for the treatment
oral malodor, oral candidiasis, secretory otitis media and
pharyngotonsillitis (14, 15, 32–35). Given the presence of oral
microbial dysbiosis after irradiation, we used S. salivarius K12 to
treat the RIOM mice. Our results showed that S. salivarius K12
could modulate oral microbiota, and effectively alleviated RIOM,
as reflected by a significant reduction of ulceration, increased
A B

D E

C

FIGURE 2 | Streptococcus salivarius K12 promotes RIOM healing in mice. (A) Representative images of H&E staining indicating the integrity of lingual mucosa
(Scale bar, 100 µm). (B, C) Quantitative analysis of mucosal thickness of ventral tongues and dorsal tongues, respectively. (D, E) Basal layer epithelial cellularity of
ventral tongues and dorsal tongues, respectively. Data are presented as mean ± SD. N=6 per group. One-way ANOVA test followed by Tukey’s test. ***P<0.001.
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thickness of tongue mucosa and the density of basal cells,
enhanced basal cell proliferation, and attenuated apoptosis.
Although few studies have demonstrated beneficial effects of
probiotics in the treatment/prevention of oral mucositis,
satisfactory outcomes have also been reported by others using
probiotics to treat intestinal mucositis induced by radiotherapy/
chemotherapy. Kato et al. found that Bifidobacterium bifidum
G9-1 could improve the microbial dysbiosis and thus
ameliorated 5-Fluorouracil-induced intestinal mucositis in
mice (11) . Consistent ly , another study found that
administration of a probiotic mixture DM#1, which includes
four probiotic strains as Bifidobacterium breve DM8310,
Lactobacillus acidophilus DM8302, Lactobacillus casei DM8121
and S. thermophiles DM8309, ameliorated 5-Fluorouracil-
induced intestinal mucositis via the reestablishment of
microbial homeostasis and regulation of the TLR2/TLR4
signaling pathway (36). Lactobacillus rhamnosus GG also
shows a protective effect on the intestinal epithelium from
Frontiers in Immunology | www.frontiersin.org 6
radiation injury, possibly through the release of lipoteichoic
acid that activates the radioprotective TLR2 (37).

In addition to the shift of oral microbiota after irradiation, we
also observed an increased microbial load and overgrowth of
anaerobic bacteria in the oral cavity of RIOM mice, along
with an elevated expression of nitrate reductase gene (napA).
Consistently, Kato et al. reported an elevated amount of
anaerobic bacteria in mice with 5-fluorouracil-induced intestinal
mucositis (11). Nassar et al. also reported a higher expression levels
of napA in Gas6−/− mice, which harbored dysbiotic microbiota
with expansion of anaerobic bacteria (24). NapA, as an important
nitrate reductase, plays an important role in the growth of anaerobic
pathogenic bacteria. By expressing nitrate reductase, the anaerobic
bacteria can use electron acceptors generated as a byproduct of
inflammation to support their growth by anaerobic respiration (24,
38). Lipopolysaccharides (LPS) produced by Gram-negative
anaerobes could induce inflammatory responses by activating
toll-like receptor 4 signaling pathway (39), which may contribute
A B

D
E

F

C

FIGURE 3 | Streptococcus salivarius K12 promoted the proliferation of mouse tongue basal layer cells and reduced apoptosis of mouse tongue mucosal cells.
(A) Representative microscopic images of mouse tongues PCNA staining (Scale bar, 100 µm). (B) Percentage of basal layer PCNA positive cells in mouse ventral
tongues. (C) Percentage of basal layer PCNA positive cells in mouse dorsal tongues. (D) Representative microscopic images of TUNEL staining on mouse tongues
(Scale bar, 30 µm). (E) Percentage of TUNEL-positive cells in mouse ventral tongues. (F) Percentage of TUNEL-positive cells in mouse dorsal tongues. Data are
presented as mean ± SD. N=6 per group. One-way ANOVA test followed by Tukey’s test. ***P < 0.001.
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to the development of oral mucositis. In the current study, S.
salivarius K12 treatment reduced the number of anaerobic bacteria
and downregulated the expression of napA in RIOM mice. In
addition, S. salivarius K12 treatment reduced the abundance of
bacterial genera including Pasteurella, Corynebacterium,
Porphyromonas, and Staphylococcus. Intriguingly, an increase of
NI1060 in the Pasteurella genus was observed in RIOM mice.
NI1060 is an inflammation-related bacterium identified in murine
ligature-induce periodontitis (40). The genomic sequencing of
NI1060 revealed its possible virulence genes involved in
lipooligosaccharide synthesis, adhesins and bacteriotoxic proteins,
Frontiers in Immunology | www.frontiersin.org 7
which were potentially important for host adaption and induction
of dysbiosis through bacterial competition and pathogenicity (41).
Our recent study on periodontitis also suggests the involvement of
this bacteria in periodontitis (25). The enrichment of NI1060 in
the oral cavity of mice receiving radiation suggests a possible
involvement of this pathogenic bacteria in the development of
RIOM. Although more studies are still needed, this bacterium may
provide a potential target for the treatment/prevention of RIOM.

