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Background: Formation of kidney stones resulting in urological disorders remains a
major cause of morbidity in renal diseases and many others. Innate immunity, mainly
inflammasome, has demonstrated a key role in the development of kidney stone disease
(or “nephrolithiasis”), but a molecular rationale for therapeutic intervention targeting
immunity is far from clear. We reason that identifying inflammatory gene networks
underlying disease risk would inform immunotherapeutic targets for candidate
drug discovery.

Results: We generated an atlas of genetic target prioritization, with the top targets highly
enriched for genes involved in the NF-kB regulation, including interaction neighbors of
inflammasome genes. We identified a network of highly ranked and interconnecting genes
that are of functional relevance to nephrolithiasis and mediate crosstalk between
inflammatory pathways. Crosstalk genes can be utilized for therapeutic repositioning,
as highlighted by identification of ulixertinib and losmapimod that are both under clinical
investigation as inhibitors of inflammatory mediators. Finally, we performed cross-disease
comparisons and druggable pocket predictions, identifying inflamsnmatory targets that are
specific to and tractable for nephrolithiasis.

Conclusion: Genetic targets and candidate drugs, in silico identified in this study, provide
the rich information of how to target innate immune pathways, with the potential of
advancing immunotherapeutic strategies for nephrolithiasis.
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INTRODUCTION

Experimental Factor Ontology (1) describes kidney stone disease
(or “nephrolithiasis”) as a urological disorder, characterized by
the presence of calculi (approximately 80% calcium stones) in the
pelvis of the kidney. It is estimated that about one in 10 of us will
suffer from nephrolithiasis in our lifetime (2), and the prevalence
continues to increase, partly explained by lack of physical
activities and unhealthy dietary choices (3). Nephrolithiasis is
also thought as a systemic disorder with high economic health
burden (4) not only accounting for renal diseases but also linked
to other diseases such as diabetes (5). Standard care, such as
pharmacological treatments and dietary preventions to increase
intakes of water and potassium, can only achieve modest
therapeutic efficiency (6), and new therapeutic strategies are
much needed in order to reduce the disease burden.

Our understanding of the mechanisms of stone formation has
made significant progress in identifying key physiochemical
events such as crystal nucleation, aggregation, and retentions
[reviewed in (7)]. Accordingly, therapeutic strategies can be
either prevention of crystal nucleation and aggregation, or
protection from renal epithelial cell injury which can increase
retention force between crystals and injured cells. High calcium
oxalate crystals are toxic that can cause oxidative stress-mediated
renal cell injury (8), activate p38 MAPK signaling leading to
necrotic cell death (9), and induce inflammatory responses
through the NLRP3 inflammasome activation (10). There is
increasing evidence to support the importance of macrophage
polarization and autophagy in stone formation and clearance.
Macrophage polarization can be modulated in favor of stone
treatment and prevention (11, 12): towards anti-inflammatory
macrophages (M2) away from proinflammatory macrophages
(M1). M1 can stimulate inflammatory responses to promote
stone formation, whereas M2 can promote stone phagocytosis to
prevent kidney injury. Another prospective strategy for
preventing the disease is to enhance autophagic activity, likely
through the inhibition of mTOR (13); mTOR signaling is
essential for modulating metabolism and other fundamental
cell processes (14).

In addition to cellular modulation, genetic basis of kidney
stones also starts to surface. For example, genome-wide
association study (GWAS) of nephrolithiasis has been recently
reported, identifying genetic loci that are likely to affect genes
involved in vitamin D metabolism and calcium-sensing receptor
signaling (15). The gene assignment from genetic loci, however,
was simply based on genomic proximity. Such assignment did
not consider regulatory effects of non-coding loci on genes,
which could lead to false negatives during target gene
discovery. We already know that loci arising from GWAS in
common disease are mostly non-coding. We also know that
regulatory effects of noncoding loci on target genes may involve
3D chromatin structure and are likely to be cell-type specific. In
other words, the assignment of target genes from non-coding loci
requires supports from a range of cell-type-specific regulatory
genomic datasets, including but not limited to long-range
physical chromatin interactions (16) and genetic regulation of
gene expression (17). In an attempt to address this issue

