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Osteoporosis or porous bone disorder is the result of an imbalance in an otherwise highly
balanced physiological process known as ‘bone remodeling’. The immune system is
intricately involved in bone physiology as well as pathologies. Inflammatory diseases are
often correlated with osteoporosis. Inflammatory mediators such as reactive oxygen
species (ROS), and pro-inflammatory cytokines and chemokines directly or indirectly act
on the bone cells and play a role in the pathogenesis of osteoporosis. Recently, Srivastava
et al. (Srivastava RK, Dar HY, Mishra PK. Immunoporosis: Immunology of Osteoporosis-
Role of T Cells. Frontiers in immunology. 2018;9:657) have coined the term
“immunoporosis” to emphasize the role of immune cells in the pathology of
osteoporosis. Accumulated pieces of evidence suggest both innate and adaptive
immune cells contribute to osteoporosis. However, innate cells are the major effectors
of inflammation. They sense various triggers to inflammation such as pathogen-
associated molecular patterns (PAMPs), damage-associated molecular patterns
(DAMPs), cellular stress, etc., thus producing pro-inflammatory mediators that play a
critical role in the pathogenesis of osteoporosis. In this review, we have discussed the role
of the innate immune cells in great detail and divided these cells into different sections in a
systemic manner. In the beginning, we talked about cells of the myeloid lineage, including
macrophages, monocytes, and dendritic cells. This group of cells explicitly influences the
skeletal system by the action of production of pro-inflammatory cytokines and can
transdifferentiate into osteoclast. Other cells of the myeloid lineage, such as neutrophils,
eosinophils, and mast cells, largely impact osteoporosis via the production of pro-
inflammatory cytokines. Further, we talked about the cells of the lymphoid lineage,
including natural killer cells and innate lymphoid cells, which share innate-like properties
and play a role in osteoporosis. In addition to various innate immune cells, we also
discussed the impact of classical pro-inflammatory cytokines on osteoporosis. We also
highlighted the studies regarding the impact of physiological and metabolic changes in the
body, which results in chronic inflammatory conditions such as ageing, ultimately
triggering osteoporosis.
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INTRODUCTION

A typical bone is composed of collagen, matrix proteins,
calcium hydroxyapatite crystals, and cellular components.
Different cellular components of a bone are osteoblasts (OBs),
osteoclasts (OCs), osteocytes (OYs), stromal cells, mesenchymal
stem cells (MSCs), hematopoietic stem cells (HSCs), etc. Among
these, OBs and OCs play a major role in maintenance. OBs are
of mesenchymal origin and have bone anabolic activity. They
produce type-I collagen, matrix proteins (e.g., osteonectin and
osteocalcin) to help calcium deposition in the form of calcium
hydroxyapatite crystals. On the other hand, OCs, giant
multinucleated cells of HSCs origin, demineralize the bone by
releasing substances like hydrochloric acid and proteolytic
enzymes, thus keep in check the anabolic activity of OBs (1).
The antagonistic activity of OBs and OCs results in continuous
formation and resorption of bone, a process called bone
remodeling, which is necessary for maintaining calcium levels
in the blood. Bone remodeling occurs in several specific spaces in
the bone called bone remodeling compartments (BRC) (2). In a
healthy bone, the bone homeostasis is regulated by sophisticated
coordination among components of BRC’s through RANK
(receptor activator of nuclear factor-kB), RANKL (ligand for a
RANK receptor), and OPG (osteoprotegerin) interactions. OPG
is a decoy receptor of RANKL. RANKL secreted by OBs interacts
with RANK and triggers differentiation of precursor-osteoclast
into bigger multinucleated active OCs. However, to keep bone
resorption in check, OBs also secrete OPG, which competitively
inhibits RANKL-RANK interaction (1–3). Any imbalance in the
homeostasis can lead to bone anomalies such as osteopenia,
osteoporosis, osteopetrosis, etc. In osteoporosis, there is an
increase in the activity of osteoclast, leading to net bone
loss (Figure 1).

Many different health conditions and medical procedures are
correlated with osteoporosis, such as endocrine disorders (e.g.,
hyperparathyroidism, diabetes, premature menopause and low
levels of testosterone and estrogen in men and women
respectively, etc.), autoimmune disorders (e.g., rheumatoid
arthritis or RA, lupus, multiple sclerosis, etc.), prostate cancer,
thalassemia, liver dysfunction, organ transplant, etc. (4). Not
only disease conditions, the later phase of life, aging, is also
correlated with osteoporosis (1). During aging, epigenetic-
metabolic changes in physiology drive chronic inflammation in
the body resulting in osteoporosis (5). Hence, a diverse array of
factors seems to be involved as the causative agents of
osteoporosis. Though initially, it was thought that hormonal
imbalance was the leading cause of osteoporosis, later in the
1970s, the role of the immune system first came to light (6, 7).
Researchers observed that supernatant from the human PBMCs
increased osteoclastic activity in fetal rat bone culture (6). In the
past two decades, even more promising reports have emerged
indicating firm involvement of immune cells in bone remodeling
(8, 9). Age-driven changes in the status of immune cells explain
the presence of chronic inflammation resulting in osteoporosis
(10). The study of this intricate relationship between the immune
system and skeletal system led to the establishment of a new field
called “osteoimmunology” (11). Recently, Srivastava et al. have
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coined the term “immunoporosis” to emphasize the role of
immune cells as a cause of osteoporosis (12). Another review
by the same group has summarized the role of innate and
adaptive immune cells in osteoporosis (13). In this review, we
focus on the role of the innate immune cells in osteoporosis in a
more detailed manner.

Cells of innate immunity are known to act immediately to
various challenges to the body and cause ‘inflammation’, which
has been observed as one of the major triggers of various bone
disorders (13–15). According to a recent hypothesis published,
inflammatory cell death, ‘pyroptosis’ of osteoblast, is critical in
osteoporosis (16). Various signals that induce inflammation in
the body include exogenous signals, such as PAMPs (Pathogen
Associated Molecular Patterns) or endogenous signals, DAMPs
(Death/Damage Associated Molecular Pattern), which abruptly
challenge the immune system and results in acute inflammatory
diseases. In addition, metabolic changes, tissue malfunctions or
prolonged infections usually result in chronic inflammatory
diseases. Therefore, inflammatory mediators produced in such
cases play a key role in the co-morbidity of osteoporosis (17–20).
‘Focal infection theory’ is an old concept that assumes the foci of
infection could cause systemic inflammatory diseases (as
observed in periodontitis, psoriatic arthritis), resulting in
osteoporosis (19, 20).

Innate immune cells are major producers of pro-
inflammatory mediators. However, some of them share a
common developmental niche with skeletal cells. Various
reports suggest that the immune system is highly linked to the
skeletal system and actively involved in the manifestation of the
disease. In addition to the major producers of pro-inflammatory
mediators, macrophages, monocytes, and DCs can act as
precursors of osteoclasts (21, 22). Apart from macrophages,
monocytes and DCs, other pro-inflammatory innate immune
cells of myeloid origin, contribute to osteoporosis are
neutrophils, eosinophils and mast cells (23–25). Innate cells of
lymphoid lineage, such as NK cells and innate lymphoid cells
(ILCs), also contribute to the manifestation of osteoporosis,
majorly as producers of pro-inflammatory mediators (26, 27).
Among the pro-inflammatory mediators that play a major role in
osteoporosis, IL-6, TNF-a, IFN-g, IL-1b, and ROS are worth
mentioning. In this review, we will discuss the role and
contribution of different types of innate immune cells and
inflammatory mediators in osteoporosis (Tables 1 and 2).
CELLS OF THE MYELOID LINEAGE

Macrophages
Macrophages, one of the most potent inflammatory cells also act
as the major sentinel cells. They are present in the tissues and can
readily sense infection by various pathogens like bacteria, viruses,
parasites, etc., and provide a defense to the host system. They
have the potential for phagocytosis as well as the induction of
inflammatory responses. This ability comes from the presence of
a broad range of pattern recognition receptors (PRRs) such as
toll-like receptors (TLRs), nod-like receptors (NLRs), etc., as well
August 2021 | Volume 12 | Article 687037
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as scavenger receptors (SRs) (57). Similar sets of PRRs have been
reported to modulate bone metabolism (58–61).

