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T cell receptor (TCR) recognition of peptides presented by major histocompatibility
complex (MHC) molecules is a fundamental process in the adaptive immune system.
An understanding of this recognition process at the molecular level is crucial for TCR
based therapeutics and vaccine design. The broad nature of TCR diversity and cross-
reactivity presents a challenge for traditional structural resolution. Computational
modelling of TCR-pMHC complexes offers an efficient alternative. This study compares
the ability of four general-purpose docking platforms (ClusPro, LightDock, ZDOCK and
HADDOCK) to make use of varying levels of binding interface information for accurate
TCR-pMHC modelling. Each platform was tested on an expanded benchmark set of 44
TCR-pMHC docking cases. In general, HADDOCK is shown to be the best performer.
Docking strategy guidance is provided to obtain the best models for each platform for
future research. The TCR-pMHC docking cases used in this study can be downloaded
from https://github.com/innate2adaptive/ExpandedBenchmark.

Keywords: T cell receptor, docking, ClusPro, HADDOCK, LightDock, ZDOCK, complementarity determining region
loops, computational modelling
INTRODUCTION

T cell receptors (TCRs) occupy a crucial role in the specific recognition of major histocompatibility
complex presented antigenic peptides (pMHCs) at the surface of infected cells as part of the adaptive
immune response. A process of imprecise recombination of genes in the thymus produces a TCR
repertoire that exhibits extraordinarily broad clonal and structural diversity, composed of on the
order of 1011 sequences (1). This diversity provides the body with a mechanism of targeting a huge
array of different antigens while maintaining a high degree of specificity, and makes TCRs intriguing
targets for novel therapeutics.

Clinical trials have proven TCR therapy to be a viable strategy against cancer (2), and there is
hope that similar attempts will be fruitful against other diseases, such as tuberculosis (3) and HIV
(4). Furthermore, TCRs are of considerable interest in the field of vaccine design (5, 6) and in the
study of autoimmune diseases (7–9).

Experimental crystallisation and structural resolution of TCR-pMHC complexes can be an
expensive and time-consuming process. Computational methods that accurately model these
structures could therefore contribute considerably to the study of TCR-pMHC interaction at the
molecular level. A number of computational tools that make use of structural templates have been
explored in the context of unbound TCR-pMHC (10, 11) and bound TCR-pMHC modelling
org June 2021 | Volume 12 | Article 6861271
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Peacock and Chain Modelling TCR-pMHC Complexes
(12–14). Where no appropriate template is available, protein-
protein docking algorithms provide a well-established method
for bound complex prediction.

The computational docking community has flourished over
the past few decades, producing a wide range of freely available
docking software platforms (15), supported and encouraged by
the CAPRI blind docking experiment (16). In general, docking
algorithms sample thousands of potential poses of the two (or
more) binding partners, searching for models that capture the
true structure (native solution) of the complex. The models are
ranked using a scoring function designed with the aim of
reflecting how close a given model is to the native solution.

Rigid body platforms that forgo the modelling of
conformational changes, such as ZDOCK (17) and ClusPro
(18), achieve rapid search efficiency by sampling conformations
in Fourier space (19). Alternatively, coarse-grain Monte Carlo
simulations followed by high-resolution refinement for modelling
flexibility, notably employed by the RosettaDock platform (20),
have also proven effective algorithms in model prediction. An
extension of RosettaDock, TCRFlexDock (21), was built with the
specific aim of accurately modelling TCR-pMHC structures.
Refinement stages for flexible protein modelling are also
employed by other platforms, such as HADDOCK (22).
Algorithms such as LightDock (23) have approached the
problem using normal mode analysis.

In an attempt to improve model accuracy, a number of
algorithms have been designed to incorporate additional
knowledge of a given docking problem into the sampling and
scoring processes. This includes the specification of residues in
the unbound proteins that are likely to form part of the binding
interface in thebound complex. TCRbinding residues are known to
nearly always reside in the complementarity determining region
(CDR) loop regions. These loop residues binddirectly to residues in
the presented peptide and to nearby surface residues of the MHC
complex in the plane of the peptide groove (24). The conserved
features of the binding interface makes these ‘information-driven’
approaches (25) particularly suited to TCR-pMHC modelling. A
recent study has compared the capability of four information-
driven docking platforms to model antibody-antigen complexes
(26), which exhibit similar interface features to TCR-pMHC
complexes - namely, the antibody hypervariable loops. This work
examines the same four platforms - ClusPro, HADDOCK,
LightDock and ZDOCK - as applied to TCR-pMHC modelling.