(i.e., reducing false negatives), we have established a genetics-
led approach that can maximize the informativeness of GWAS
and regulatory immunogenomics to enhance the drug target
prioritization (18). Our approach is particularly useful in
prioritizing immunomodulatory targets, taking advantages of a
large body of immunogenomic datasets that have been generated
in a wide variety of immune cell types and states. Our attempt is
motivated by the fact that drug targets with genetic support are
twice as likely to be therapeutically valid as those without support
(19, 20).

Targeting innate immunity is an increasingly appreciated
immunotherapeutic (mainly anti-inflammatory) strategy for
kidney stone disease (12). In this study, we sought to provide a
molecular rationale for therapeutic intervention in nephrolithiasis,
exploring genetic evidence arising from GWAS in nephrolithiasis
and regulatory immunogenomic datasets. We performed genetic
prioritization on a genome wide and identified a gene network
responsible for crosstalk between pathways that are essential for
inflammation. Based on pathway crosstalk genes, we also performed
therapeutic repositioning and in silico predicted therapeutic targets
and drug combinations. Further cross-disease comparisons with
immune-mediated diseases allowed us to identify inflammatory
target candidates that are specific to nephrolithiasis.

MATERIALS AND METHODS

Genetic Prioritization at the Gene,
Pathway, and Crosstalk Level

GWAS summary data in nephrolithiasis were obtained from
previous studies (15, 21, 22) and analyzed using the Pi package
(version 2.2.1), our recently established genetics-led target
prioritization (18). In brief, GWAS SNPs (including SNPs in
linkage disequilibrium) were used to define genes under genetic
influence, including nearby genes (nGene) based on genomic
proximity and organization (23), expression-associated genes
(eGene) integrating eQTL datasets (24-26), and conformation
genes (cGene) using promoter capture Hi-C datasets (27). These
defined genes were then used to identify additional genes
through exploiting high-quality gene interaction information
from the STRING database (only with evidence codes
“experiments” or “databases”) (28). This resulted in a total of
12,466 target genes prioritized, for which priority rating (scored
0-5) was visualized using Manhattan plot.

Individual pathways were prioritized based on enrichment
analysis of top prioritized genes. Enrichment analysis was
performed according to one-sided Fisher’s exact test, done so
separately using KEGG pathways (29) and Reactome pathways
(30). The enrichments were measured by Z-score, odds ratio
(OR), and false discovery rate (FDR). The identification of
crosstalk between pathways was achieved by searching for a
subset of gene interactions (merged from KEGG pathways) so
that the resulting pathway crosstalk contained highly ranked and
interconnecting genes. The significance (p-value) of the
identified crosstalk was estimated by a degree-preserving node
permutation test (100 times). In addition to being visualized
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naturally as a gene network, the crosstalk was also illustrated as a
pathway-centric network, with pathways as nodes and their
estimated connections as edges. Only pathways significantly
overrepresented in crosstalk genes were considered nodes. The
edges were initially inferred if member genes were shared
between pathways, and then filtered by identifying the
minimum spanning tree using the igraph package (version
1.2.6) (31) to keep only edges found in the resulting tree. The
thickness of edges was proportional to the number of member
genes shared between two-endpoint pathways.

Target Set Enrichment Analysis Using the
Hallmark Gene Sets

As the nonredundant version of the MSigDB database, the
hallmark gene sets capture the comprehensive but
representative information on molecular pathways (including
KEGG, Reactome, and many others) and biological knowledge
about gene regulations and many others (32). We used the dnet
package (version 1.1.7) (33) to perform rank-based target set
enrichment analysis (conceptually similar to gene set enrichment
analysis (34), quantifying the degree to which a hallmark gene set
was enriched at the “leading prioritization” of the ranked gene list.
The leading prioritization was defined as the left-most region,
containing the core subset of the prioritized genes accounting for
the enrichment signals. The significance was quantified using FDR
and normalized enrichment score (NES).