Macrophages are either tissue-resident or differentiated from
blood monocytes in response to an inflammatory signal. The
tissue-resident macrophages are present in different organs of the
Frontiers in Immunology | www.frontiersin.org 3
body and are known by different names, such as microglia in
the brain and kupffer cells in the liver, etc. They are adapted
uniquely to their location. The bone also possesses different kinds
of macrophage populations: bone marrow macrophages
(BMMs), OCs, and osteal macrophages or “osteomacs” (62).
TABLE 1 | Function of different innate immune cell types and their role in osteoimmunology.

Cell type Physiological role Role in bone biology

Macrophage Inflammation,
phagocytosis, tissue repair

M1 macrophage promotes bone resorption via osteoclastogenesis (21, 28); M2 macrophage majorly promotes bone
formation by stimulating differentiation of precursor cells into mature OBs (29, 30). However, in the absence of estrogen M2
macrophages can get differentiated in OCs (31).
Osteal macrophages help in efficient bone mineralization (32).

Monocyte Inflammation Serves as a precursor to OCs, macrophages, and DCs (33).
Helps in the recruitment of immune cells to the bone remodeling sites by producing chemokines (34).

Dendritic
cell

Inflammation, antigen
presentation

Can transdifferentiate to osteoclasts in the inflammatory milieu (35).

Neutrophils Inflammation,
phagocytosis

Promotes bone resorption by increased expression of mRANKL (36).

Eosinophils Inflammation, allergic
response

Found to be increased in number in vitamin D deficiency (37); Source of IL-31 and IL-31 found to be associated in
postmenopausal osteoporosis (38)

Mast cell Allergic response,
inflammation

Triggers osteoclastogenesis by producing pro-inflammatory mediators such as, histamine, TNF-a & IL-6 (39, 40).

NK cell Cellular cytotoxicity,
ADCC, inflammation

Promotes osteoclastogenesis by producing RANKL & MCSF (26).
Coculture with monocyte in the presence of IL-15 also promotes osteoclast formation (26).

ILCs Tissue homeostasis,
regulation of innate and
adaptive immunity

Different subtypes of ILCs produce various factors like RANKL, GMCSF, IL-17 which are involved in multiple bone disorders
(27, 41, 42).
FIGURE 1 | An imbalance in a dynamic equilibrium of bone remodeling leads to osteoporosis. Bone homeostasis is maintained by an equal amount of bone
formation, and bone resorption carried out by osteoblast (OB) and osteoclast (OC). Under the influence of various mediators and cellular components, the equilibrium
shifts towards greater bone resorption due to exacerbated osteoclast activity. This leads to a decrease in bone mineral density and causes osteoporosis.
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Osteal macrophages help in efficient osteoblast mineralization
and bone formation (32). Depletion of osteal macrophages shows
a decrease in bone mineral density (BMD) (32).

Different tissue microenvironment defines different
phenotypes for tissue-resident as well as monocyte-derived
macrophages. In addition to inflammation macrophage helps in
tissue repair following injury and also maintains tissue
homeostasis. To aid these activities (63), they show a great
degree of plasticity and hence can undergo a transition between
M1 and M2 phenotype depending on the microenvironment
(64). M1 is classically activated macrophages (inflammatory
phenotype), and M2 is alternatively activated macrophages
(reparative phenotype). Macrophage polarization drives bone
remodeling activities. Pro-inflammatory cytokines such as,
TNF-a and IL-6 can stimulate M1 polarization, whereas anti-
inflammatory cytokines such as, IL-4 and IL-13 can stimulate M2
polarization (65), which are generally associated with bone
catabolic and anabolic activities, respectively. However, an
exciting study by Huang et al. reported that RANKL-induced
M1 polarized macrophages display distinct properties compared
to LPS and IFN-g stimulated M1 macrophages (66). In a
pathological scenario, it was observed that RANKL-induced M1
macrophages induce bone formation and help in increasing the
osteogenic ability of MSC by increasing the expression of
osteogenic genes such as OPN, RUNX2, etc., while LPS and
IFN-g induced M1 macrophages shows bone destructive
activity (66).

Numerous studies suggested a role of M2 macrophages in
osteogenesis. Two groups have demonstrated that M2 polarized
macrophages can stimulate MSCs, the precursor of OB cells, into
mature OBs and increase bone mineralization in vitro (29, 30).
Further, it has been observed that the co-culture of pre-
osteoblastic cells with macrophage increased the osteogenic
ability of pro-osteoblastic cells, and this attribute was enhanced
by macrophage transition from M1 to M2 type (67). Based on
this observation, it was suggested that a transient inflammatory
phase is crucial for enhanced bone formation.

M1 macrophage serves as a precursor of osteoclast (28).
Researchers had observed that the osteo-inductive mediators,
such as bone morphogenetic protein (BMP) 2 and 6, were
reduced when macrophages were stimulated by a known M1-
phenotype inducer (68). M1 inducer, such as LPS induces a
massive production of pro-inflammatory cytokines and triggers
Frontiers in Immunology | www.frontiersin.org 4
osteoclastogenesis in RANKL-dependent or -independent
manner leading to bone destruction (Figure 2A) (21).
Multinucleation of macrophages is driven by RANKL-
dependent or -independent signaling pathways that bring about
the changes essential for multinucleated osteoclast differentiation
and formation (68–70). One of the necessary and key changes
observed in macrophage to osteoclast differentiation is the
changes in energy metabolism. A report using RAW 264.7
murine macrophage cell line and bone marrow-derived
macrophages (BMDMs) suggested that lysine promotes M1
& M2 activation, whereas tyrosine and phenylalanine
have opposite effects (71). Another report indicated
that differentiated osteoclasts are rich in lysine degrading
proteins and show enhanced biosynthesis of tyrosine and
phenylalanine (72). These two reports suggested that inhibition
of polarization of macrophage enhances osteoclast differentiation.
Additionally, there is an increase in mitochondrial biogenesis in
RANKL-induced osteoclastogenesis (73). Consequently,
the increase in oxidative phosphorylation allows increasing
bone resorption by osteoclasts. In another report, it is observed
that there is an increase in GLUT1 and other glycolytic
enzymes during osteoclast differentiation (73). Both glycolysis
and oxidative phosphorylation thus play an important
role in osteoclastogenesis. Recent evidence suggested that
glucose transporter expression depends on RANKL (74). It
explains why macrophage to osteoclast differentiation and
bone resorption is associated with an increase in energy
metabolism (75).

