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Primary Sjögren’s syndrome (pSS) is a chronic autoimmune disease characterized by
lymphocytic infiltration and tissue destruction of exocrine glands such as salivary glands.
Although the formation of ectopic lymphoid tissue in exocrine glands and overproduction
of autoantibodies by autoreactive B cells highlight the critical involvement of B cells in
disease development, the precise roles of various B cell subsets in pSS pathogenesis
remain partially understood. Current studies have identified several novel B cell subsets
with multiple functions in pSS, among which autoreactive age-associated B cells, and
plasma cells with augmented autoantibody production contribute to the disease
progression. In addition, tissue-resident Fc Receptor-Like 4 (FcRL4)+ B cell subset with
enhanced pro-inflammatory cytokine production serves as a key driver in pSS patients
with mucosa-associated lymphoid tissue (MALT)-lymphomas. Recently, regulatory B
(Breg) cells with impaired immunosuppressive functions are found negatively correlated
with T follicular helper (Tfh) cells in pSS patients. Further studies have revealed a pivotal
role of Breg cells in constraining Tfh response in autoimmune pathogenesis. This review
provides an overview of recent advances in the identification of pathogenic B cell subsets
and Breg cells, as well as new development of B-cell targeted therapies in pSS patients.
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INTRODUCTION

Primary Sjögren’s syndrome (pSS) is a common systemic autoimmune disease, which mainly affects
the lacrimal and salivary glands, resulting in dry eyes and dry mouth. However, the extra-glandular
manifestations occur in 30 to 40% of pSS patients, involving lung, heart, kidney, nervous system and
lymphoproliferative disorders (1, 2). Although the etiology of pSS remains unclear, numerous
studies have demonstrated that both T and B cells are the major populations for pro-inflammatory
cytokine production and autoantibody secretion with critical involvement in pSS pathology (3). A
recent multiple-centre study reported that pSS patients in China had higher positive rates of anti-
nuclear antibody (ANA) and anti-Sjögren’s syndrome-related antigen A (anti-SSA) antibodies than
those of patients in Europe and America, indicating that disease heterogeneity among pSS patients
org June 2021 | Volume 12 | Article 6849991
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in different regions (4). Growing evidence indicates that B cells
play predominant roles in the pathogenesis of pSS patients with
ectopic germinal center-like structures in the exocrine glands and
systemic extra-glandular manifestations (5, 6). It has been well
recognized that autoreactive B cells and plasma cells contribute
to the development of pSS by producing various autoantibodies,
including ANA, anti-SSA and anti-Sjögren’s syndrome type B
(anti-SSB) antibody (7, 8). Recent studies have revealed other
functions of B cells such as cytokine production (9, 10) and
antigen presentation (11) in the pathogenesis of pSS. Increasing
evidence indicates the functional diversities of B cell subsets in
both immunity and autoimmune pathogenesis (12). In
particular, Breg cells with different phenotypes have been
reported to be involved in the development of pSS (13–16).
Breg cells exerted their regulatory functions by producing diverse
regulatory cytokines and effector molecules, such as IL-10, IL-35
and Granzyme B (GrB). Although B cell targeted therapy is
among the most promising therapeutic approaches to various
autoimmune diseases, its efficacy in treating pSS patients
remains to be further validated. In this review, we discuss the
multiple functions of B cell subsets in pSS development and
emerging B cell-targeted therapies.
PATHOGENIC B CELL SUBSETS

Fc Receptor-Like 4 (FcRL4)+ B Cells
FcRL4+ B cells are tissue-resident memory B cells that express Fc
Receptor-Like 4 (FcRL4). As a member of Fc Receptor-Like
proteins family, FcRL4 is mainly expressed by the B-cell lineage
(17). FcRL4 is found to dampen B cell receptor-mediated signaling
and proliferation, which plays an essential role in regulating B cell
activation and differentiation. In 2005, Max Cooper and colleagues
first described these B cells in human tonsils (18). Subsequent
studies confirmed that FcRL4+ B cells were mainly localized in the
sub-epithelial region of lymphoid tissues but rarely in spleen and
lymph nodes (19, 20). FcRL4+ B cells are expanded in the inflamed
tissues of patients with pSS (21, 22). Moreover, enriched FcRL4+ B
cells are detected in salivary glands of pSS patients (21). Further
studies on the comparison of FcRL4+ B cells with chemokine
receptor CCR5 expression profiles from the parotid glands of pSS
patients provide a perspective for understanding their migratory
Frontiers in Immunology | www.frontiersin.org 2
ability to the corresponding chemokines CCL3 and CCL5 produced
by ductal epithelial cells and their infiltration in the inflamed glands
(22, 23). In addition, studies with gene transcription analysis
suggest that parotid FcRL4+ B cells with upregulated CXCR3
expression may enhance their migration (22). Notably, compared
with patients without lymphoma, the percentages of FcRL4+ B cells
are significantly increased in pSS patients with MALT-lymphomas,
indicating that these B cells may contribute to the development of B
cell lymphoma in pSS patients (21).