Definition of Inflammasome Genes,
Nephrolithiasis Genes, and Their
Interaction Neighbors

Inflammasome genes were defined using Gene Ontology (35),
restricted to inflammasome-related terms including inflammasome
complex (GO:0061702), regulation of NLRP3 inflammasome
complex assembly (GO:1900225), NLRP3 inflammasome complex
assembly (GO:0044546), and NLRP1 inflammasome complex
assembly (GO:1904784). Known nephrolithiasis genes were sourced
from gene annotations using Disease Ontology (36), restricted to a
term nephrolithiasis (DOID:585). Interaction neighbors were
identified based on the STRING database (28), restricted to high-
quality gene interactions with evidence codes “experiments”
or “databases”.

Therapeutic Repositioning and

Removal Analysis

Therapeutic repositioning was based on information on current
therapeutics (including drugs, development phases, target genes,
and disease indications) in the ChEMBL database which curates
therapeutic information mainly sourced from ATC,
ClinicalTrials.gov, DailyMed, and FDA (37). Given a disease
indication, drugs with the maximum phase of development were
selected for a target gene, given that selected target genes had
well-defined mechanisms of action and explained the efficacy of
drugs in disease. Selected target genes were also categorized into
two groups: one for approved drug targets (that is, genes targeted
by any approved drugs), and the other for phased drug targets
(that is, genes targeted by non-approved phased drugs). One-

sided Fisher’s exact test was used to evaluate the significance of
pathway crosstalk genes that were enriched for approved drug
targets and phased drug targets.

The effect of nodes on the network was evaluated using
removal analysis, done so for individual nodes and nodes in
combination. The nodes removed (either individually or in
combination), if critical for the network, would result in a
large fraction of nodes disconnected from the largest network
component after node removal. Combinatorial removal analysis
was carried out to select drug combination (i.e., optimal
combination) maximizing the effect of removing nodes, that is,
the largest fraction of disconnected nodes observed for a specific
node combination removed. The effect of node removal was
visualized using the ggupset package (version 0.3.0).

Cross-Disease Comparisons Using the
Supra-Hexagonal Map

Focusing on the pathway crosstalk genes identified in
nephrolithiasis, the supraHex package (version 1.28.1) was
used to compare prioritizations against immune-mediated
diseases [sourced from (18)]. In brief, a supra-hexagonal map
consisting of 19 hexagons was trained using the self-organizing
learning algorithm [referred to (38) for details]. The diseases
selected for comparisons covered a wide spectrum of
autoinflammatory-autoimmune continuum, subdivided into:
(i) autoinflammatory diseases, comprising Crohn’s disease and
ulcerative colitis; (ii) autoimmune diseases, including multiple
sclerosis, rheumatoid arthritis, systemic lupus erythematosus,
and type 1 diabetes; and (iii) in-between mixed diseases,
including ankylosing spondylitis and psoriasis.

The trained map was utilized for downstream analyses.
Firstly, the map was used to visualize disease-specific
prioritization profiles, with diseases organized onto a 2D
square lattice in a manner that diseases with similar profiles
were placed closer to each other. Secondly, the map was
partitioned into four target gene clusters, each having similar
prioritization patterns across diseases. Thirdly, the map was
overlaid with druggable pocket data (binary) for estimating the
probability of each hexagon containing druggable/tractable
genes. A gene was defined to be tractable if its known protein
structure(s) predicted to contain drug-like binding sites (that is,
druggable pocket). The known protein structures were available
from the PDB database (39), and druggable pockets predicted
using the fpocket software (version 2.0) (40). The significance of
pathway crosstalk genes enriched in pocket-containing genes was
evaluated using one-sided Fisher’s exact test.