A study suggested that, M1/M2 macrophage ratio increases in
the bone-marrow of ovariectomized (OVX) osteoporotic mice.
In the absence of estrogen, M2 macrophages differentiate into
osteoclast upon stimulation with RANKL (Figure 2A) (31).
Thus, estrogen protects M2 macrophages from RANKL
stimulation. Therefore, M1/M2 ratio and estrogen are related
to the pathogenesis of postmenopausal osteoporosis.

It is well accepted that macrophages play an essential role in
the pathogenesis of inflammatory disease rheumatoid arthritis
(RA) by producing pro-inflammatory cytokines like TNF-a,
IL-1b, IL-6 that can drive osteoclastogenesis and bone
destruction. Similar contributions by macrophages were also
observed in osteoarthritis (OA) and peri-implant osteolysis
(76). The role of macrophages in RA and OA has been
elaborately discussed in other reviews (77, 78).
TABLE 2 | The role of classical pro-inflammatory cytokines in osteoimmunology.

Pro-inflammatory
cytokines

Cellular sources Role in bone biology

IL-6 OBs, OCs, Stromal cells, OYs, DCs, ILCs
Macrophages, etc.

RANK-L mediated OCs activation, OCs transmigration (43, 44)

TNF-a Osteoblast, T cells, B cells, macrophages,
monocytes, NK cells, etc.

Increases RANK expression on the macrophage (45), increases RANKL production by the
stromal cell (45), induces sclerostin in OYs (46), expand OCP pool (47), inhibiting differentiation,
proliferation, and activities of osteoblast (48–50), degradation of osterix (48), inhibits
differentiation of MSCs (50)

IFN-g T cells, NK cells, B cells, ILC1, Neutrophils,
Monocytes, Macrophages, MSCs, etc.

Fusion of OCs, T cell activation (51)

IL-1b Osteoblast, T cells, B cells, Macrophages, etc. OCs migration and activation (52–54) Plasminogen cathepsin-B and collagenase secretion (55),
Downregulation ALP (56)
August 2021 | Volume 12 | Article 687037
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Inhibitor studies have helped to elucidate the signaling
pathways involved in the RANKL-mediated osteoclastogenesis.
Researchers have observed that a Chinese herb, Bergapten
inhibits RANKL-induced osteoclastogenesis by suppressing the
degradation of IkBa (inhibitor of NF-kB) (79). IkBa keep NF-
kB in the cytoplasm by binding to it; degradation of IkB is
necessary for translocation of NF-kB to the nucleus and perform
its functions. Researchers have also observed that Bergapten
attenuates JNK phosphorylation (79). Icariin (ICA) inhibits
RANKL-induced osteoclast formation by downregulating
signaling mediator TRAF6 (adaptor molecule associated with
RANK complex) and further affecting the NF-kB pathway (80).
Additionally, it was also observed that ICA inhibits ERK
phosphorylation which subsequently leads to a decrease in
NFATc expression, which is also a crucial transcription factor
for osteoclastogenesis (80). Sappanone A was shown to inhibit
RANKL-induced osteoclastogenesis by inhibiting the
phosphorylation of AKT and subsequently suppressing the
Frontiers in Immunology | www.frontiersin.org 5
activation of NFATc1 and other osteoclastogenic markers (81).
It is interesting to note that RANKL stimulation induces
activation of all the three major MAPKs (ERK, JNK, p38);
however, only the p38 signaling pathway plays a crucial role in
RANKL-mediated differentiation of macrophage to OCs (82). So
far no natural inhibitors have been found to inhibit p38 signaling
pathway in osteoclastogenesis.

(82, 84)With aging macrophages show an array of
dysfunction, including defect in autophagy, morphological
changes, and dysregulation of pro-inflammatory cytokine
production resulting in age-related altered immune function
(10, 83). A study shows significant increase in M1-polarised
macrophages in aged mice (84). Aged macrophage shows
amplified production of inflammatory mediators (85, 86).
Therefore, in macrophage from older people displays an
activated phenotype and increased basal level inflammation
(86). It is also reported that macrophage polarization
dysfunction is related to impaired bone healing in aged mice
B

A

C

FIGURE 2 | Monocytes (Mo), macrophages (Mj), and dendritic cells (DCs) can be directly involved in bone resorption by differentiating into osteoclast (OC). (A) Both
M1 and M2 subtypes of Mj differentiate into OCs in presence of RANKL & M-CSF or RANKL respectively. Estrogen inhibits RANKL-mediated M2 differentiation to
OCs. (B) Upregulation of ANAX2 & CCR3 help circulating Mo in trans-endothelial migration and recruitment to the bone remodeling site, where Mo to OC
differentiation happens either in the presence of RANKL & M-CSF or TNF-a and IL-6. (C) DCs can transdifferentiate into OCs in presence of RANKL & M-CSF or
IL-17. Further, immune interaction between CD4+ T-cells and DCs can form OCs in a RANKL/RANK-dependent manner.
August 2021 | Volume 12 | Article 687037
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and rat populations (86–88). Altogether, macrophage
dysregulation contributes to a chronic low-grade inflammation
during aging, called Inflammaging, which often correlates
with osteoporosis.

Apart from inflammatory responses, recent studies have
recognized new regulatory mechanisms of macrophages in
osteoporosis. A microarray study on RANKL and CSF1 treated
vs. non-treated BMMs identified differentially expressed circular
RNAs (circRNAs) and found that circRNA_28313 was
significantly induced in treated cells. Further, it was observed
that knockdown of circRNA_28313 significantly inhibited
macrophage differentiation to OCs in vitro and OVX-induced
bone resorption in vivo in mice. Bioinformatic analyses revealed
that mir-195a microRNA interacts with 3’UTR of CSF1 in non-
treated cells (89). However, circRNA_28313 relieves miR-195a-
mediated suppression on CSF1 via acting as a competing
endogenous RNA (ceRNA), modulating the osteoclast
differentiation in BMM cells (89). Another miRNA, miR-128,
regulates osteoclastogenesis of BMMs through miR-128/SIRT1/
NF-kB signaling axis (90). The overexpression or inhibition of
miR-128 can increase or decrease macrophage-derived OCs (90).
Further reports suggested that miR-506-3p can selectively inhibit
NFATc1 in RANKL-induced activated BMMs in rats and
minimize the release of bone resorption enzymes (91). The
heterogeneity and plasticity of macrophages make them a
critical player in bone homeostasis. A more in-depth study is
required to understand the role of macrophages in
immunoporosis. Modulation of macrophage phenotype could
be a potential therapeutic target in dealing with osteoporosis.