In order to assess docking software accuracy, experimentally
determined structures of the binding partners are required in
both unbound and bound form. The unbound partners are
passed to the docking software to produce candidate models of
the bound complex. These models can then be compared to the
bound (reference) structure of the binding partners. A successful
model will closely resemble the reference structure. A curated set
of 20 TCR-pMHC bound structures with separately solved
unbound structures was assembled to form a TCR docking
benchmark for testing the TCRFlexDock platform (21). This
was subsequently expanded to a total of 30 cases in the TCR3d
database (27). An additional 14 cases were identified and used as
part of this study.
Frontiers in Immunology | www.frontiersin.org 2
Varying levels of detail about the interface residues were
provided to the algorithms in order to assess how each would
perform in the context of limited binding information. Here we
present a comparison of the performances of each platform, with
the aim of assessing the current state of general purpose docking
platforms in the context of TCR-pMHC modelling, and of
guiding future researchers in their choice of modelling
platform for computational TCR-pMHC docking studies.
MATERIALS AND METHODS

Expanding the TCR Benchmark
The TCR benchmark was expanded to 44 cases of bound TCR-
pMHC structures with accompanying unbound TCR and
unbound pMHC structures. These docking cases were found
by comparing all available unbound TCR structures and all
bound TCR-pMHC structures from the STCRDab database
(28) with all ‘pMHC-like’ structures from the PDB (29) found
through a keyword search (‘MHC’ and ‘HLA’). Structures with a
resolution worse than 3.5Å were omitted. Sequence alignment
was performed between the TCR chains of the bound TCR-
pMHC and unbound TCR structures. Similarly, sequence
alignment was performed between the peptide and MHC
chains of the bound TCR-pMHC and unbound pMHC
structures. Results with high sequence similarity were kept to
produce a number of candidate cases containing a bound TCR-
pMHC structure and likely matching unbound TCR and pMHC
structures. These cases were manually validated, resulting in 44
TCR-pMHC docking cases, shown in Supplementary Table S1.

As the with original TCR benchmark (21), structures that
included other proteins complexed with the identified structures
were omitted. The 2IAM and 2IAN cases, which feature in the
original benchmark, are the exception - retained despite the
superantigen bound to their pMHC structures (1KLG and
1KLU), as the superantigen does not significantly interact with
the peptide or TCR binding site. The superantigen was removed
from the structure before docking.

Most structures with missing atoms or residues around the
binding interface were also omitted from this study. Those that
were retained include the pMHC structure of case 2NX5 (1ZSD;
3 missing side chain atoms in one peptide residue), the TCR
structure of case 2NX5 (2NW2; six missing atoms of an absent
serine residue and 5 missing atoms in two adjacent residues), the
pMHC structure of case 2OI9 (3ERY; 6 missing side chain atoms
in one peptide residue), and the pMHC structure of case 2PXY
(1K2D; 6 missing side chain atoms in one peptide residue).

The Modeller program (30), version 9.25, was used to add the
missing atoms and residues to the above structures, using
the automodel class. In each case, ten models were produced,
and the model with the best Modeller DOPE score was retained
as a repaired model.

Each structure was cleaned before docking. This process
involved: reducing the structure down to a single TCR-pMHC,
TCR or pMHC, in cases where multiple complexes were
crystallised together; removal of solvent and other small
June 2021 | Volume 12 | Article 686127
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Peacock and Chain Modelling TCR-pMHC Complexes
molecules; and removal of disordered atoms. Chains were
relabelled to conform to a convention set by the original TCR
benchmark: TCRs with chain IDs ‘D’ and ‘E’; MHC molecules
with chain IDs ‘A’ and ‘B’; and peptides with chain ID ‘C’. TCRs
were renumbered according to the IMGT numbering scheme to
ensure CDR loop regions had consistent residue IDs. Cleaning of
structures was performed using the Bio.PDB (31) Biopython (32)
module. TCR renumbering was performed using the ANARCI
(33) and Bio.PDB Biopython python modules. Additionally,
TCRs and pMHCs were randomly translated and rotated using
the PyMOL (http://www.pymol.org) api to avoid initial
orientation bias. This clean set of structures is available at
https://github.com/innate2adaptive/ExpandedBenchmark.