Lines of evidences suggest that FcRL4+ B cells play a
pathogenic role in the development of pSS (21, 22) (Table 1).
The percentages of parotid FcRL4+ B cells are positively correlated
with the numbers of lymphoepithelial lesions in pSS patients (21).
Additionally, FcRL4+ B cells produce multiple pro-inflammatory
cytokines. IL-6 gene is significantly upregulated in FcRL4+ B cells
from pSS patients, suggesting that FcRL4+ B cell is a pro-
inflammatory B cell subset in autoimmune diseases (22)
(Figure 1). Interestingly, a recent study with transcription
analysis of gene expression has revealed that FcRL4+ B cells
highly express ITGAX (CD11c) and TBX21 (T-bet) genes (22),
similar to the gene expression pattern detected in CD11c+T-bet+ B
cells (24, 25). Although both B cell subsets displayed similar
patterns of downregulated BCR signaling and enhanced TLR
signaling, they may possess different capacities in differentiating
into antibody-secreting cells (ASCs) since the lack of transcription
factors Blimp1 and IRF-4 in FcRL4+ B cells may reduce their
ability to differentiate into ASCs (21). It has been reported that
the treatment with Rituximab reduces the number of parotid
gland FcRL4+ B cells and restores the glandular epithelium
in pSS patients (21). As the first and most widely studied B cell-
targeted therapeutic agent, Rituximab depletes mature B cells
effectively, lasting four to twelve months (47). In addition
to FcRL4+ B cells, circulating Tfh cells and Th17 cells are
also reduced by Rituximab accompanied by decreased serum
IL-21 and IL-17 levels (48). Thus, further elucidation of the
pathogenic mechanisms of FcRL4+ B cells may facilitate the
development of novel therapeutic strategies for targeting this B
cell subset in pSS.

CD11c+Age-Associated B Cells
CD11c+Age-associated B cells (ABCs) were firstly reported by
two independent research groups in 2011 (24, 25). CD11c+ABCs
TABLE 1 | Pathogenic and regulatory B cell subsets in pSS.

B cell subset Markers Functions Potential therapy

FcRL4+ B cell FcRL4, CCR5, CXCR3, ITGAX, TBX21 (22, 23) Pathogenic Rituximab (21)
Age-Associated B cell CD11c, T-bet, CXCR5, CD21, CD23 (24–26) Pathogenic Belimumab (27) Telitacicept (28) Remibrutinib (29, 30)

Iscalimab (31), Abatacept (32)
Transitional B cell CD21, IgD, IgM (33) Pathogenic
Marginal Zone B cell CD21, CD23, IgD (34) Pathogenic Rituximab
Memory B cell CD27, CXCR4, CXCR5 (35) Pathogenic
Plasma cell CD138, CD27, CD38, Bcl-2 (36–39) Pathogenic Bortezomib (40)
IL-10+ Breg CD24, CD38, CD1d, CD5, IL-10 (41, 42) Protective
GrB+ Breg CD5, GrB (43) Protective
IL-35+ Breg CD138, TACI, CXCR4, IL-35 (44, 45) Protective
Regulatory Plasma Cell LAG-3, CD138 (46) Protective
June 2021 | Volume 12 | Article 684999
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are characterized by phenotypic markers including CD11c+,
CD11b+, CD21-/low, CD23low (24, 25), which are notably
expanded in the peripheral blood of patients with several
autoimmune diseases, including systemic lupus erythematosus
(SLE) (49, 50), RA (25) and multiple sclerosis (MS) (51). In pSS
patients, CD11c+ABCs infiltrated in parotid glands have been
identified with double staining for CD11c and Pax5 (22).
CD11c+ABCs express high levels of the transcription factor T-
bet, exhibiting a distinct phenotype from other B cell subsets
(24–26). T-bet is a transcription factor that has been considered
as a hallmark of Th1 cells. However, recent studies have revealed
that T-bet is also expressed in certain B cells with co-expression
of CD80 and CD86, suggesting that these B cells are potent
antigen-presenting cells (52) (Table 1). CD11c+ABCs appear to
be recruited into inflamed tissues via specific chemokine-
chemokine receptor axis. CD11c+ABCs with low levels of
CXCR5 and CCR7 expression are localized outside the B cell
follicles (53). Experiments with adoptive transfer of
CD11c+ABCs have confirmed their location at the boundary
region between T cell and B cell zones, which is very similar to
the location of interfollicular large B cells that are found in the T
cell-rich area of secondary lymphoid organs and ectopic
lymphoid structures in pSS patients (54, 55). The interfollicular
large B cells express high levels of Activation-induced cytidine
deaminase and are associated with B cell lymphoma in patients
with pSS (56). CD11c+ABCs can secrete various cytokines,
including IL-1b, IL-6, IFN-g and IL-10 (Figure 1).