RESULTS

Genetic Prioritization Highlights the
Importance of the NF-kB Regulation in
Kidney Stone Disease

Using GWAS summary data in nephrolithiasis (15, 21, 22), we
first employed our genetics-led target prioritization approach
(18) to generate a prioritized list of >12,000 target genes (Table S1).
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Manhattan plot illustrates target genes ranked by priority rating
(Figure 1A). The top-ranked genes are mostly involved in the
NE-kB signaling, such as NFKBIA (top 5th), NFKBI (7th), RELA
(19th), and RELB (21st), to name but just a few. Using hallmark
gene sets (32), we then performed rank-based target set
enrichment analysis (TSEA; Figure 1B and Figure S1), revealing
that highly prioritized genes tend to be regulated by NF-kB in
response to TNF, the key regulation in inflammation. Within this
inflammatory regulation, 73% (38/52) of genes were found at
the leading prioritization. TSEA also revealed the tendency of
highly prioritized genes to be involved in inflammation-related
events, including PI3K-AKT-mTOR signaling, IL6-JAK-STAT3
signaling, apoptosis by caspase activation, and inflammatory
response (Figure S1).

Now we already know that inflammatory response can be
induced by high calcium oxalate crystals, triggering the release of
proinflammatory cytokines such as interleukin (IL)-1$ and IL-18
through the inflammasome activation (41). These two
proinflammatory cytokines, ILIB (349th) and IL18 (303rd),
were moderately prioritized. Interestingly, our genetic
prioritization did not highly rate inflammasome genes (in
other words, lacking genetic evidence; see Table S2), instead,
highly rated were interaction neighbors of inflammasome genes.
Among the top 1% of prioritized genes, there exists only one
(EIF2AK2) out of 21 inflammasome genes (p = 0.19 on Fisher’s
exact test); this is in sharp contrast to 36 interaction neighbors
(out of 295 in total; p = 1.2 x 107*°), and these neighbors are
mostly related to the NF-kB signaling (Figure 1C). For example,
it is not the gene GSDMD (encoding gasdermin D) but its
interaction gene NFKBIA that is highly rated. As part of
inflammasome, GSDMD is well studied for its importance in
programmed necrotic cell death or “pyroptosis” (42). Like
inflammasome genes, we also observed similar findings for
nephrolithiasis genes: very few of nephrolithiasis genes ranked
at the top 1% (p = 0.09) versus many of their interaction
neighbors highly rated (p = 7.9 x 107> Figure S2 and Table
$3). In summary, our genetic prioritization identifies the NF-kB
regulation as a central mediator of inflammation that is likely
essential for kidney stone disease.

Pathway Prioritization Identifies Crosstalk
Between Inflammatory Pathways in Kidney
Stone Disease

To enhance the findings above on the importance of NF-kB
signaling and further identify additional pathways that can also
play a pivotal role in kidney stone disease, we next used the KEGG
resource (29) to prioritize pathways based on enrichment analysis
of highly prioritized genes. The top prioritized pathways include
NEF-kB, TNF, and TLR signalings (Figure 2A), and these pathways
were consistently identified (Figure S$3). Interestingly, commonly
involved in these pathways are key players (RELA, NFKBI,
IKBKG, IKBKB, and CHUK) of the NF-kB regulation
(Figure 2B). We also used the Reactome resource (30) and
obtained similar but more specific pathways, such as TRAF6- or
TNFRI1-induced NF-kB activation (Figure S4). To complement
the knowledge obtained from individual pathway prioritizations,

we next exploited interaction information merged from all KEGG
pathways to identify a pathway crosstalk that contains highly
ranked and interconnecting genes (p=3.2x10"°° on permutation
test; Figure 3A and Table S4). Genes in this crosstalk include
those previously reported to be of functional relevance to
nephrolithiasis, such as protein kinase C (PRKCA, PRKCB, and
PRKCZ) (43), markers (CD40 and TLR3) (44), and autophagy
(MTOR and SQSTMI) (13), thus validating our genetic
prioritization at the gene and pathway level. Based on pathways
significantly over-represented in the crosstalk (Figure S5), we
further constructed crosstalk at the pathway level, with edges
estimated by the extent to which member genes are shared
between two endpoints (Figure 3B). This pathway-centric
representation can be useful to identify points for
simultaneously targeting multiple inflammatory pathways, for
example, targeting NF-kB, TNF, and NOD-like signalings
through their shared genes (IKBKB, IKBKG, NFKBI1, NFKBIA,
RELA, and TRAF2).