Benchmark Difficulty Evaluation Criteria
The difficulty of modelling protein-protein interfaces is
recognised to be greater for flexible surfaces, which can adopt
very different conformations in bound and unbound states. A
difficulty classification was calculated for each docking case using
the interface root-mean-square deviation (I-RMSD) between
bound and unbound contact surfaces and the fraction of non-
native contacts in the complex (Fnon-nat) (34, 35). The criteria for
each difficulty class is given in Table 1. I-RMSD and Fnon-nat
values were calculated using the Bio.PDB (31) Biopython (32)
module, and are shown for each complex in Supplementary
Table S1.

Docking Scenarios
ClusPro, HADDOCK, LightDock, and ZDOCK all allow
additional information about the binding interface to be
Frontiers in Immunology | www.frontiersin.org 3
provided to their algorithms to improve modelling. Four
scenarios that provide various levels of information were
constructed to assess the difficulty of obtaining high quality
bound models with limited knowledge of the true binding
interface. The four scenarios are illustrated in Figure 1 and are
described below.

Scenario 1 is the simplest docking scenario. Only the CDR
loops and the peptide residues are provided as information about
the binding interface. This information is very easy to obtain - all
that is required is that the TCR unbound structure is renumbered
according to the IMGT numbering scheme, to ensure the CDR
loop residues always possess the same range of residue IDs.

Scenario 2 provides a vague definition of the binding
interface, composed of the CDR loop residues in the unbound
TCR structure, and the peptide and selected surface MHC
residues in the unbound pMHC structure. MHC residues were
selected from the unbound pMHC structure as any residues
within 9Å of the peptide.

Scenario 3 also provides a vague definition of the binding
interface, but uses information from the known reference
structure. This would generally not be available when
performing a TCR computational docking experiment. Any
residues in the pMHC component of the bound structure
within a distance of 9Å from the TCR binding partner were
selected as binding residues, along with the TCR loop residues
as before.

Scenario 4 provides the most accurate available information
about the binding interface. This ‘real interface’ information
includes all TCR residues and pMHC residues that are within a
distance of 4.5Å from their corresponding binding partner in the
bound reference model.

For each scenario, selected residues were submitted along
with the unbound structures to the docking software to produce
a set of bound TCR-pMHC models.

It should be emphasised that the binding residue information
for Scenarios 1 and 2 is obtained from the unbound TCR and
pMHC structures - that is to say that these scenarios represent
the case where the structure of the unbound components are
known, but the bound reference structure is unknown. In
contrast, Scenarios 3 and 4 rely on information from the
TABLE 1 | Docking difficulty is described by the I-RSMD and fraction of non-
native contacts.

Difficulty I-RMSD (Å) Fnon-nat

Rigid ≤ 1.5 ≤ 0.4
Medium > 1.5 and ≤ 2.2 –

or
≤1.5 > 0.4

Difficult > 2.2 –
FIGURE 1 | Residues selected as being involved in the binding interface are shown for each of the four docking scenarios for an example TCR-pMHC interface.
TCR residues are highlighted in gold and pMHC residues in green.
June 2021 | Volume 12 | Article 686127
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bound reference structure, which is generally unavailable for a
computational docking experiment.

CDR loop renumbering and residue selection based on
distances were performed with the ANARCI (33) and Bio.PDB
(31) Biopython (32) modules.

Docking Settings
Models from ClusPro were generated using the ClusPro webserver
(https://cluspro.org) (18) with the default settings. Binding residue
information was submitted as attractive residues.

Models from ZDOCK were generated using the ZDOCK
webserver (http://zdock.umassmed.edu/) (17) version 3.0.2
with the default settings. Residues in both the TCR and pMHC
unbound structures that were not involved in the binding for
each scenario were supplied to the blocked residues list.

Models from LightDock were generated using LightDock
v0.8.0 (36) and run on the UK Materials and Molecular
Modelling Hub. Default settings were used for each run - 400
initial swarms, 200 glowworms per swarm and 100 simulation
steps. To allow for modelling of flexibility, the Anisotropic
Network Model (ANM) mode was activated to calculate the
first 10 non-trivial normal modes for both receptor and ligand.
The default fastdfire function, a fast C implementation of the
DFIRE scoring function (37), was used for model scoring.
LightDock allows for the specification of both active and
passive restraints. For Scenario 1, TCR loop residues were
provided as active and peptide residues as passive; for Scenario
2, TCR loop residues were provided as active and pMHC
residues as passive; for Scenario 3, TCR loop residues were
provided as active and pMHC residues as passive; for Scenario
4, TCR and pMHC residues were all provided as active.