Monocytes
Monocytes constitute 10% of total leukocytes in humans and 2-
4% in mice (92). The precursors of monocyte arise from HSC in
the bone marrow and finally undergo subsequent differentiation
to become a committed monocyte progenitor (cMoP) (92).
Similar to macrophages, monocytes also exist as different
subsets exhibiting different phenotypes and functions. Different
subsets of monocyte show distinct functions during steady-state
and inflammation. The inflammatory monocytes show high
levels of C-C chemokine receptor 2 (CCR2) and low levels of
CXC3 chemokine receptor 1 (CX3CR1), whereas the patrolling
monocytes show the reverse expression (93). Their recruitment
to the inflammatory site is predominantly CCR2 dependent (94).
Traditionally, it is considered that monocyte extravasate from
blood vessels to the site of inflammation and differentiates into
macrophages or dendritic cells, and contributes to the
inflammatory process and repair (95). However, a study
demonstrated that CCR2-expressing pro-inflammatory
monocyte transitioned into CX3CR1-expressing reparative
monocyte (96). However, Jakubzick et al., in their study,
reported that monocytes can retain their markers or their
identity without differentiating into macrophages and DCs
while moving through tissues (97). These studies suggest that
the monocyte can participate in the inflammatory process
directly apart from acting as precursors only. Accordingly,
circulating monocyte plays some crucial role by serving as
Frontiers in Immunology | www.frontiersin.org 6
osteoclast precursor and participating in bone remodeling by
producing cytokines (33, 34). Recent reports indicate that
erythromyeloid progenitor-derived monocytes (EMP-
monocyte) also contribute to this pool of circulating
monocytes apart from major contributor HSCs-monocytes
(98–100). Interestingly, EMP-monocytes, which reside in the
adult spleen postnatally, transmigrate to the bone marrow where
they differentiate into functional OCs along with HSCs derived
OCs and helps in bone repair in fracture scenarios (98). Similar
to macrophages, monocytes also undergo metabolic changes like,
increase in glucose uptake, oxidative phosphorylation etc. during
differentiating into osteoclast (101). Different environmental
cues drive different metabolic changes and as a result,
monocyte responds differently. The three phenotypic forms of
circulating monocyte in human peripheral blood are Classical
(CD14++ CD16-), intermediate (CD14++ CD16+), and non-
classical (CD14+CD16++), which differentiate into osteoclast
with different order of resorbing ability, that is, normal, high,
and non-absorbing, respectively (75). Reports suggest that non
classical human monocyte expresses respiratory chain
metabolism whereas classical monocyte depends on
carbohydrate metabolism and primed more towards anaerobic
energy production (102).

In an infection scenario, intermediate monocytes take the lead
to become high bone absorbing osteoclast and may result in bone
weakening (74), indicating monocytes could also play a critical
role in bone disorders (75). Researchers have made some
observations towards it. The Association of monocyte with
post-menopausal osteoporosis in Caucasian women was shown
by Zhang et al. (29, 102, 103). Network-based proteomics
analysis of peripheral blood monocytes (PBM) showed
significant downregulation of proteins encoded by four genes,
namely, LOC654188, PPIA, TAGLN2, YWHAB whereas,
upregulation of proteins encoded by three genes, namely
LMNB1, ANXA2P2, ANXA2, in extremely low- versus high-
BMD subjects (103). Proteomics analysis of PBM of low-BMD
subjects showed upregulation of the ANXA2 protein (104).
Cellular studies revealed that ANXA2 is important in
monocyte migration across the endothelial barrier. Thus, the
elevation of ANXA2 probably stimulates the higher migration
rate of monocyte from blood to the bone tissue and then
differentiate to OCs and contribute to bone-resorbing activity
(Figure 2B) (104).

Additionally, a microarray study on circulating monocytes in
humans suggested that three genes, CCR3 (C-C chemokine
receptor type 3), HDC (histidine decarboxylase, a histamine
synthesis enzyme), and GCR (glucocorticoid receptor), might
contribute to bone metabolism and homeostasis. These three
genes are found to be upregulated in subjects with low BMD
(105). These genes mediate monocyte chemotaxis, which can
lead to monocyte infiltration in bone tissue, histamine
production, which induces local inflammation and can mediate
OC formation, and glucocorticoid sensitivity which promotes
OC formation (105). In vivo gene expression profiling in human
monocyte suggested upregulation of STAT1 and IFN pathway
genes in low BMD groups (106). Based on additional
August 2021 | Volume 12 | Article 687037
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observations, the researchers proposed that probably in
peripheral blood, IFN-mediated by STAT1 stimulates
circulating monocytes to produce cytokines (such as IL-1,
TNF, CXCL10, and IL-15) that increase the bone resorption
function of osteoclast. Daswani et al. provided further insight
into monocyte proteomics, which revealed the involvement of
phosphorylated heat-shock protein 27 (HSP27) in low BMD
subjects (107). They have observed elevation of total
phosphorylated HSP27 (pHSP27) in monocyte of low BMD
subjects and validated that pHSP27, not a chemoattractant
itself but acts as an actin reorganizer, facilitating migration
(107). As Hsp27 inhibits stress-induced apoptosis, and since
osteoclast formation involves ROS generation, the anti-apoptotic
activity of pHSP27 may foster monocyte survival and hence
more precursor for osteoclastogenesis (107). Transcriptome
study identified the downregulation of two apoptosis-inducing
genes, death-associated protein 6 (DAXX) and polo-like kinase 3
(PLK3), in low BMD subjects (108). This report supported the
fact that due to monocyte survival, more precursors are available
to augment osteoclastogenesis and hence osteoporosis.

It was observed that the SBDS gene, which is responsible for
the disease SDS (Shwachman-Diamond Syndrome showing
skeletal defects), plays a role in monocyte migration and fusion
before osteoclastogenesis (109). Sbds mutant showed a decrease
in Rac2 (GTPase required in cytoskeletal remodeling for
migration) and RANKL-mediated DC-STAMP (required for
fusion of osteoclast precursor) levels. This fusion defect
reduces osteoclastogenesis. Reduced osteoclastogenesis expects
osteopetrosis phenotype. Surprisingly, SDS patients show an
osteoporotic phenotype. The potential explanation for this
phenomenon is that since a reduced number of TRAP-positive
multinucleated OCs are still present, there is no complete
uncoupling of bone remodeling homeostasis, which probably
triggers a shift of MSCs towards adipocyte cell lineage instead of
osteoblast. Other observations supporting this phenomenon
have been reported earlier by the same group (110).

Dendritic Cells
Dendritic cells are majorly antigen-presenting cells (APCs)
endowed with abilities to activate the adaptive immune
response. They express high levels of MHC class II and co-
stimulatory molecules such as CD80 and CD86 which are
required for antigen presentation. DCs are distributed
throughout the body and survey for external and internal
dangers using a broad range of PRRs such as TLRs, CLRs,
NLRs, etc. Dendritic cells can be divided into three subgroups:
plasmacytoid DCs (pDCs) derived from lymphoid progenitors,
classical or conventional DCs (cDCs) derived from both
lymphoid or myeloid progenitors, and monocyte-derived DCs
(moDCs). pDCs function against viral infections by secreting
type I IFNs (111). In addition to pDCs, cDCs and moDCs play a
role in providing defense against other microbes.

However, the profound effect of DCs on bone metabolism has
been widely recognized recently. DCs contribute to
inflammation-mediated osteoclastogenesis and take part in
inflammatory bone disease. Using an in vivo model, Maitra et
al. reported the osteolytic potential of DCs (112). They observed
Frontiers in Immunology | www.frontiersin.org 7
that dendritic cells recruit to bone inflammatory sites and
participate in bone resorption (112). In addition, DCs can
activate T-cells by acting as APCs, and the activated T-cells
produce cytokines and soluble factors that drive bone
remodeling (113). It was also observed that DCs directly
interact with T-cells to form aggregates which play a role in
bone pathologies like synovitis and periodontitis (114, 115). In a
recent study, the role of DCs in manifesting osteoporosis in OVX
mice was reported (116). Estrogen is known to regulate the
number of DCs that express IL-7 and IL-15. In the absence of
estrogen, the DCs sustains for long and express more IL-7 and
IL-15, which, together, induces a subset of memory T-cell to
produce IL-17A and TNF-a in an antigen-independent manner.
The cytokines so produced drive inflammation-mediated bone
loss (116). There are also reports suggesting a more direct role of
DCs in osteoclastogenesis. It has been observed that the DCs can
potentially trans-differentiate and fuse to form OCs, and this
fusion is faster and efficient than monocyte fusion. There is
downregulation in the expression of 3997 genes for
differentiation from monocytes to OCs, while there is
upregulation in the expression of 3821 genes. However, when
immature dendritic cells differentiate into OCs, there is
downregulation of only 2107 genes and upregulation of 1966
genes suggesting that DCs are more closely related to osteoclast
than monocytes (117). The newly formed OCs can summon
more DCs by inducing chemotaxis of DCs, and the OC-DC loop
continues to increase bone destruction (117).