Pathway Crosstalk Genes Inform
Repositioning of Existing Therapeutics to
Kidney Stone Disease

Next, we explored the evidence supporting drug repurposing
based on whether pathway crosstalk genes are targeted by
approved or phased drugs (Figure 4A and Table S5). Using
the well-curated information of existing therapeutics available
in the ChEMBL database (37), we found the high degree of
support from clinical evidence (approved drugs; FDR = 6.6 x
107?), identifying six genes (JAK2, LCK, LYN, PIK3CA, SRC,
and TYK2) for repurposing of licensed medications (that is,
drugs already in clinical use). We also identified 12 preclinical
(phased) drug targets, showing higher degree of support from
preclinical evidence (FDR = 6.4 x 10°°). These include five
genes (IKBKB, MAPK14, MTOR, PRKCB, and TLR3) targeted
by clinical phase-III drugs, four phase-II drug target genes
(BIRC3, CD40, CD40LG, and PDPKI), and three phase-I drug
target genes (MAPK3, PRKACA, and TNFRSFIA).

We proceeded to reveal target-specific therapeutic potential
by quantifying the tolerance of the pathway crosstalk to node
removal of 18 approved and phased targets, done so
individually and in combination (Figure 4B). The effect of
node removal can be measured as the fraction of nodes
disconnected from the largest remaining component after
removal. Removing a node critical for the crosstalk would
result in a large number of disconnected nodes. We found
that the crosstalk was very robust to single node removal, with
the maximum effect (~10% disconnected nodes) achieved by
removing PRKACA. The robustness to single node removal
motivated us to further examine the effect of combinatorial
removal. Moreover, in order to achieve an adequate effect while
minimizing adverse effects, it is logical to identify the smallest
possible number of nodes in combination. For these two
reasons, we removed between two to four nodes in
combination to identify the optimal combination. We found
that the PRKACA inhibitor could be combined with an agent
inhibiting MAPKI4, MAPK3, or CD40 to achieve the same
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FIGURE 1 | Genetic prioritization and characterization of target genes in kidney stone disease. (A) Overview of target gene prioritization. Manhattan plot illustrates
priority rating (y-axis) for prioritized target genes (color-coded by chromosomes; x-axis), with top 30 genes named. (B) Target set enrichment analysis (TSEA) using
the hallmark gene sets. Left panel: Scatter plot showing TSEA results, with each dot for a gene set and colored by FDR. Right panel: lllustration of the leading
prioritization for the gene set “TNFA_SIGNALING_VIA_NFKB” (that is, genes regulated by NF-kB in response to TNF). The leading prioritization is defined as the left-
most region ahead of the peak, as indicated by the dark blue bar. Genes found at the leading prioritization are indicated in vertical lines (also color-coded by priority
rating). (C) Inflammasome. Interactions between inflammasome genes are visualized, together with their one-step (direct) neighbor genes (restricted to the top 1%
prioritized genes). Gene nodes are colored by priority rating and shaped by whether or not functionally relevant to inflammasome. Gene interactions are sourced from
the STRING database, while the relatedness to inflammasome obtained from annotations using Gene Ontology.

effect (~13%). With PRKACA at hand, removing another two
nodes (MAPK3 and MAPKI4) was predicted to disconnect
18.9% of nodes; accordingly, both inhibitors of inflammatory
mediators (that is, ulixertinib targeting MAPK3 and

losmapimod targeting MAPKI14) were predicted to be the
promising agents. The effect of three-node removal could be
further increased to 22.6% with the addition of dacetuzumab, a
monoclonal antibody targeting CD40.
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Cross-Disease Comparison Suggests
Tractable Targets Specifically for Kidney
Stone Disease