Models from HADDOCK were generated using the
HADDOCK webserver (https://haddock.science.uu.nl) (38)
version 2.4. For each scenario, the default sampling settings
were used: 1000 models for the rigid-body (it0) stage and 200
models for the flexible (it1) and water refinement stages. While it
has been recommended that sampling should be increased when
less information about the binding is available, a recent
benchmarking of antibody structures using HADDOCK did
not show an improvement when sampling was increased
compared to the default parameters (26). For Scenarios 1, 2
and 3, the random removal of restraints was set to the
HADDOCK default of 50% for each docking run. For Scenario
4, the random removal of restraints was disabled. For each
scenario, binding residues were specified as either active or
passive residues. For Scenario 1, the CDR loops were specified
as active and the peptide as passive. For Scenarios 2 and 3, the
CDR loops were specified as active and the pMHC residues as
passive. For Scenario 4, residues selected in both the TCR and in
the pMHC were specified as active.

For every platform, the unbound TCR was submitted as the
receptor structure, and the unbound pMHCwas submitted as the
ligand structure.

HADDOCK Clustering Parameters
HADDOCK uses the fraction of common contacts (FCC) as a
rapid measure for determining similarity between models in its
Frontiers in Immunology | www.frontiersin.org 4
clustering method (39). The default parameters were used for the
HADDOCK clustering analysis (FCC cutoff of 0.6 and a
minimum cluster size of 4). The average HADDOCK score of
the best 4 models of each cluster was used to produce a ranked
list of the clusters (22).

Model Evaluation Criteria
Every model produced for the four scenarios on each platform
was compared to the corresponding reference structure and
classified as incorrect, acceptable, medium, or high quality,
according to the CAPRI evaluation criteria (40, 41), shown in
Table 2. The interface root mean square deviation (I-RMSD), the
ligand root mean square deviation (L-RMSD) and the fraction of
native contacts (Fnat) were calculated using the Bio.PDB (31)
Biopython (32) module, with the TCR set as the receptor and the
pMHC set as the ligand.
RESULTS

Expanded TCR Benchmark
The TCR benchmark (21, 27) was expanded to 44 docking cases
that were used to assess the TCR-pMHC modelling performance
of ClusPro, HADDOCK, LightDock and ZDOCK. A summary of
some of the features of these cases is provided in Table 3. A
complete listing of these cases and their difficulty classifications is
provided in Supplementary Table S1. The small number of
TCR-pMHC Class II complexes in the benchmark set reflects the
relatively small number of TCR-pMHC Class II complexes in the
PDB overall. This can be attributed to the increased technical
difficulty in crystallising Class II structures, with chains often
falling apart during the experimental process.

Docking Performance
The success rate of each docking platform was calculated as the
percentage of cases that featured at least one acceptable, medium
TABLE 2 | Docked models are classified as incorrect, or as of acceptable,
medium or high quality in accordance with the CAPRI criteria.

Class Fnat L-RMSD (Å) I-RMSD (Å)

High ≥ 0.5 ≤ 1.0 or ≤ 1.0
Medium ≥ 0.3 ≤ 5.0 or ≤ 2.0
Acceptable ≥ 0.1 ≤ 10.0 or ≤ 4.0
Incorrect < 0.1 – –
Ju
ne 2021 | Volume 12 | A
TABLE 3 | Summary of biological features of the expanded docking benchmark.

Benchmark Feature Number

Contains MHC Class I 38
Contains MHC Class II 6
Contains human TCR 39
Contains mouse TCR 5
Max TCR sharing among cases 8
Max pMHC sharing among cases 2
Total unique TCRs 20
Total unique pMHCs 40
Total cases 44
rticl
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or high quality model in the top N ranked models, following an
approach used in other benchmarking surveys (21, 26). Figure 2
shows the success rate for the top 1, 5, 10, 20, 50 and 100 ranked
models for each docking tool for each scenario.