Studies showed that DCs can trans-differentiate to OCs in the
presence of RANKL and macrophage colony-stimulating factor
(M-CSF) (Figure 2C) (35, 118). Another study suggested that
activated DCs (bone-marrow-derived and splenic CD11c+ cells)
upon interaction with T helper-cells (CD4+ T cells or Th) can
develop into functional OCs (TRAP+CT-R+cathepsin-k+) in
RANKL/RANK-dependent manner (Figure 2C) (119). In a
report, Th17 cells were shown to play a role in the trans-
differentiation of DC to OCs (120). It has been observed in RA
patients that inflammatory milieu can recruit Th17 cells, which
produce a huge amount of IL-17 to stimulate RANKL
production by bone stromal cells and promotes nuclear fusion
of immature DCs via IL-17R (IL-17 receptor) (Figure 2C) (117).
T-cells not only augment trans-differentiation of DCs to OCs but
also can inhibit it by producing cytokines like IFN-g. T-cell-
derived IFN-g can inhibit RANKL signaling by blocking TRAF6
to inhibit osteoclast maturation and activation (8). Hence, T-cells
could act as a balance switch in mediating DC-OC trans-
differentiation. Moreover, in specific conditions, DCs are
known to produce TGF-b which is a potent anti-osteoporotic
molecule (121–123). This indicates a potential alternative role of
DCs in osteoporosis. A more in-depth study is required to
understand the full potential of DCs in the induction
of immunoporosis.

Neutrophils
Neutrophils are the polymorphonuclear (PMN) phagocytic cells
and the first leukocyte to be recruited at the site of inflammation
(124). They make up 40-60% of leukocytes in the human blood.
Neutrophils contain different granules, which are a source of
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several anti-microbial molecules. They continuously monitor for
microbial infections and kill the pathogen by various
mechanisms that include phagocytosis, production of ROS,
and molecules like granzyme-B and perforins (125, 126). In
addition, neutrophils also exhibit a unique strategy of
immobilizing and killing microorganisms by extruding a
meshwork of chromatin fibers covered with granule-derived
antimicrobial peptides and enzymes. These are called
neutrophils extracellular traps (NET), and the mode of killing
is termed as NETosis (127).

Current research has emphasized the diverse role of
neutrophils beyond killing pathogens. Neutrophils respond to
different signals in the inflammatory milieu by producing
cytokines and chemokines, which can regulate inflammation
and other pro-inflammatory cells (128, 129). In contradiction
to the old belief as short-lived innate effector cells, recent
evidence suggested the role of neutrophils in regulating
adaptive immune response (130). Thus, neutrophils interact
with both innate and adaptive arms of the immune system and
differentially respond depending on the context.

Neutrophils are also involved in the pathophysiology of
various diseases, including inflammation-mediated bone loss
(131). Moreover, neutrophils can produce chemokines and
recruit pro-osteoporotic cells such as Th17 (12, 131). A strong
correlation was indicated between an increase in RANKL
positive neutrophils with inflammatory disease conditions and
a decrease in BMD (23). A report demonstrated that neutrophils
from the blood of a healthy individual express membrane-
associated RANKL (mRANKL) while RANK expression
depends on IL-4 and TNF-a stimulation (Figure 3A) (132).
Interestingly, it was observed that synovial fluid (SF) neutrophils
from RA patients express both mRANKL and RANK and also
secrete OPG (131, 132). This observation that inflammatory
neutrophils impetuously express RANK whereas healthy blood
neutrophils express only after stimulation gives an insight into
the involvement of neutrophils in bone remodeling. The
evidence of inflammatory neutrophils expressing RANK could
be related partly to acquiring a dendritic cell phenotype and
further activating T-cells in RA condition (133). A study
reported that mRANKL of TLR4-activated neutrophils induce
osteoclastic bone resorption (Figure 3A) (36). The mRANKL of
activated neutrophils act on both OCs and their mononuclear
precursors, converting them into mature and functional OCs
that contribute to bone resorption. Interestingly, they have
demonstrated that the membrane fraction of activated
neutrophils can augment the osteoclastogenic effect but not the
culture supernatant, suggesting the importance of the
involvement of mRANKL (22, 36). Another study reported
that there is an increase in RANKL positive neutrophil in the
blood of chronic obstructive pulmonary disease (COPD) patients
compared to smokers and healthy controls, and it is related to
low BMD (24).

Neutrophils can augment bone loss; however, some reports
suggested that neutrophils play a to reduce bone loss by
maintaining a homeostatic condition. The defective neutrophil
recruitment in leukocyte adhesion deficiency type I (LAD-I)
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disorder results in IL-17 driven inflammatory bone loss (134).
There is a defect in the expression or function of b2 integrin or
related adhesion molecule in LAD-I disorder. Due to this defect,
there is an impairment in neutrophil extravasation to the
inflammatory site. The absence of neutrophils results in
unrestrained production of IL-23 from macrophages, which in
turn triggers IL-17 production from T-cells and can drive IL-17-
mediated inflammatory bone loss. Another report supported the
role of neutrophils in preventing inflammation-mediated bone
loss. Gif1 is a molecule in HSC development, and a defect in Gif1
causes severe neutropenia (135). This condition can induce
osteoporosis depending on pathogen load and systemic
inflammation (135). Hence, neutrophils can be a very critical
player in the regulation and manifestation of osteoporosis.
Eosinophils
Eosinophils are known to be involved in the pathogenesis of
various allergic and inflammatory diseases (136). However,
recently reported association of Vitamin D (VD) deficiency
with an increased number of blood eosinophils indicates
potential role of eosinophils in bone biology. Moreover, VD,
which is a well-known osteoprotective molecule, decreases
production of IgE as well as, release of peroxidase from
eosinophil and while increases the production of the
osteoprotective cytokine IL-10 (37, 137, 138). Eosinophils play
a role in the manifestation of various inflammatory diseases
(138), including chronic obstructive pulmonary disease (COPD),
eosinophilic esophagitis (EoE), etc. (139, 140). Literature
indicates a strong correlation between COPD and osteoporosis
(141). However, the reason identified for the co-morbidity of
osteoporosis is the use of a steroid-based treatment regime.
Steroid-based treatments are frequently used to manage
symptoms in COPD and EoE. Although, the role of
eosinophils with steroid-induced osteoporosis is under scrutiny
and not fully understood yet (141, 142).