Finally, focusing on pathway crosstalk genes, we compared
prioritizations in kidney stone disease with regard to our
previously published prioritizations in immune-mediated
diseases (18). We found no or weak correlations of priority
ratings in kidney stone disease with those in immune diseases
(Figure S6), except for modest correlations observed for multiple
sclerosis (Pearson’s correlation = 0.348, p = 1.1 x 107%). To
identify genes that are shared between diseases and are unique to
a specific disease, we also employed a supra-hexagonal map (38)
for cross-disease comparisons (Figure 5A). This identified four
target clusters (C1-C4), each containing genes with similar
prioritization patterns (Figure 5B and Figure S7; Table S6).
Among these, the cluster C4 was highly rated in all diseases
analyzed, displaying the highest tractability (Figure 5C); a
tractable gene is defined to contain druggable pockets
predicted from the known protein structure (39, 40). Notably,
the cluster C1 was highly rated in kidney stone disease only and
contained the relatively low proportion of tractable genes
(Figure 5C), indicative of being underexplored. Overall,
crosstalk genes were significantly enriched for druggable
pockets (p = 3.6 x 107 on Fisher’s exact test; Figure 5D). We
suggest that the pocket-containing genes that are prioritized
highly and specifically in kidney stone disease (Figure 5E) are
of particular interest for future validation.

DISCUSSION

Genetic evidence arising from human disease genomics can inform
the discovery of therapeutic targets (45). Implementation of
genetics-led drug target selection remains a prospective area for
computational translational research; we have pioneered this effort
[reviewed in (46)]. Our genetic prioritization utilizes previously
published GWAS data of nephrolithiasis, but our findings convey
the messages beyond what the original studies have revealed. We
have prioritized genetic targets from an innate immunity
perspective. It is worth noting that our approach is unique in
respecting the omnigenic model of genetic architecture (47, 48). In
essence, we have considered potential targets: not only (very few)
core genes directly inferred from GWAS summary data and
regulatory immunogenomic data but also (very huge) peripheral
genes that are linked to core genes through gene connectivity. This
might explain why previously reported nephrolithiasis genes (and
inflammasome genes as well) are very limited in numbers.
Consistent with this, we do not highly prioritize previously
reported genes (lacking genetic evidence), instead, their
interaction neighbors are highly rated. Interestingly, most of
highly rated neighbors converge on the NF-kB regulation, a
central mediator of inflammation.

Our genetic prioritization does not pick up cytokines that act on
cells of adaptive immune responses (Table S1; with ranks greater
than 1,000 out of >12,000 target genes); such cytokines include IL2
and its receptors IL2RA, IL2RB, and IL2RG that mainly act on T
cells, B cells, and NK cells; IL3 and IL3RA on T cells and NK cells;
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FIGURE 3 | Target pathway crosstalk identified in kidney stone disease. (A) Gene-centric representation of the crosstalk, with nodes for genes and edges for
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IL4 and IL4R on T helper cells, B cells, T cells, and macrophages;
and IL5 and IL5RA on T helper cells, B cells, and eosinophils. In
other words, based on existing data there is lack of genetic evidence
targeting adaptive immune pathways for nephrolithiasis. Given the
possible role of adaptive immunity in disease, we anticipate that
future availability of more immunogenomic datasets, particularly in
adaptive immune cell types and states, may increase the chance of
identifying the link with adaptive immunity.

Our identified pathway crosstalk contains several genes that
have already been reported to be functionally relevant to

nephrolithiasis. These include genes involved in autophagy,
such as the gene MTOR responsible for autophagy defects and
the gene SQSTMI1 encoding the autophagic substrate. The
previous study has proposed that the deregulated MTOR
signaling and the impairment in autophagy represent
promising targets for suppressing kidney stone development
(13). Our study suggests that autophagy-related genes likely act
in a wider context and may interact with other genes, collectively
forming as a cohesive network of inflammatory pathways (such
as NF-kB, TNF, MAPK, TLR, and NOD-like signalings).