Available data suggest that CD11c+ABCs may be derived from
different cell compartments in healthy people and SLE patients.
Frontiers in Immunology | www.frontiersin.org 3
It has been reported that CD11c+ABCs are mainly CD27+IgD-

switched memory B cells in healthy people (57). However,
CD11c+ ABCs in SLE patients are enriched in CD27-IgD-

double negative (DN) B cell population that can be further
divided into two subsets, DN1 and DN2, according to the
chemokine receptor CXCR5 expression (49). IFN-g can trigger
naïve B cell precursors to become activated naïve or DN1 B cells
with high levels of T-bet expression (58). CD27-IgD-CXCR5-

(DN2) B cells are capable of differentiating into plasma cells
induced by IL-21 in lupus patients. Frequencies of DN2 B cell are
associated with lupus-related autoantibodies, including
antibodies to dsDNA, nucleosome, histones and chromatin.
Thus, autoreactive CD11c+ABCs may participate in the
pathogenesis of lupus by secreting high titers of autoantibodies
derived from an extrafollicular response. Moreover, type I
interferon produced by plasmacytoid dendritic cells can
promote plasmablasts to secrete anti-dsDNA antibodies from
extrafollicular responses (59). It has been shown that depletion of
CD11c+ABCs greatly reduces autoantibody levels and disease
manifestations in lupus mice, which further confirms that
CD11c+ABCs play a pathogenic role in the development of
lupus (25). In pSS patients, the functional features of
CD11c+ABCs remain largely unclear. A recent study has
demonstrated that upregulated IL-21 signaling pathway in
salivary glands of pSS patients is associated with enriched B
cells and increased disease activity (60). Moreover, expanded IL-
21+ Tfh cells in SS patients are associated with ectopic lymphoid
structures and MALT-lymphomas (61). Given the accumulating
evidence on a vital role of IL-21 in regulating CD11c+ABCs in
FIGURE 1 | Multiple functions of B cells and novel B cell-targeted therapies in pSS. The upper part of the figure shows the pathogenic B cell subsets (FcRL4+ B
cells, age-associated B cells and plasma cells), regulatory B cells and plasma cells secreting various cytokines, IL-10, IL-35 and GrB. The lower part describes the
multiple B cell-targeted therapies, consisting of direct and indirect B cell depletion, plasma cell depletion.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Du et al. B Cells in Sjögren’s Syndrome
lupus patients, it is likely that enhanced IL-21 signaling in
salivary gland may promote CD11c+ABCs functions in the
pathogenesis of pSS.

Although it is currently unclear whether CD11c+ABCs can be
depleted by anti-CD20 or anti-CD19 therapies, targeting
CD11c+ABCs is an appealing approach for the treatment of
patients with autoimmune diseases. Previous studies reported
elevated levels of both B-cell activating factor (BAFF) and A
proliferation-inducing ligand (APRIL) in serum and saliva of pSS
patients compared with healthy control (62, 63). Further
immunohistochemical staining and transcript analysis reveal
that the primary sources of BAFF are infiltrated T and B cells
as well as ductal epithelial cells (64). Although the survival
factors for CD11c+ABCs remain to be determined,
CD11c+ABCs express high levels of BAFF receptor (BAFFR),
intermediate densities of Transmembrane activator and CAML
interactor (TACI) and minimal B-cell maturation antigen
(BCMA) in lupus patients (50). A recent study has shown that
anti-BAFF treatment with Belimumab reduces circulating
CD11c+ABCs in SLE patients (27). Hence, these findings
suggest that BAFF may regulate the survival of CD11c+ABCs
in the local tissues of pSS patients. Recently, Belimumab has been
evaluated in an open-label trial of 30 patients with pSS (65). The
results showed that sixty percent of pSS patients achieved the
primary endpoint whereas the disease activity index was
significantly decreased at week 28. Considering that
CD11c+ABCs may participate in the pathogenesis of pSS, it is
possible that Belimumab can ameliorate the disease progression
by depleting ABCs in pSS. Another promising therapy for
targeting CD11c+ABCs is Telitacicept, which is a novel TACI-
Fc fusion protein that binds to BAFF and APRIL (28). A phase 2b
clinical trial of Telitacicept has reported a statistically significant
difference in the clinical response rate between Telitacicept group
(79.2%) and the placebo group (32%) (66). Currently, a phase 2
clinical study to evaluate Telitacicept effects on pSS patients is
underway (Clinical Trials: NCT04078386). Furthermore, the
blockade of cytokines such as IFN-g, type I interferon or IL-21
may be promising strategies to target CD11c+ABCs since these
cytokines are critically involved in triggering B cell activation and
differentiation (50, 58). Emerging evidence reveals that enhanced
activity of Bruton’s tyrosine kinase (Btk) in peripheral blood B
cells promotes IL-21-mediated signaling pathway by inducing
nuclear phosphorylated STAT1 levels in patients with
autoimmune disease (29, 30). Hence, blockade of Btk
(Remibrutinib) may possibly inhibit the pathogenic function of
CD11c+ABCs. It has been recently reported that both frequencies
and numbers of ABC with high levels of CD11c and T-bet
expression are significantly reduced in aged CD154 (CD40L)-
deficient mice compared to controls, indicating that CD40-
CD40L interaction is essential for ABC generation (31). Thus,
the blockade of CD40-CD40L interaction with Iscalimab may
also represent a potential therapeutic strategy for targeting
CD11c+ABCs in the treatment of pSS. CD21-/low B cells, a
subset of CD11c+ABCs, are found to be associated with
lymphoproliferation in pSS patients (67), in which both
percentages and absolute numbers in pSS patients are
Frontiers in Immunology | www.frontiersin.org 4
significantly increased when compared with healthy controls.
Moreover, CD21-/low B cells are also expanded in other
autoimmune diseases, such as SLE (68) and RA (69). Similar to
FcRL4+ B cells, CD21-/low B cells highly express CD11c and
FcRLs, including FcRL2 and FcRL3. These B cells exhibit
profound activation defects when they are triggered by BCR
and CD40 but could be activated by the stimulation of TLRs
(TLR3, TLR7 and TLR9) (67). Furthermore, CD21-/low B cells
express high levels of co-stimulatory molecules CD80 and CD86,
which enable them to act as antigen-presenting cells for T cell
cognate interaction (70). CD21-/low B cells promote the
progression of pSS by secreting high-affinity autoantibodies,
including anti-cytoplasmic and anti-nuclear autoantibodies
(67). As a selective co-stimulation modulator, Abatacept
directly binds to CD80 and CD86, which may reduce the
antigen-presenting function of CD21-/low B cells (32).