Eosinophils carry out allergic responses by producing
inflammatory mediators such as ROS, cysteinyl leukotrienes,
and various cytokines and chemokines (143). Transcription
factors such as NF-kB mounts such allergic inflammatory
responses. However, such transcription factors can also induce
osteoclastogenesis in an inflammatory condition. Interestingly,
eosinophils are the source of IL-31 in an inflammatory skin
condition called Bullous pemphigoid (BP) (144). IL-31 is a pro-
inflammatory cytokine that serves as a biomarker for allergic
disease. It is involved in the regulation of cell proliferation and
tissue remodeling (145). It is reported to be involved in the
regulation of the transcription factors and cytokines that are
associated with osteoporosis. It is also observed that there is an
increase in serum IL-31 level in post-menopausal women with a
decrease in BMD, correlating with age (38). Association of
eosinophil with IL-31 suggests that eosinophil may play a role
in the manifestation of osteoporosis in an exacerbated allergic
and autoimmune inflammatory disease condition. However,
more studies are required to understand the contribution of
eosinophil towards osteoporosis.
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Mast Cells
Mast cells are the tissue-resident immune cells that originated
from pluripotent progenitor cells of bone marrow. Mast cell
progenitors migrate into the tissue, where they differentiate and
mature (146). Though they are best known for fostering allergic
responses, they are also involved in numerous physiological
functions and pathophysiology of various diseases (147). Mast
cells are the first cells to respond to invading foreign entities as
they are present at the tissue boundaries. They can be activated
by PAMPs via PRRs such as TLRs or complement systems. Mast
cells store a wide variety of preformed inflammatory mediators,
including histamine, TNF-a, IL-6 as well as proteases in their
secretory granules (148). As these inflammatory mediators are
known to regulate bone homeostasis and involved in
pathogenesis of various bone disorders, mast cells could be a
probable candidate associated with bone disorder. Indeed, few
reports suggested that there was increase in number of mast cells
in the patient with reduced bone density and associated with
post-menopausal osteoporosis (149, 150). Experimental
evidences suggested that in OVX-induced estrogen depletion
there was an increase in numbers of mast cells as well as
Frontiers in Immunology | www.frontiersin.org 9
osteoclasts (151, 152). These observations indicated that mast
cells probably promote osteoclast formation in estrogen-deficient
conditions. Treatment with calcium and promethazine (a blocker
of the histamine H1 receptor) to post-menopausal women
helped increase BMD in comparison to calcium alone. The
observation that H1 receptor blocking resulted in the
termination of osteoclast formation by mast cell supernatant
suggested that the histamine, one of the main preformed
mediators of mast cell, has a role in the reduction of BMD
(153). Other reports indicated that estrogen affects mast cells and
the release of its mediators, suggesting estrogen has an inhibitory
effect on the osteoclast-inducing potential of mast cells (148).
However, there are contradicting reports which indicated that
estrogen could induce degranulation of mast cells since estrogen
did not stimulate degranulation in ERa (estrogen receptor)
knockout mice (154).

Mast cells have been suggested to be involved in the RA
disease condition. Similar to other immune cells, mast cells are
also abundantly found in inflamed synovial joints of RA patients.
Mast cell mediators such as histamine and tryptase were found to
be increased in SF (39, 40). Mast cells also contribute to the
A

B

FIGURE 3 | Neutrophils and mast cells are involved in bone resorption by producing factors that can drive osteoclastogenesis. (A) Activated neutrophils, either
stimulated with TLR agonist or derived from patients with inflammatory disease, such as, from SF (synovial fluid) of RA (rheumatoid arthritis) patient, express higher
membrane bound RANKL (mRANKL) and act on OC precursors or mononuclear cells to form mature and functional OCs, resulting in bone resorption. (B) Mast cells
derived from SF of arthritic patient produces mediators like histamine, TNF-a, IL-6 that drive osteoclastogenesis and further bone resorption.
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inflammatory milieu of SF as activated mast cells can produce
mediators like TNF-a, IL-6, etc., which have the ability to induce
osteoclastogenesis (Figure 3B). Even increased levels of RANKL
found in the synovial tissue of RA patients could be contributed
by mast cells as activated mast cells secrete RANKL (155). In a
mice model of CIA (collagen-induced arthritis), reduction in T-
cell numbers (both CD4+ and CD8+) along with reduced IFN-g
and IL-17 were observed upon depletion of mast cells (156). This
indicated that mast cells might be involved in regulating T-cell
expansion and Th1 and Th17 polarization, which is further
involved in T-cell-driven arthritis. Various reports suggested
that mast cells also play a role in OA. This could be due to
mast cell-driven increased pro-inflammatory responses. An
increase in the number of mast cells, as well as histamine or
tryptase levels, were observed in SF of OA patients (157–159). It
has been observed that in OA, mast cells are activated via IgE/
FcϵRI receptor axis (158). Another report showed that synovial
mast cells from OA patients produce TNF-a upon stimulation
via high-affinity receptor of IgG (160). The link between mast
cells and bone was also exemplified by the presence of mast cells
during fracture healing. A gradual increase in mast cell numbers
was observed in periosteal fracture callus, followed by a decrease
during callus remodeling (161). The highest number of mast cells
was also found in the vicinity of OCs and bone resorption sites
during callus remodeling, indicating that mast cells could be
involved in regulating osteoclast activity (162). Further
investigation is required to understand the mechanism of
action of mast cells in the physiology of bone turnover and
bone disorders.
CELLS OF THE LYMPHOID LINEAGE

NK Cells
Natural killer (NK) cells are developed from HSCs in the bone
marrow. However, recent evidence suggested that they can also
develop and mature in secondary lymphoid tissues (SLTs) and
show some adaptive features such as memory generation (163).
In the 1970s, NK cells were described as large granular
lymphocytes with the ability of “natural cytotoxicity” against
various tumor cells. In recent times, it is now appreciated that
apart from cytotoxicity against tumor cells, it is also capable of
showing cytotoxicity against virus-infected and stressed cells
(164, 165). NK cell surveillance system consists of various cell
surface activating and inhibitory receptors that help identify and
kill target cells (166). Additionally, they can perform antibody-
mediated cell cytotoxicity (ADCC), making it a potent effector
cell of the humoral response. They also exhibit cytokine-
producing effector function. Upon engagement with target
cells, they can secrete various pro-inflammatory cytokines and
chemokines and, thus, regulate other immune cells’ functionality
by modulating the local milieu (167). NK cells also play a crucial
role in maintaining homeostasis and immunoregulation via
control of T-cells activity.

Since NK cells are well poised to carry out inflammatory
processes and cytotoxicity, they are involved in the manifestation
Frontiers in Immunology | www.frontiersin.org 10
of inflammatory diseases. There are reports which displayed the
presence of NK cells in inflamed synovial tissues at an early stage
of RA (168, 169). Such NK cells express M-CSF and RANKL,
potent activators of osteoclastogenesis (Figure 4A). These
molecules are further upregulated by IL-15, which is
abundantly present in the synovium of RA patients (170).
Soderstrom et al. showed that NK cells from SF of RA patients
trigger efficient formation OCs from monocyte (Figure 4A) (26).
They had also demonstrated that OCs formed from monocyte
when co-cultured with NK cells were capable of eroding bone in
the presence of IL-15 but not in the absence of it (26). In the CIA
mice model, many synovial NK cells express RANKL suggesting
the role of NK cells in bone erosion, and it was observed that
depletion of NK cells prevents bone erosion in CIA.

A study suggested that IL-15 activated NK cells can kill OCs
(Figure 4A). In the presence of IL-15, it seems that NK cells’
action is contradictory to the report mentioned above (171). IL-
15 upregulate leucocyte function-associated antigen-1 (LFA-1)
and DNAX accessory molecule-1 (DNAM-1) on NK cells. These
are ligands of ICAM-1 and CD155 (PVR) receptors, respectively.
These receptors are present on OCs, and they are essential for
their development, function, and interaction with stromal cells
(172). Receptor blocking studies between OCs and NK cells has
displayed restoration of bone resorption. Thus, IL-15 activated
NK cells kill OC via LFA-1 and DNAM-1 (171). Therefore, NK
cell-mediated inhibition of osteoclast is contact-dependent,
although IL-15-activated NK cells produce soluble factors like
IFN-g that can be anti-osteoclastogenic. Thus, NK cells can
control or augment osteoporosis depending on the tissue
microenvironment. More in-depth study is required to
understand the NK cell-mediated regulation of bone
remodeling and osteoporosis.