Frontiers in Immunology | www.frontiersin.org

August 2021 | Volume 12 | Article 687291


https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

Fang and Jiang

Genetic Target Prioritization in Nephrolithiasis

Disease indications

mmphoma
yopatt

y

enous leukemia
0

ultiforme
stem disease

- clear cell rena?carc_lnoma
k- collecting duct carcinoma
- colorectal carcinoma

- diabetic ne|

phropathy
k- lupus nep%nhs

t lymph

lastoma mi
lasm
lasm of mature B-cells
k- non—-Hodgkins lymphoma
|- osteosarcoma
ry renal cell carcinoma

i Malignant epithelial tumor of ovary

I chromophobe renal cell carcinoma
{ melanoma

t- chronic fatigue syndrome

I acute coronary syndrome
k- chronic myelo;

- acute myeloid leukemia
|- breast carcinoma
L breast neoplasm

L cancer

- Fallopian Tube Carcinoma

L gliobl

F immune s\
I myelodysplastic syndrome

©
£
o
e
S
]
3gg
zg?
8w
£2E
©
>382
G
=2
aE 2>
©o0o
QaQqQ
i

I diabetic retinopath

L diffuse large B-cel

L dilated cardiom

- ovarian carcinoma

L pancreatic carcinoma

L neopl
L neopl

@
Q
L

ry arterial hypertension

L renal carcinoma

)
‘D
(=]
S
£
453

3
£

2
]
€

s
\

t pulmonal

- renal cell carcinoma

upus erythematosus

L thyroid carcinoma

sarcoma
L thyroid neoplasm

piratory system disease
t small cell lung carcinoma

|- sarcoma
L soft ti
I systel

|- res|

L type | diabetes mellitus

JAK2 -
LCK A
LYN -

PIK3CA +
SRC
TYK2 A

IKBKB -
MAPK14 -
MTOR

PRKCB +

TLR3 A
BIRC3 -

CD40 +

CD40LG -

PDPK1 -

MAPK3

PRKACA ~
TNFRSF1A

(5]
©
(<]

R
© Qg
Gg@

(]

S
]

D
®

()

8
o

o

@} rheumatoid arthritis

(=]
(3]

g

Index
1

2
3
4

o

20
21
22
23
24
25
26
27
28
29

Drug (mechanism of action)
ALPELISIB (PI13-kinase p110-alpha subunit inhibitor)
ARRY-797 (MAP kinase p38 alpha inhibitor)
BARDOXOLONE METHYL (IkappaB kinase (IKK) beta inhibitor)
BARICITINIB (Tyrosine-protein kinase JAK2 inhibitor)
BARICITINIB (Tyrosine-protein kinase JAK2 inhibitor)
TOFACITINIB CITRATE (Janus Kinase (JAK) inhibitor)
BIRINAPANT (clAP1/clAP2 inhibitor)
BOSUTINIB (Tyrosine-protein kinase Lyn inhibitor)
BOSUTINIB (Tyrosine—protein kinase SRC inhibitor)
BOSUTINIB (Tyrosine—protein kinase SRC inhibitor)
VANDETANIB (Tyrosine-protein kinase SRC inhibitor)
COPANLISIB (PI3-kinase p110-alpha subunit inhibitor)
COPANLISIB HYDROCHLORIDE (PI3-kinase p110-alpha subunit inhibitor)

DACETUZUMARB (Tumor necrosis factor receptor superfamily member 5 inhibitor)

DAPIROLIZUMAB PEGOL (CD40 ligand inhibitor)

ENZASTAURIN (Protein kinase C beta inhibitor)

GSK-1995057 (Tumor necrosis factor receptor R1 inhibitor)
GSK-690693 (cAMP-dependent protein kinase (PKA) inhibitor)
LOSMAPIMOD (MAP kinase p38 alpha inhibitor)

MK-8353 (MAP kinase ERK1 inhibitor)

MK-8353 (MAP kinase ERK1 inhibitor)

RAVOXERTINIB (MAP kinase ERK1 inhibitor)

ULIXERTINIB (MAP kinase ERK1 inhibitor)