Transitional B Cells
Transitional B cells are the B cell subset newly emigrated from the
bone marrow to the secondary lymphoid organs. Upon activation
by cognate antigens, CD21+/-IgD+/-IgM+/- transitional type-1 B cells
can differentiate into CD21+IgD+IgM+ type-2 B cells. It has been
recently reported that new transitional CD21lowCD10+IgMhiCD27-

B cells expressing polyreactive antibodies are increased in the
peripheral blood of pSS patients (33) (Table 1). This observed
increase in transitional B cells may reflect the defective central B cell
tolerance in pSS patients. Moreover, transitional type-2 B cells are
expanded in the ectopic germinal center-like structures of salivary
glands in pSS patients (71). The available findings suggest that
transitional B cells may drive the local tissue functional impairment
and inflammation by producing antibodies.

Marginal Zone B Cells
Recent studies have reported increased marginal zone B cells
(MZ B) in patients with pSS (71) and mice with SS-like symptoms
(8, 72). Phenotypic analysis shows that MZ B cells express high
levels of CD21, but low levels of CD23 and IgD (34) (Table 1). In
pSS patients, MZ B cells are found to be accumulated in the
salivary glands and contribute to the glandular destruction by
producing autoantibodies (71). In BAFF transgenic mice,
expansion of MZ B cells is observed in both spleen and salivary
glands while depletion of MZ B cells significantly reduces the
infiltrations in the salivary glands (72). In another SS mouse
model, IL-14 alpha transgenic mice with specific elimination of
MZ B cells exhibit normal saliva secretions and histology of
salivary glands, suggesting that MZ B cells play an indispensable
role in the pathogenesis of SS (8). Moreover, MZ B cells are
closely involved in the development of non-Hodgkin’s B-cell
lymphoma, one of the most severe complications, in pSS
patients (73). In a clinical study, Rituximab has been used to
treat pSS patients with marginal zone lymphomas, which
represents a promising therapeutic option (74).

Memory B Cells
Recent studies have suggested that memory B cells are also
involved in the pathogenesis of pSS. Although CD27+ memory
June 2021 | Volume 12 | Article 684999
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B cells are reduced in the peripheral blood, memory B cells are
accumulated in the salivary glands of pSS patients (75) (Table 1).
Notably, CD27+ memory B cells highly express chemokine
receptors CXCR4 and CXCR5, which may facilitate the
infiltration of memory B cells into the inflamed glands by the
chemokines CXCL12 and CXCL13 derived from epithelial cells
(35). Similar to transitional B cells, CD27+ memory B cells
appear to promote the formation of ectopic germinal center-
like structures in the exocrine glands of pSS patients (76).

Plasma Cells
Compelling evidence indicates that plasma cells (PCs) contribute
to the autoimmune pathogenesis by producing large amounts of
autoantibodies (Table 1). It has been reported that the numbers
of IgG but not IgA expressing CD138+ PCs in salivary glands are
correlated with focus scores of lymphocytic infiltrations in pSS
patients (36). A recent study has also reported that CD19+CD27hi

plasma cells in salivary glands are positively correlated with
serum ANA titers in pSS patients (37). Consistently, Szyszko
et al. have observed increased CD38+CD138+ plasma cells in pSS
patients (38). Notably, certain infiltrated PCs show phenotypic
characteristics of the long-lived plasma cells (LLPCs), which
highly express Bcl-2 but not Ki67. In a spontaneous SS mouse
model, PCs detected in the submandibular glands are mostly
BrdU- in 40-week-old mice, showing the key features of LLPCs
(39). It has been suggested that salivary glands provide a unique
microenvironment for the survival and maintenance of LLPCs.
The salivary gland epithelial cells are found to produce IL-6, a
pivotal cytokine that support the survival of LLPCs. Our recent
studies have identified a novel function of IL-17 in maintaining
the survival of LLPCs via p38-mediated Bcl-xL RNA stability in
murine lupus (77). Interestingly, epithelial cells in the salivary
gland also secrete BAFF and APRIL, which may promote the
survival of LLPCs (78, 79). Thus, these key cytokines and other
factors including CXCL12 and CD44 provide the survival niche
for LLPCs and promote persistent antibody production in
salivary gland during pSS development.