When specifying only the CDR loop and peptide residues
(Scenario 1), HADDOCK is the best performer for the top ranked
model, with a success rate of 34.1%. ClusPro, ZDOCK and
LightDock achieved success rates of 27.3%, 15.9% and 6.8%,
respectively. When considering the top 10 ranked models,
ClusPro is the best performer, with a success rate of 86.4%.
HADDOCK, ZDOCK and Lightdock achieved success rates of
72.7%, 47.7% and 18.2%, respectively. When considering the top
100 ranked models, ClusPro is again the best performer, with a
success rate of 95.5%. HADDOCK, ZDOCK and Lightdock
achieved success rates of 93.2%, 72.7% and 36.4%, respectively.
HADDOCK achieved the most medium and high quality models,
followed by ZDOCK, ClusPro and LightDock respectively.

The two middle rows of Figure 2 show the success rate when
providing the four docking platforms with the more detailed
information of Scenarios 2 and 3, where MHC residues close to
the interface are included. The success rate is lower for all top N
ranked models for both ClusPro and HADDOCK for both
scenarios. The success rate for ZDOCK is improved when
using Scenario 2 and Scenario 3 information, and 100%
success rate is achieved within the top 100 models. In general,
Frontiers in Immunology | www.frontiersin.org 5
Scenario 3 information (derived from the reference structure)
achieves slightly higher success rate than Scenario 2 (derived
from the unbound structures).

The final row of Figure 2 shows the success rate of the four
platforms when real interface information is provided (Scenario
4). HADDOCK is the best performer for the top ranked model,
with a success rate of 56.8%. ClusPro, ZDOCK and LightDock
achieve 43.2%, 43.2% and 20.5% respectively. ClusPro achieves
100% success rate for the top 10 ranked models, and ZDOCK for
the top 50 ranked models. Providing the true interface improves
performance compared to the other three scenarios for all the top
N ranked models for ClusPro, ZDOCK and LightDock, and for
the top ranked and top 5 ranked models for HADDOCK.

The LightDock platform performs noticeably worse than the
other three platforms for TCR-pMHCmodelling. When applying
a recommended filtering out of models that do not achieve a
minimum number of satisfied restraints, the success rate for
Scenarios 1, 2 and 3 decreased, with no acceptable quality
models found at all for Scenarios 2 and 3 (Supplementary
Figure S1). Consequently, the LightDock results shown in
Figure 2 remain unfiltered.

For a given docking case, the ClusPro server generates four sets
of models using four different scoring schemes (18), which are
compared in Supplementary Figure S2. For Scenario 1, the
“electrostatic-favored” and “hydrophobic-favored” functions
FIGURE 2 | Success rate of the top 1, 5, 10, 20, 50 and 100 ranked models for ClusPro, HADDOCK, LightDock and ZDOCK for each of the four docking
scenarios. Colour coding indicates the quality of the best model found in a given set of ranked models according to the CAPRI criteria.
June 2021 | Volume 12 | Article 686127
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outperform the default “balanced” function (shown in Figure 2) for
the top ranked model. Additionally, the “electrostatic-favored”
function achieves a higher success rate than the “balanced”
function for the top ranked models for Scenarios 2 and 4.

Figure 3 shows the performance of each platform for each
scenario per docking case complex, grouped and coloured by
difficulty class. ClusPro appears to be the most consistent
performer across all docking cases, particularly for real
interface information where it predicts at least an acceptable
model in the top 5 models for every docking case complex in the
study. In scenarios of more limited information. ZDOCK is less
consistent across the docking cases, but generates a higher
quantity of medium quality models and some high quality
models. The performance of HADDOCK exhibits more
variation, performing very well for certain cases in Scenario 1
(for example: 5C0A, 3H9S, 3W0W, 5C08), but failing to produce
any acceptable quality models in the top 100 for a number of
cases in Scenario 4 (for example: 3DXA, 4JFF, 6AMU). For
certain cases (for example: 3QDG, 4JFF, 6EQB), HADDOCK
performs well given vague information (Scenario 1) but very
poorly when given detailed information (Scenario 4). In general,
rigid difficulty TCR-pMHC complexes do not seem noticeably
easier to predict than medium difficulty complexes.