Some cautions should be taken when interpreting data from
the current study. Firstly, the RIOMmouse model was established
usinga singlehigh-dose irradiation referring toaprevious study (18).
A B

DC

FIGURE 4 | Streptococcus salivarius K12 modulates oral microbiota in RIOM mice. (A) The alpha diversity of oral microbiota. (B) Principal coordinate analysis
(PCoA) of oral microbiota based on Bray-Curtis distance. (C) Prevalent genus with significant difference in abundance. Values are presented as median, interquartile
range, minimum, and maximum. Kruska-Wallis H test with post hoc tests applying the Dunn’s test for multiple comparisons. (D) qPCR quantification of NI1060
(mean ± SD). One-way ANOVA test followed by Tukey’s test. N=6 per group. ns, not significant. *P < 0.05, **P < 0.01, ***P < 0.001.
A B C

FIGURE 5 | Streptococcus salivarius K12 suppresses the overgrowth of oral anaerobes in RIOM mice. (A) Total bacteria in oral swabs were quantified by qPCR
normalized as 16S/18S rRNA. (B) Total cultivable oral anaerobes in oral swabs. (C) Relative expression levels of nitrate reductase napA gene of oral microbiota. Data
are presented as mean ± SD. N=6 per group. One-way ANOVA test followed by Tukey’s test. ***P < 0.001.
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Nevertheless, conventional radiotherapy for cancer patients
consists of low fractionated X-ray doses lasting for weeks in most
cases (42). Since single high-dose irradiation and low-dose
fractionated irradiation could exert different effects on oral
mucosa and oral microbiota, future studies using animal models
closer to the clinical radiation regimens are warranted. Secondly,
we only sampled oral microbial samples on day 9 post irradiation
because overt ulceration in mouse tongue mucosa peaked 9 days
after irradiation. Whether S. salivarius K12 can accelerate the
restoration of microbial dysbiosis still needs dynamic sampling
after irradiation. Thirdly, although S. salivarius K12 showed
effectiveness in the treatment of RIOM and the inhibition of oral
anaerobes in the current study, whether this probiotic strain can
directly act on tissue inflammation other than competing oral
anaerobes to promote the healing of RIOM still needs further
investigations. It should be noted that changes in commensal
bacteria took place at the early stage of radiotherapy (27, 28),
suggesting that microbial alteration could possibly be an initiating
factor rather than a consequence of oral mucositis. A recent
systematical review including five clinical studies of 435 patients
has indicated that probiotics may help reduce the incidence and
mitigate the severity of cancer therapy-inducedoralmucositis (43).
However, as the selection and combination of probiotics,
application method and target population vary among these
studies, more evidence is still needed to justify the clinical
application of probiotic in this scenario. In addition, the differed
host responses of probiotics warrant customized probiotic
interventions on patients receiving varying anti-cancer treatment
modalities (44). It is also noteworthy that the use of probioticsmay
cause invasive infection in patients with compromised immunity
(45). More work is still needed to translate the application of
probiotics to the management of RIOM in the future.

In summary, our data show that probiotic S. salivarius K12
can modulate oral microbiota and ameliorate radiation-induced
oral mucositis in a RIOM mice model. S. salivarius K12 as a
probiotic represents a promising therapeutic against RIOM.
Since probiotics have been proposed as a potential approach to
the management of radiotherapy/chemotherapy-induced
mucositis (46), S. salivarius K12 as an oral probiotic represents
a promising adjuvant treatment to improve the quality of life of
cancer-patients receiving radiotherapy.
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