Bortezomib (BTZ), a proteasome inhibitor that induces
plasma cell apoptosis, has been found to be effective in treating
various autoantibody-mediated autoimmune diseases in mice
(80–82). BTZ can eliminate both short- and long-lived plasma
cells and ameliorate lupus nephritis in mice (83). Our recent
studies have also shown that BTZ can suppress Th17 response
and autoantibody production in mice with experimental
Sjögren’s syndrome (ESS) (40) (Figure 1). Several clinical
studies have reported that BTZ treatment significantly reduces
the levels of autoantibodies and improves the symptoms in
patients with autoimmune disease, including refractory pSS,
refractory SLE and thrombotic thrombocytopenic purpura
(84–91). Thus, further investigation on the functional
characteristics of LLPCs in pSS will facilitate the identification
of therapeutic candidates for targeting these B cells.

Recently, two randomized controlled trials using Rituximab
for treating pSS patients have failed to achieve their primary
endpoints (92, 93). Several possible reasons may explain the
failure of these clinical trials. As an anti-CD20 monoclonal
antibody, Rituximab may deplete B cells by antibody-
Frontiers in Immunology | www.frontiersin.org 5
dependent cell-mediated cytotoxicity, complement-dependent
cytotoxicity and, to a lesser extent, direct signaling through
CD20. However, the inhibitory FcgRIIb expression on target B
cells may promote Rituximab internalization and contribute to
drug resistance (94). Another potential mechanism for
Rituximab resistance is CD46-mediated inhibition of
complement activation as increased serum CD46 levels are
detected in pSS patients (95, 96). Thirdly, long-lived plasma
cells express no or very low levels of CD20 and produce large
amounts of autoantibodies in pSS patients, for which Rituximab
treatment fails to target. In pSS patients, infiltrated B cells and
locally differentiated plasma cells reside in the salivary glands
while salivary gland epithelial cells produce large amounts of
cytokines or pro-inflammatory factors for B cell survival such as
BAFF (78). A clinical case report has recently shown that anti-
CD20 treatment followed by Belimumab exhibits a synergistic
effect with dramatically reduced EULAR Sjögren’s syndrome
disease activity index (ESSDAI) in pSS patients with refractory
cryoglobulinemic vasculitis (97). Thus, further large clinical trials
are needed to validate the efficacy of this sequential therapy in the
treatment of pSS.
REGULATORY B CELL SUBSETS

Previous studies have demonstrated that Breg cells are a subset of
B cells that can negatively regulate immune response and
autoimmune inflammation (98–100). Accumulated data
suggest that different Breg subsets may share overlapping
surface markers. In 2010, an elegant study by Mauri and
colleagues identified human Breg cells with a phenotype of
CD19+CD24hiCD38hi B cells (41). Other investigations (101)
also show that IL-10-producing B cells in human blood are
enriched within CD24hiCD27+ B cell population. Moreover, IL-
10-producing B cells are identified among CD27intCD38hi

plasmablasts and exert their regulatory function during
autoimmune pathogenesis in humans and mice (102). Up to
date, many studies have demonstrated that Breg cells exert their
inhibitory functions via various effector mechanisms in
autoimmune diseases (103–105) (Table 1).

IL-10-Producing Breg Cells
In the pathogenesis of pSS, both T and B cells are prominently
involved in lymphocytic infiltration and tissue inflammation in
salivary glands. In ESS mice induced by immunization with
salivary gland protein, Th17 cells have been shown to play a key
role in initiating autoimmune inflammation and disease
progression (106). Moreover, studies by Fu et al. have revealed
that the deficiency of Tfh cells attenuates autoantibody
production and disease progression during ESS induction in
Bcl6fl/flCd4Cre mice, highlighting a crucial role of Tfh cells in
driving autoantibody responses and ESS progression (107). Our
early studies have indicated that IL-10-producing Breg cells can
potently suppress Th17 response and ameliorate collagen-
induced arthritis (108). Recently, we have observed negative
correlations between IL-10-producing Breg cells and Tfh cell
response in both pSS patients and ESS mice (42). During pSS
June 2021 | Volume 12 | Article 684999
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progression, gradually reduced Breg cell frequencies are
accompanied with expanded Tfh cells along with increased
disease activities. In culture, Breg cells suppressed human and
murine Tfh cell differentiation by promoting STAT5
phosphorylation in IL-10-dependent manner (42). Together,
these findings indicate that IL-10-producing Breg cells can
restrain Tfh cell response during pSS development (Figure 1).
Notably, adoptive transfer of Breg cells markedly suppressed Tfh
cell response and alleviated disease progression in ESS mice,
indicating the potential application of Breg cell transfer as cell
therapy for pSS (42). Our previous studies have demonstrated
that low levels of BAFF can induce the differentiation of IL-10-
producing Breg cells (109). Further studies have revealed that
BAFF can induce IL-10 production via activating TACI-
mediated signal transduction in normal and chronic
lymphocytic leukemia B cells (110). Thus, it remains to be
investigated whether and how the blockade of BAFF with
Belimumab treatment may affect the generation or
maintenance of Breg cells in patients with pSS or other
autoimmune diseases.

In pSS patients (16), multiple subtypes of IL-10-producing
Breg cells with different markers including IgA, IgG and IgM are
identified. Interestingly, percentages of IgA-expressing Breg cells
are higher in pSS patients than that of healthy individuals.
However, frequencies of IgG-expressing Breg cells are reduced
in pSS patients while IgM-expressing Breg cells are similar
between pSS patients and controls. It has been reported that
APRIL can induce naïve human B cells to IgA+ IL-10-producing
Breg cells (111). Hence, elevated APRIL levels in SS patients may
promote the formation of IgA-expressing Breg cells. Further
characterization of Ig-expressing Breg cells will provide new
insight in understanding their functional implications in the
pathogenesis of pSS.