ILCs
Innate lymphoid-like cells or ILCs are the heterogeneous
populations of cells that arise from the lymphoid lineage (173).
Although they lack antigen-specific receptors, upon tissue
damage or pathogen invasion, they can sense changes in the
local milieu by cytokine receptors and modulate subsequent
antigen-specific lymphocyte responses. ILCs are mainly tissue-
resident cells, especially present at the mucosal surface of the
intestine and lungs (174). Based on cytokine signature and
transcription factors, ILCs can be divided into four groups:
ILC1, ILC2, ILC3, and regulatory ILC (ILCreg). ILC1 functions
highly overlap with NK cells as both produce IFN-g, enhancing
the ability of macrophages and DCs to remove intracellular
pathogens. ILC2s are the innate counterpart of Th2 cells that
produce IL-5 and IL-13 and helps in the expulsion of helminths.
Notably, type-2 cytokines produced by ILC2s have tissue repair
and anti-inflammatory function post-infection (175, 176). ILC3s
are the innate counterpart of Th17 cells as they produce IL-17
and IL-22 in response to IL-1b and IL-23. IL-22 can stimulate the
secretion of anti-microbial peptides from intestinal cells and
provides a barrier in the intestine, whereas IL-17 induces
granulopoiesis (177, 178). IL-17 also drives inflammatory
response by recruiting cells to the site of inflammation (179).
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There are key evidences that suggested the involvement of
ILCs in inflammatory bone diseases such as spondylarthritis
(SA) (180). It is reported that there is an enrichment in the
number of ILC3s in SF of patients with psoriatic arthritis (181).
Enrichment of ILC3 is also found in the gut, in the peripheral
blood, bone marrow, and SF of patients with ankylosing
spondylitis. A recent study has shown that CCR6 positive
ILC3s (ILC3CCR6+) are enriched in inflamed joints of CIA mice
and RA patients and show high IL-17A and IL-22 in arthritic
mice (Figure 4D) (27). These reports suggested a critical role of
ILC3s in the development of all these diseases, probably due to
their highly pro-inflammatory nature.

Hirota et al. have reported that GM-CSF-producing ILC2s
have a pathogenic role in augmenting arthritis (Figure 4C) (41).
However, recent studies demonstrated the protective role of
ILC2s. They can reduce inflammatory arthritis and prevents
bone loss in mice (182). Another study by Omata et al. supported
the immune-regulatory role of ILC2s (183). IL-4 and IL-13
secretion from ILC2 trigger STAT6 activation in myeloid cells,
resulting in suppression of OC formation, thus preventing OVX-
induced bone loss (183). Therefore, ILC2s exert regulatory
function on bone homeostasis by impairing osteoclastogenesis.
Frontiers in Immunology | www.frontiersin.org 11
Additionally, ILC2s can have a regulatory effect on bone via Treg
cells, which are inhibitors of OC formation.

ILC1s are known contributors of IFN-g and are enriched in
many chronic inflammatory diseases. ILC1 is the more
predominant ILCs in SF of RA patients (180). ILC1 is the
primary subtype of ILCs in gingivitis and periodontitis, and
they express RANKL (Figure 4B) (42). More descriptive studies
on ILC1s expressing RANKL are required to understand their
role in bone remodeling.

Recently, a study has recognized a new subset of IL-10
producing ILCs named regulatory ILCs (ILCreg). These are
Lin-CD45+CD127+ IL-10+ cells and are mostly present in gut
tissue (184). In inflammatory conditions, ILCreg can be
stimulated in the intestine and acts on other ILCs such as ILC1
and ILC3 to suppress their activation via IL-10. Additionally,
ILCreg can also produce TGF-b that acts in an autocrine manner
for its expansion in inflammatory conditions. Interestingly, IL-10
is a potent anti-inflammatory cytokine that can downregulate the
synthesis of pro-inflammatory cytokines such as IL-6, TNF-a,
etc., preventing inflammatory-driven osteoclastogenesis and
bone resorption (185). Since ILCreg produces IL-10 and
suppresses intestinal inflammation, it may also play a role in
A

B

C

D

FIGURE 4 | Innate cells from lymphoid lineages, such as Natural killer (NK) cells and Innate lymphoid cells (ILCs) can contribute to bone resorption. (A) IL-15
activated NK cells can induce OC lysis and inhibits bone resorption. However, co-culture of NK cells with monocytes (Mo) triggers bone resorption in presence of
IL-15. Further, NK cell-mediated production of RANKL & M-CSF can drive osteoclastogenesis. (B) ILC1 produces RANKL and is associated with periodontitis.
(C) ILC2 produces GM-CSF and is associated with arthritis. (D) ILC3 produces IL-17A & IL-22 and is associated with psoriatic arthritis.
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suppressing inflammatory bone loss. The role of TGF-b in
osteoclastogenesis is very complex and controversial, but
TGF-b enhances osteoblast proliferation and survival (186).
Thus, TGF-b produced by ILCreg may enhance bone
formation. Moreover, detailed studies are required to
understand the contribution of ILCreg in the suppression of
inflammatory disease conditions such as osteoporosis.
INFLAMMATORY MEDIATORS AND
OSTEOPOROSIS

Some of the key pro-inflammatory mediators secreted by innate
immune cells are IL-6, TNF-a, IL-1b, ROS, and IFN-g (1–3,
187, 188).

IL-6 is prominently involved in osteoporosis. An increase in
IL-6 in the body induces an increase in osteoclastogenesis via the
induction of RANKL production from osteoblasts (43). IL-6
upregulates S1PR2 [Sphingosine-1-phosphate (S1P)] receptor on
the surface of osteoclast precursor and helps in its transmigration
from the bone marrow to the blood and thus play a crucial
role in the hallmark systemic bone loss (44). Moreover, two
of the inflammatory chemokines CXCL8 and CCL20,
enhance osteoblast-induced osteoclastic activity via IL-6
production (189).

TNF-a is an important molecule in osteoporotic disorders,
especially in post-menopausal osteoporosis (190–193). It acts as
pro-osteoporotic either by acting as pro-osteoclastogenic or by
impairing osteoblast function. It directly acts on macrophages to
increase RANK expression and acts on stromal cells to increase
RANKL production (45). TNF-a triggers osteoclastogenesis by
synergistically acting with RANKL and M-CSF via NF-kB and
PI3k/AKT pathway (193). This intensifies the osteoclastic
activity by many folds comparing RANKL alone (193).
Moreover, another report suggests that TNF-a priming
sensitizes M-CSF-induced M2 macrophages to pro-
inflammatory M1 macrophage polarization in RelB dependent
manner, resulting in expanding osteoclast precursor pool with
higher osteoclastic potential (47). TNF-a also induces sclerostin
(SOST) expression, which triggers RANKL expression in
osteocytes and further enhances osteoclastogenesis (46).
Together with IL-6, TNF-a can actively cause osteoclastogenesis
independent of RANKL (194).