A visual inspection of models produced by HADDOCK goes
some way to explaining the large variation in its success rate,
where certain benchmark cases feature an acceptable quality
model as the top model, but other cases feature no acceptable
model in the top 100 cases. In several cases for Scenario 4,
HADDOCK produces what appear to be sensible positions and
orientations of the TCR over the pMHC, but with the a and b
chains reversed - that is to say, the TCR a chain sits where the b
chain sits in the reference model, and the TCR b chain sits where
the a chain sits in the reference model. This is illustrated in
Supplementary Figure S3 for the cases 3DXA, 4JFF and 6EQB.
The same pattern was observed for cases 1MI5, 3QDG, 5C0C,
5NMF, 5NMG and 6AVF. HADDOCK attempts to preserve the
specified binding residues in its docked models. However, the
TCR and pMHC residues it receives are independent - no
information is provided about which specific residues are in
contact between the binding partners. Therefore, HADDOCK
sometimes produces internally high scoring models, with a large
number of satisfied restraints, but is blind to the fact that it has
positioned the TCR in a reversed orientation.

The docked model results were also grouped and coloured by
the MHC class of the complex, shown in Supplementary
Figure S4. It is difficult to make conclusions about whether
any of the platforms are better predictors of TCR-pMHC Class II
structure than Class I structure due to the limited number of
Class II structures in the benchmark. ClusPro is the most
consistent performer across the 6 Class II cases, and shows the
best performance for Scenarios 1 and 2, where there is no
knowledge of the reference structure. However, no platform
shows notably improved performance when modelling Class II
rather than Class I, or vice versa.

The success rates of the four platforms were compared with
the performance of the TCRFlexDock ‘CDRPep’ protocol (21),
Frontiers in Immunology | www.frontiersin.org 6
which allows for flexibility in the CDR loops and the peptide. The
performance of HADDOCK approximately matches the
performance of CDRPep for the top ranked model, using
Scenario 1 information. When considering the top 10 ranked
models, HADDOCK performs worse than CDRPep (73% vs
80%), while ClusPro performs better (86% vs 80%). Using
Scenario 4 information, CDRPep is outperformed by ClusPro,
HADDOCK and ZDOCK for the top ranked model. When
sampling to only the 20 docking cases tested for
TCRFlexDock, the success rate for all four general purpose
platforms increases (Supplementary Figure S5). Across this
smaller set of cases, HADDOCK outperforms CDRPep for the
top ranked model with Scenario 1 information. ClusPro,
HADDOCK and ZDOCK all outperform CDRPep for the top
ranked model with Scenario 4 information.

HADDOCK Cluster Performance
As part of its pipeline, HADDOCK clusters its docked models to
provide an alternative set of results to the user - a method that
has been shown to improve the success rate of docking
algorithms (42). The success rate of the top four members of
the top five clusters is shown in Figure 4 for the four scenarios. A
breakdown by individual docking case is shown in
Supplementary Figure S6. For Scenarios 3 and 4, the success
rate for HADDOCK improves using the cluster-based scoring
method. There is a decrease in the success rate when providing
vague information about the binding from the unbound
components, particularly noticeable in Scenario 2. As had been
highlighted by previous studies (26), these results suggest that the
decision to rely on cluster-based scoring should be carefully
chosen based on the detail known about the TCR-pMHC
binding region.

Sampling Performance
Figure 5 shows the number of acceptable, medium and high
quality models that were generated as a percentage of the total
number of models for a specific docking case for each software
and scenario. The sampling performance of HADDOCK in
comparison to the other software platforms used is striking. In
several cases, when real binding information is provided
(Scenario 4), every single model produced is of least acceptable
quality (for example: 1A07, 3PWP, 2PXY). The sampling
efficiency of HADDOCK in comparison to other software
platforms has been reported before and attributed to its use of
the binding information to drive the energy minimization and
molecular dynamics steps of the simulation, rather than only as
part of the model scoring strategy (26). ClusPro is the second
best performer, although for no docking case were more than
25% of the models of at least acceptable quality in any scenario.

CDR3 Loop Modelling
While ClusPro and ZDOCK are rigid-body platforms,
HADDOCK and LightDock allow for conformational change
in protein structure during docking. An assessment of the
capability of the two software platforms to accurately model
TCR CDR3 loops was performed by following a similar strategy
June 2021 | Volume 12 | Article 686127
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recently applied to the modelling of H3 antibody loops (26). The
framework residues of the unboundTCRwere superimposed upon
the bound reference TCR-pMHC structure and the full-atom
RMSD of the loop residues was calculated to determine a baseline
measure of similarity between the bound and unbound CDR3
loops. The same procedure was carried out for each docked
model. The baseline loop RMSD and the model loop RMSD were
compared to assess whether the modelled CDR3 loop was closer or
further away to the bound structure than the starting unbound
structures. Figures 6 and 7 show the modelled a chain and b chain
loopRMSDs compared to the unbound loopRMSDs for the top100
models produced for eachdocking case, respectively. The results are
shown for each docking scenario for both HADDOCK and
LightDock. Values below the diagonal line correspond to an
improvement in the loop conformation, whereas values above the
line correspond to a worsening in the loop conformation. Models
are coloured according to their quality.