GrB-Producing Breg Cells
In addition to IL-10, other effector molecules or cytokines are
also involved in the regulatory functions of B cells. GrB belongs
to the serine protease family that triggers target cell apoptosis
with perforin. An early study revealed that GrB inhibits CD4+ T
cell proliferation via a perforin-independent manner (112). The
frequencies of GrB-producing Breg cells may vary among
different autoimmune diseases. In pSS patients, GrB-producing
CD19+CD5+ B cells with higher IL-21 receptor (IL-21R)
expression are increased in the peripheral blood, along with
expanded IL-21-producing invariant NKT cells (43). However,
reduced GrB-producing Breg cells with lower IL-21R are
observed in RA patients and negatively correlated with disease
activity (113). Similarly, the frequencies of GrB-secreting Breg
cells are decreased in SLE patients, especially in patients with
lupus nephritis (114). Thus, further studies on the functional
implication of GrB-producing Breg cells in the pathogenesis of
pSS will provide new insight in understanding their target cells
and immunopathology of pSS.

IL-35-Producing Breg Cells
As a novel cytokine, IL-35 consists of p35 and EBI3, which is
involved in mediating the regulatory functions of B cells. In mice
Frontiers in Immunology | www.frontiersin.org 6
with B cell-specific p35 (p35-/-) or EBI3 (Ebi3-/-) deficiency,
exacerbated experimental autoimmune encephalomyelitis (EAE)
was developed (44), indicating that IL-35-producing Breg cells
restrain the pathogenesis of EAE. Moreover, IL-35-producing
Breg cells have been shown to suppress Th1 and Th17 cells but
induce Treg cell proliferation in the murine uveitis model (45). A
recent study revealed higher levels of IL-35 expression in
peripheral blood from SLE patients than healthy controls
(115). Further investigations (116) have found that serum IL-
35 concentrations are reduced in patients with lupus nephritis
(LN) compared to those without LN and negatively correlated
with disease activity, suggesting that IL-35 may take part in the
development of lupus nephritis. Treatment of MRL/Lpr mice
with IL-35 promotes the expansion of IL-10-producing Breg cells
and ameliorates the disease progression (117). Although serum
levels of IL-35 are reduced in pSS patients compared with healthy
controls (13), increased EBI3+ B cells are observed, indicating
that IL-35-producing Breg cells may play a role in the
pathogenesis of pSS.

Regulatory Plasma Cells
Recent studies have identified a novel subset of plasma cells
expressing the inhibitory receptor LAG-3, which exert regulatory
functions by secreting IL-10 in mice (46, 118). It has been shown
that B cell receptor signaling is essential for the differentiation of
LAG-3+CD138hi regulatory plasma cells, since these plasma cells
are not present in mice deficient for Btk. Moreover, Toll-like
receptor signaling is critically involved in controlling IL-10
production in regulatory plasma cells (46). In addition,
plasmablasts have also been reported to exert the regulatory
function in an EAE mouse model, in which plasmablasts in the
draining lymph nodes produce IL-10 to suppress autoimmune
pathogenesis (102). Together, these studies provide further
evidence on the expanding functional diversity of plasma cells
in immunity and inflammation.
INTERACTIONS BETWEEN SALIVARY
GLAND EPITHELIAL CELLS AND B CELLS

Lines of evidence suggest that the interactions between salivary
gland epithelial cells (SGECs) and B cells may promote SS
pathogenesis via multiple effector mechanisms (119). It has
been shown that SGECs can drive B cell activation,
differentiation and survival through the direct interaction and
cytokine production (120, 121). In culture, SGECs from pSS
patients promote B cell differentiation into mature B cell
phenotypes (120). Moreover, the survival rates of B cells are
also increased when cultured with SGECs from pSS patients
(121). There is increasing evidence that SGECs may induce B cell
differentiation in an indirect manner. It has been reported that
SGECs can promote T follicular helper cell differentiation and
IL-21 production (122), which may further enhance B cell
hyperactivity in the salivary gland of pSS patients. Accordingly,
the crosstalk between SGECs and B cells highlights a critical role
of SG epithelial cells in SS pathogenesis.
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CONCLUSION

Available studies have indicated that various pathogenic B cell
subsets contribute to the disease progression of pSS, while Breg
cells alleviate the disease activities. However, there is evidence that B
cell predominant phenotype does not involve all pSS patients, which
warrants further studies on the pivotal roles of T cells and innate
immune cell types in the pathogenesis of pSS (3, 123). Recent
findings have provided new insight in understanding the pathogenic
mechanisms of pSS and validated B cell-targeted therapy as future
therapeutic options for patients with pSS (Figure 1). The major
challenges in B cell-targeted therapy include the specific reduction
of disease-related B cell subsets, instead of the complete depletion of
the broader B cell population. In addition, Breg cell-based therapy
may represent a promising clinical application for the therapeutic
intervention. Further studies on the identification and functional
characterization of novel B cell subsets in the pathogenesis of pSS
will facilitate the development of new therapeutic strategies for
Sjögren’s syndrome and other autoimmune diseases.
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Férez-Blando K, Llorente L. Peripheral Regulatory Cells Immunophenotyping
in Primary Sjögren’s Syndrome: A Cross-Sectional Study. Arthritis Res Ther
(2013) 15:R68. doi: 10.1186/ar4245