TNF-a acts as anti-osteogenic by inhibiting differentiation,
proliferation, and activities of osteoblast. It upregulates CHIP-
ubiquitin ligase protein, which results in the degradation of
osterix (pro-osteoblastic transcription factor) (48). TNF-a also
inhibits expression of BMP-induced ‘special AT-rich sequence
binding protein 2’ (SATB2), which is another pro-osteoblastic
transcription factor, by triggering NF-kB binding to SATB2
promoter (49). Further, TNF-a induces upregulation of
purinoreceptor P2Y2 through ERK and JNK signaling
pathways and hinder the differentiation of MSCs (48, 50). The
Canonical WNT/b-catenin pathway is known to regulate bone
homeostasis and development. Both IL-6 and TNF-a hamper the
pro-osteoblastic WNT/b-catenin pathway by upregulating its
Frontiers in Immunology | www.frontiersin.org 12
antagonists, Dickkopf-related protein 1 (DKK1) and SOST,
which prevent osteoblast differentiation (46, 195).

IFN-g, a type-II interferon, affects later phases of maturation
of osteoclasts. An active osteoclast must fuse to form a functional
multinucleated osteoclast. This fusion is aided by a
transmembrane protein called DC-STAMP, which is expressed
by IFN-g-induced-transcription factors NFATc1 and c-FOS (51).
Moreover, IFN-g-induced upregulation of MHC-II on APCs
helps in T-Cell activation. The activated T-Cells produce more
TNF-a and RANKL, which further help in the differentiation
and maturation of OCs (51).

IL-1b, another highly pro-inflammatory cytokine, promotes
RANKL dependent osteoclast differentiation via activation of
transcription factors NF-kB and AP-1. IL-1b also increases
CCR7, which promotes osteoclast migration and activation
(52). IL-1b is a prerequisite for the C5a (complement protein)-
induced osteoclast activation (53, 54). IL-1b has also been
reported to enhance proteolytic enzymes like plasminogen,
collagenases, and cathepsin-B, which break down bone matrix
proteins resulting in bone loss (55). In addition, it has also been
shown to downregulate osteoblastic activities by inhibiting
alkaline phosphatase (ALP), which is required for bone
mineralization and collagen synthesis activities via modulating
STATs and SMAD pathways (56).

Reactive oxygen species or ROS, especially hydrogen peroxide
and superoxide ions, has been recently shown critical in
osteoclast development. ROS has been shown to increase
osteoclastic activities and bone loss (196). It has been reported
to induce apoptosis in osteoblasts. ROS-activated FOXOs, a
subclass of forkhead proteins involved in cell cycle arrest,
hinders the WNT/b-catenin pathway in MSCs, thus impairs
osteoblastogenesis (197). Moreover, ROS is critical in
maintaining body homeostasis, it would be interesting to
understand more about the role of ROS in context
of osteoporosis.
CONCLUSION AND FUTURE
PERSPECTIVE

Bone is a complex and dynamic tissue. Bone health depends on
multiple factors like diet, age, hormonal, and the inflammatory
status of the body. In addition to these factors, osteoporosis is
also correlated with age-driven complications in the senile
population. A considerable impact of aging has been reported
on the immune system and associated pathologies (1, 5).
Macrophages, which are the major contributor to initiation
and resolution of inflammation, sense the age-related
metabolic epigenetic changes and with a constitutive change to
M1-type play a major role in ‘Inflammaging’: chronic low-grade
inflammation in aged people (10, 83). Thus, our immune system
is capable of sensing different stimulus as well as different phases
of life and results in pathologies like osteoporosis.

In the past 20 years, the field of osteoimmunology allowed us
to appreciate the underlying mechanisms of different bone
pathologies by integrating the knowledge from the immune
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system and bone biology. Such studies have provided new
insights into how both the system functions in a concerted
manner to carry out a complex process of bone modeling and
remodeling. The advent of the new field of “immunoporosis”
emphasizes the role of immune system players in the
pathophysiology of osteoporosis. As discussed in the review,
several innate immune cells have emerged as key regulators of
immunoporosis. These innate immune cells modulate
osteoporosis by producing several pro-inflammatory mediators
and via modulation of cells important for causing osteoporosis
largely by affecting the RANK/RANKL/OPG axis. Net bone
destructive activity of osteoclasts seemingly is the decisive
factor manifesting in bone status. Moreover, the fact that OCs
and some major innate immune cells share a common origin as
well as developmental niche, allow them to carry various
overlapping features such as expression of common array of
PRRs, production of various pro-inflammatory cytokines and
their receptors, creating an efficient nexus of information
between skeletal and immune system. That is how immune
system senses the physiological status of the body and controls
the skeletal system. Therefore, research towards this can allow us
to find more therapeutic molecular targets to tackle osteoporosis.
In addition to the innate immune cells discussed above,
inflammation-mediated by intestinal epithelial cells, B1 cells, gd
T cells could play an important role in osteoporosis, and further
study on these cells could be intriguing.
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Additionally, in the past few years, there has been increasing
evidence linking gut microbiota with bone health. It is now
known that the gut controls several inflammatory diseases by the
cross-talk between the innate immune cells and gut-microbiota
(198, 199). Further, studying the cross talk between gut
microbiota and ILCs and intestinal cells could be important in
immunoporosis and of great clinical value.
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GLOSSARY

ADCC Antibody-mediated cell cytotoxicity
APCs Antigen-presenting cells
BMD Bone mineral density
BMDMs Bone marrow-derived macrophages
BMMs Bone marrow macrophages
BMP Morphogenetic protein
BRC Bone Remodelling Compartment
CCR2 C-C chemokine receptor 2
CIA Collagen-induced arthritis
cMoP Committed monocyte progenitor
COPD Chronic obstructive pulmonary disease
CSF1 Colony stimulating factor 1
CX3CR1 CXC3 chemokine receptor 1
DAXX Death-associated protein 6
DC Dendritic cells
DNAM-1 DNAX accessory molecule-1
EoE Eosinophilic esophagitis
GCR Glucocorticoid receptor
HDC Histidine decarboxylase
HSCs Hematopoietic stem cells
HSP27 Heat-shock protein 27
IFN Interferon
IkBa Inhibitor of NF-kB
ILCs Innate lymphoid cells
LAD-I Leukocyte adhesion deficiency type-I
LFA-1 Leucocyte function-associated antigen-1
MAPKs Mitogen-activated protein kinase
M-CSF Macrophage colony stimulating factor

(Continued)
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Continued

MHC II Major histocompatibility factor II
MSCs Mesenchymal stem cells
NET Neutrophils extracellular traps
NFATc Nuclear factor of activated T-Cells
NLRs Nod-like receptors
OA Osteoarthritis
OBs Osteoblasts
OCs Osteoclasts
OPG Osteoprotegerin
OVX Ovariectomized
OYs Osteocytes
PBM Peripheral blood monocytes
PBMCs Peripheral blood mononuclear cells
pDCs Plasmacytoid DCs
PI3K Phosphoinositide 3-kinase
PLK3 Polo-like kinase 3
PMN Polymorphonuclear
PRRs Pattern recognition receptors
RA Rheumatoid arthritis
RANK Receptor activator of nuclear factor-kB
RANKL Receptor activator of nuclear factor-kB ligand
ROS Reactive oxygen species
SDS Shwachman-Diamond syndrome showing skeletal defects
SF Synovial fluid
SRs Scavenger receptors
STAT1 Signal transducer and activator of transcription
TLRs Toll-like receptors
TNF Tumor necrosis factor
RAF TNF receptor-associated factor
TRAP Tartrate-resistant acid phosphatase
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