HADDOCK produces models with both improved and
worsened CDR3 loop RMSDs. In general, for complexes that
undergo low conformation change upon binding, the flexible
refinement leads to a worsening of the loop CDR3 RMSD.
However, for complexes that undergo greater conformational
change, the flexible refinement does not appear to worsen RMSD
overall. This pattern is also evident when looking at the
refinement as applied to the CDR1 and CDR2 loops, shown in
Supplementary Figures S7–S10. Loop flexibility in models
produced by LightDock are minimal, but generally worsen the
RSMD for both a and b chains.
Frontiers in Immunology | www.frontiersin.org 8
DISCUSSION

This study has assessed the ability of four general purpose
docking platforms - ClusPro, HADDOCK, LightDock, and
ZDOCK - to accurately model TCR-pMHC bound complexes
from unbound TCR and pMHC components, mirroring a
recently published comparison of the same software suites in
the context of antibody-antigen modelling (26). These platforms
were chosen as they each facilitate the inclusion of additional
information to improve their sets of ranked output models
through the specification of binding interface residues. An
expanded benchmark set of 44 TCR-pMHC docking cases
was identified and used to gauge the performance of
each platform.

The results of the four platforms are less impressive when
modelling TCR-pMHC structures than when modelling
antibody-antigen structures, despite the binding interface
interactions being dominated by six flexible loops in both sets
of complexes. Antibody-antigen complexes are more frequently
modelled than TCR-pMHC structures, and the four platforms
have likely been designed, in part, with this in mind. ClusPro, in
particular, has a dedicated antibody-antigen modelling feature
available as part of its docking suite (43). The relatively low
binding affinity between TCR and pMHC is also a phenomenon
that is likely to contribute to the poorer performance for TCR-
pMHC modelling. The difficulty class of TCR-pMHC docking
cases does not seem to have impacted the quality of models
produced for the TCR docking benchmark.
FIGURE 4 | Success rate for the top 1, 2, 3, 4 and 5 ranked clusters for HADDOCK for the four docking scenarios. Colour coding indicates the quality of the best
model found in a given set of ranked models according to the CAPRI criteria.
June 2021 | Volume 12 | Article 686127
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to the CAPRI criteria, shown for ClusPro, HADDOCK, LightDock and ZDOCK for each of the four docking
. The y axis is scaled differently for each docking platform to aid readability.
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FIGURE 5 | Percentage of total models for each complex of acceptable, medium or high quality according
scenarios. Colour coding indicates the quality of models for both rigid and medium difficulty docking cases
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Peacock and Chain Modelling TCR-pMHC Complexes
FIGURE 6 | The RMSD of the TCR a chain CDR3 loop between the unbound TCR and the reference structure versus that between each of the docked models and
the reference structure, for each complex. Loop flexibility modelling by HADDOCK is shown in the top row and by LightDock in the bottom row. Models are coloured
by their quality according to the CAPRI criteria.
FIGURE 7 | The RMSD of the TCR b chain CDR3 loop between the unbound TCR and the reference structure versus that between each of the docked models and
the reference structure, for each complex. Loop flexibility modelling by HADDOCK is shown in the top row and by LightDock in the bottom row. Models are coloured
by their quality according to the CAPRI criteria.
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All four docking platforms perform best when provided with
only the residues known to be directly involved in the interface
(Scenario 4). Interestingly, when provided with the vaguest
information about the binding interface - simply the residues in
the CDR loops and the residues in the peptide (Scenario 1) -
ClusPro, HADDOCK, and LightDock all showed a higher
modelling success rate than when additionally providing MHC
residues likely to be close to the interface (Scenarios 2 and 3). The
lower success rate for these scenarios suggests that the specification
of a large number of MHC residues may be too heavily restricting
the binding mode of the TCR-pMHC models, and that the true
binding residues are being lost in a background of residues that are
not involved in the binding. In contrast to these findings, ZDOCK
improved inaccuracywhenabroad selectionofMHCresidueswere
specifiedalongside thepeptide residues.Rather than scoringmodels
based upon the residues supplied as being involved in the binding,
ZDOCK scores models based on the blocking of residues known to
not be involved in the binding. This approach is less restrictive in
satisfying the MHC residues restraints of Scenarios 2 and 3, and
likely explains the improved success rate for ZDOCK for these
scenarios compared to Scenario 1. It is therefore important to
carefully consider which residues to include when specifying
unknown binding information, and how these residues might be
used to restrict thebindingmode.Whenspecifyingbindingresidues
that would be desirable in the output models, a narrow selection is
preferable. Alternatively, when specifying residues that should not
be blocked by the scoring function, a wider selection may
be provided.