17. Davis RS. Fc Receptor-Like Molecules. Annu Rev Immunol (2007) 25:525–
60. doi: 10.1146/annurev.immunol.25.022106.141541

18. Ehrhardt GRA, Hsu JT, Gartland L, Leu C-M, Zhang S, Davis RS, et al.
Expression of the Immunoregulatory Molecule FcRH4 Defines a Distinctive
Tissue-Based Population of Memory B Cells. J Exp Med (2005) 202:783–91.
doi: 10.1084/jem.20050879

19. Jourdan M, Robert N, Cren M, Thibaut C, Duperray C, Kassambara A, et al.
Characterization of Human FCRL4-Positive B Cells. PloS One (2017) 12:
e0179793. doi: 10.1371/journal.pone.0179793

20. Polson AG, Zheng B, Elkins K, Chang W, Du C, Dowd P, et al. Expression
Pattern of the Human FcRH/IRTA Receptors in Normal Tissue and in B-
Chronic Lymphocytic Leukemia. Int Immunol (2006) 18:1363–73.
doi: 10.1093/intimm/dxl069

21. Haacke EA, Bootsma H, Spijkervet FKL, Visser A, Vissink A, Kluin PM, et al.
Fcrl4+ B-Cells in Salivary Glands of Primary Sjögren’s Syndrome Patients.
J Autoimmun (2017) 81:90–8. doi: 10.1016/j.jaut.2017.03.012

22. Verstappen GM, Ice JA, Bootsma H, Pringle S, Haacke EA, de Lange K, et al.
Gene Expression Profiling of Epithelium-Associated Fcrl4+ B Cells in
Primary Sjögren ’s Syndrome Reveals a Pathogenic Signature.
J Autoimmun (2020) 109:102439. doi: 10.1016/j.jaut.2020.102439

23. Cuello C, Palladinetti P, Tedla N, Di Girolamo N, Lloyd AR, McCluskey PJ,
et al. Chemokine Expression and Leucocyte Infiltration in Sjögren’s Syndrome.
Br J Rheumatol (1998) 37:779–83. doi: 10.1093/rheumatology/37.7.779

24. Hao Y, O’Neill P, Naradikian MS, Scholz JL, Cancro MP. A B-cell Subset
Uniquely Responsive to Innate Stimuli Accumulates in Aged Mice. Blood
(2011) 118:1294–304. doi: 10.1182/blood-2011-01-330530

25. Rubtsov AV, Rubtsova K, Fischer A, Meehan RT, Gillis JZ, Kappler JW, et al.
Toll-Like Receptor 7 (TLR7)–Driven Accumulation of a Novel CD11c+ B-
Cell Population Is Important for the Development of Autoimmunity. Blood
(2011) 118:1305–15. doi: 10.1182/blood-2011-01-331462
June 2021 | Volume 12 | Article 684999

https://doi.org/10.1056/NEJMcp1702514
https://doi.org/10.1016/S0140-6736(05)66990-5
https://doi.org/10.1016/S0140-6736(05)66990-5
https://doi.org/10.1177/0961203319889666
https://doi.org/10.1177/0961203319889666
https://doi.org/10.1038/nrrheum.2010.118
https://doi.org/10.1002/art.11311
https://doi.org/10.1002/art.39214
https://doi.org/10.1016/j.clim.2016.04.008
https://doi.org/10.1016/j.autrev.2007.01.010
https://doi.org/10.1186/ar3348
https://doi.org/10.3389/fimmu.2017.00319
https://doi.org/10.1038/s41423-019-0308-z
https://doi.org/10.1111/sji.12718
https://doi.org/10.1186/ar4571
https://doi.org/10.1016/j.jaci.2015.09.014
https://doi.org/10.1186/ar4245
https://doi.org/10.1146/annurev.immunol.25.022106.141541
https://doi.org/10.1084/jem.20050879
https://doi.org/10.1371/journal.pone.0179793
https://doi.org/10.1093/intimm/dxl069
https://doi.org/10.1016/j.jaut.2017.03.012
https://doi.org/10.1016/j.jaut.2020.102439
https://doi.org/10.1093/rheumatology/37.7.779
https://doi.org/10.1182/blood-2011-01-330530
https://doi.org/10.1182/blood-2011-01-331462
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Du et al. B Cells in Sjögren’s Syndrome
26. Rubtsova K, Rubtsov AV, van Dyk LF, Kappler JW, Marrack P. T-Box
Transcription Factor T-Bet, a Key Player in a Unique Type of B-Cell
Activation Essential for Effective Viral Clearance. Proc Natl Acad Sci USA
(2013) 110:E3216–24. doi: 10.1073/pnas.1312348110

27. Ramsköld D, Parodis I, Lakshmikanth T, Sippl N, Khademi M, Chen Y, et al.
B Cell Alterations During BAFF Inhibition With Belimumab in SLE.
EBioMedicine (2019) 40:517–27. doi: 10.1016/j.ebiom.2018.12.035