PAZOPANIB HYDROCHLORIDE (Tyrosine—protein kinase LCK inhibitor)
RIDAFOROLIMUS (Serine/threonine-protein kinase mTOR inhibitor)
RINTATOLIMOD (Toll-like receptor 3 agonist)

RUBOXISTAURIN (Protein kinase C beta inhibitor)

RUPLIZUMAB (CDA40 ligand inhibitor)

RUXOLITINIB PHOSPHATE (Tyrosine-protein kinase JAK2 inhibitor)
TOFACITINIB CITRATE (Janus Kinase (JAK) inhibitor)

UCN-01 (3-phosphoinositide dependent protein kinase—1 inhibitor)
ULIXERTINIB (MAP kinase ERK1 inhibitor)

VANDETANIB (Tyrosine-protein kinase SRC inhibitor)

Fraction of nodes disconnected from

the largest component upon node removal

Phase

i

0.20 A

0.15 4

0.10 4

0.05

phase of drug development reached
® phase-IV (approved in at least one country or area)
@ phase-Iil (larger studies of safety and effectiveness)
@ phase-Il (preliminary studies of effectiveness)

@ phase-| (safety studies with healthy volunteers)

log,(OR)

Phase 0 1 2 3 4

\

—log,,(FDR)

Approved 4
targets -
(n=6) 3

2

Preclinical
+ targets
(n=12)

Optimal combination

-2 =3 4

0226 ™

0.189 ™

0.132

0.094

e o
[

Combinatorial
removal

Single node removal

FIGURE 4 | Drug repurposing analysis of pathway crosstalk genes. (A) Support from existing therapeutics. Top-left panel: dot plot showing 18 crosstalk genes (y-axis)
that are currently targeted by approved (phase IV) and phase I/Il/lll drugs in disease indications (x-axis). Dots are colored by maximum phase of drug development
reached and indexed in number. Bottom-left panel: Information on drugs and mechanism of action. Top-right panel: Forest plots of approved or phased drug targets
enriched in crosstalk genes. The significance level (FDR), odds ratio (OR), and 95% confidence intervals (represented by lines) calculated according to Fisher’s exact test
(one-sided). (B) Rational drug selection. It is based on effects of node removal on the crosstalk. Fraction of nodes disconnected from the largest remaining component
(v-axis) is plotted against node removal (x-axis). The nodes removed are indicated by blue circles beneath. Notably, nodes removed in combination are indicated by linked
blue circles. For each combinatorial removal, only the optimal combinations with the largest effect are shown (also color-coded). Inserted is the illustration of the crosstalk,
with the same layout as shown in Figure 3A but only labeled for four nodes in optimal combinations.

Genes in our identified pathway crosstalk are highly
interconnected, and the nature of high interconnectivity makes it
not so easy to be perturbed. In addition to removal analysis for
individual nodes or nodes in combination, we have also performed
“targeted attack” (49), an analysis that sequentially removes nodes
that are preordered in a specific manner (Figure S8). Such successive

node removal can be based on either node centrality (measured by
degree or betweenness) or node priority (here priority rating). We
found that the crosstalk was tolerant to targeted attack by node
priority; it requires 40% nodes to be removed to achieve 50% nodes
disconnected. Relatively, the crosstalk is vulnerable to targeted attack
by node centrality; disconnecting 50% nodes only requires removing
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15% nodes. Overall, the robustness to targeted attack suggests the
difficulty in the design and implementation of therapeutic
intervention in nephrolithiasis. Indeed, even combinatorial
removal on any four nodes in the crosstalk altogether can
maximally disconnect as low as 23% nodes (Figure S9). These
results also suggest the necessity of the computational design of
pharmaceutical agents acting on multiple targets to achieve efficiency
in treating kidney stone disease.

In summary, our genetic targets provide the rich information
of how to target innate immune pathways, with the potential of
advancing immunotherapeutic strategies for nephrolithiasis. We
anticipate that our pathway crosstalk-based analysis can be an
inspiration for future studies to enhance the uptake of genetic
prioritization and therapeutic repositioning by the scientific
community and pharmaceutical companies working in kidney
stones and beyond.
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