ClusPro results improved in accuracywhen the weighting of the
electrostatic term in the scoring function was increased
(“Electrostatic-favored”), and decreased in accuracy when the
hydrophobic term was removed (“Van der Waals +
electrostatics”). Both hydrophobic and electrostatic interactions
have been highlighted as important effects in TCR-pMHC
recognition (44), and it would be interesting to explore the effects
of these scoring function terms in more detail in future research.

Flexible docking has long been considered an important method
for improving modelling accuracy (15). The interaction between
the TCR and pMHC is known to be driven by the CDR loops, with
theCDR3 loop inparticularbeingkey to the recognitionprocess.The
modelling of these flexible loops remains a difficult and important
problem in the field. TCRFlexDock, a bespoke platform for TCR
docking, has shown improvementwhen allowing forflexibility in the
CDR loops and the peptide. However, the two platforms that offer
flexible refinement analysed in this study - HADDOCK and
LightDock - were unable to consistently improve the conformation
of CDR loops regardless of the additional information provided.

Despite an inability to effectively deal with flexibility, the
HADDOCK and ClusPro platforms in particular are competitive
with TCRFlexDock for TCR-pMHC modelling. HADDOCK
achieves approximately the same success rate across the 44
docking test cases using Scenario 1 information as TCRFlexDock
achieves across the original 20 benchmark cases for the top ranked
model.When limiting the results to only the original 20 benchmark
cases, HADDOCK notably outperforms TCRFlexDock using
Scenario 1 information. ClusPro outperforms TCRFlexDock
Frontiers in Immunology | www.frontiersin.org 11
when considering the top 10 ranked models using Scenario 1
information for both sample sizes. The higher success rate of
ClusPro, HADDOCK and ZDOCK when using Scenario 4
information compared to TCRFlexDock highlights the role
accurate binding information can play in TCR-pMHC modelling.
Twomajor advantages of these three platforms are their ease of use
and their computational run times. Each platform is supported by a
user-friendlyonlinemodelling server. TheZDOCKserverwill often
complete a docking casewithin tenminutes; theHADDOCKserver
will generally require several hours to complete a docking case. In
contrast, TCRFlexDock has been recently reported as taking over
100 hours per complex in its current implementation (14).

Which of the four software platforms is most suitable for the
modelling task depends upon the amount of information
available and the required quality of the output model. Overall,
the HADDOCK platform is the best performer for producing
accurate TCR-pMHC complexes as the top ranked model. If the
required results are not limited to the top ranked model, ClusPro
is the most consistent performer. In the absence of detailed
information about the binding interface, it is recommended that
users specify binding residues in the form of the CDR loop
residues of the TCR and the peptide residues of the pMHC for
both HADDOCK and ClusPro. If using ClusPro, users may yield
more accurate models by selecting the “Electrostatic-favored”
coefficient results. If using ZDOCK, specifying MHC residues
close to the interface along with the peptide residues will likely
improve modelling results.

Despite some of the successes shown in this study, it is clear
that there is opportunity for improvement in the computational
docking of TCR-pMHC complexes. In many of the examined
docking cases across the four platforms, acceptable (or higher)
quality models can be found well outside of the top ranked
model. Novel tools for re-ranking or filtering docked TCR-
pMHC models could improve the overall success rate. For
HADDOCK in particular, provided the researcher is confident
in which way round the a and b chains should sit relative to the
pMHC prior to modelling, they might filter out from the results
any models where this orientation is not satisfied. Modelling
conformational change in the CDR loops and the peptide are
very difficult problems, but bespoke approaches would likely
produce more accurate models. Finally, it is evident that when
exact residues of the binding interface are known, model
accuracy dramatically improves. Tools for the accurate
prediction of these residues would be an extremely useful aid
for information-driven modelling of TCR-pMHC complexes.
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