28. Zhao Q, Chen X, Hou Y, Jiang J, Zhong W, Yao X, et al. Pharmacokinetics,
Pharmacodynamics, Safety, and Clinical Activity of Multiple Doses of RCT-
18 in Chinese Patients With Systemic Lupus Erythematosus. J Clin
Pharmacol (2016) 56:948–59. doi: 10.1002/jcph.686

29. Wang S-P, Iwata S, Nakayamada S, Niiro H, Jabbarzadeh-Tabrizi S, Kondo
M, et al. Amplification of IL-21 Signalling Pathway Through Bruton’s
Tyrosine Kinase in Human B Cell Activation. Rheumatology (2015)
54:1488–97. doi: 10.1093/rheumatology/keu532

30. Corneth OBJ, Verstappen GMP, Paulissen SMJ, de Bruijn MJW, Rip J,
Lukkes M, et al. Enhanced Bruton’s Tyrosine Kinase Activity in Peripheral
Blood B Lymphocytes From Patients With Autoimmune Disease. Arthritis
Rheumatol (2017) 69:1313–24. doi: 10.1002/art.40059

31. Russell Knode LM, Naradikian MS, Myles A, Scholz JL, Hao Y, Liu D, et al.
Age-Associated B Cells Express a Diverse Repertoire of VH and Vk Genes
With Somatic Hypermutation. J Immunol (2017) 198:1921–7. doi: 10.4049/
jimmunol.1601106

32. Lorenzetti R, Janowska I, Smulski CR, Frede N, Henneberger N, Walter L,
et al. Abatacept Modulates CD80 and CD86 Expression and Memory
Formation in Human B-Cells. J Autoimmun (2019) 101:145–52.
doi: 10.1016/j.jaut.2019.04.016

33. Glauzy S, Sng J, Bannock JM, Gottenberg J-E, Korganow A-S, Cacoub P,
et al. Defective Early B Cell Tolerance Checkpoints in Sjögren’s Syndrome
Patients. Arthritis Rheumatol (2017) 69:2203–8. doi: 10.1002/art.40215

34. Kanayama N, Cascalho M, Ohmori H. Analysis of Marginal Zone B Cell
Development in the Mouse With Limited B Cell Diversity: Role of the
Antigen Receptor Signals in the Recruitment of B Cells to the Marginal
Zone. J Immunol (2005) 174:1438–45. doi: 10.4049/jimmunol.174.3.1438

35. Hansen A, Reiter K, Ziprian T, Jacobi A, Hoffmann A, Gosemann M, et al.
Dysregulation of Chemokine Receptor Expression and Function by B Cells
of Patients With Primary Sjögren’s Syndrome. Arthritis Rheum (2005)
52:2109–19. doi: 10.1002/art.21129

36. Szyszko EA, Brokstad KA, Øijordsbakken G, Jonsson MV, Jonsson R,
Skarstein K. Salivary Glands of Primary Sjögren’s Syndrome Patients
Express Factors Vital for Plasma Cell Survival. Arthritis Res Ther (2011)
13:R2. doi: 10.1186/ar3220

37. Jin L, Yu D, Li X, Yu N, Li X, Wang Y, et al. CD4+CXCR5+ Follicular Helper
T Cells in Salivary Gland Promote B Cells Maturation in Patients With
Primary Sjogren’s Syndrome. Int J Clin Exp Pathol (2014) 7:1988–96.

38. Szyszko EA, Brun JG, Skarstein K, Peck AB, Jonsson R, Brokstad KA.
Phenotypic Diversity of Peripheral Blood Plasma Cells in Primary Sjögren’s
Syndrome. Scand J Immunol (2011) 73:18–28. doi: 10.1111/j.1365-
3083.2010.02475.x

39. Szyszko EA, Skarstein K, Jonsson R, Brokstad KA. Distinct Phenotypes of
Plasma Cells in Spleen and Bone Marrow of Autoimmune NOD.B10.H2b
Mice. Autoimmunity (2011) 44:415–26. doi: 10.3109/08916934.2010.545847

40. Xiao F, Lin X, Tian J, Wang X, Chen Q, Rui K, et al. Proteasome Inhibition
Suppresses Th17 Cell Generation and Ameliorates Autoimmune
Development in Experimental Sjögren’s Syndrome. Cell Mol Immunol
(2017) 14:924–34. doi: 10.1038/cmi.2017.8

41. Blair PA, Noreña LY, Flores-Borja F, Rawlings DJ, Isenberg DA, Ehrenstein
MR, et al. Cd19+Cd24hicd38hi B Cells Exhibit Regulatory Capacity in
Healthy Individuals But Are Functionally Impaired in Systemic Lupus
Erythematosus Patients. Immunity (2010) 32:129–40. doi: 10.1016/
j.immuni.2009.11.009

42. Lin X, Wang X, Xiao F, Ma K, Liu L, Wang X, et al. Il-10-Producing
Regulatory B Cells Restrain the T Follicular Helper Cell Response in Primary
Sjögren’s Syndrome. Cell Mol Immunol (2019) 16:921–31. doi: 10.1038/
s41423-019-0227-z
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