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The scopes related to the interplay between stem cells and the immune system are broad
and range from the basic understanding of organism’s physiology and ecology to
translational studies, further contributing to (eco)toxicology, biotechnology, and
medicine as well as regulatory and ethical aspects. Stem cells originate immune cells
through hematopoiesis, and the interplay between the two cell types is required in
processes like regeneration. In addition, stem and immune cell anomalies directly affect
the organism’s functions, its ability to cope with environmental changes and, indirectly, its
role in ecosystem services. However, stem cells and immune cells continue to be
considered parts of two branches of biological research with few interconnections
between them. This review aims to bridge these two seemingly disparate disciplines
towards much more integrative and transformative approaches with examples deriving
mainly from aquatic invertebrates. We discuss the current understanding of cross-
disciplinary collaborative and emerging issues, raising novel hypotheses and
comments. We also discuss the problems and perspectives of the two disciplines and
how to integrate their conceptual frameworks to address basic equations in biology in a
new, innovative way.
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INTRODUCTION

Stem cells are multipotent, self-renewing entities that generate
one or more differentiated daughter cell types (1, 2). Conversely,
immune cells are differentiated cells devoted to immunosurveillance
and able to detect and respond to non-self stimuli. Stem and
immune cells are thus commonly discussed as separate entities
and considered to belong to disparate branches of biological
disciplines with limited or even no interconnections. Yet,
following Morin’s (3) view for any complex system as “composed
of interweaving interactions characterized by complementary,
antagonistic, concurrent relationships so that no one exists and
can be understood in isolation from the whole”, it becomes natural
to consider these two complex cellular networks, as not fully
understood in isolation from each other. Stem and immune cells
are essential for animal survival and fitness. Indeed, the two systems
contribute to homeostasis by perceiving physiological changes in
the systemic environment and, consequently, they generate
differentiated cells or mount an immune response, respectively
(4–6).

There are multiple examples in mammals, showing
intermingled immune and stem cell functionalities (see below),
whereas immunotoxicology and pharmaceutical research are
additional scientific fields interfacing immunologists and stem
cell biologists. As an example, human and murine colony-
forming units-granulocyte/macrophage assays have been
validated for assessing xenobiotic-induced myelotoxicity, and
in vitro bone marrow stem cell assays are now commercially
available and routinely used in pharmaceutical screening. The
assessment of myelotoxicity provides a broad measure of the
potential impacts of chemicals on the growth and development
Abbreviations: ASC, Adult stem cell; DIC, Differential interference contrast; ENF,
En1-lineage-naive fibroblast; ENP, En1-lineage-past fibroblast; EP, Engineered
nanoparticle; HPT, Hematopoietic tissue; HSC, Hematopoietic stem cell; ISH,
In situ hybridization; LPS, Lipopolysaccharide; MC,Morula cell; ROS, reactive oxygen
species; SCT, Single cell transcriptomics; SEM, Scanning electron microscopy.
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of immune cells, where all immune-related cells develop from
pluripotent, hematopoietic stem cells residing in the bone
marrow. This is not the situation in aquatic invertebrates,
where stem cell-based bioassays have not yet been adequately
explored as ecotoxicological tools (7).

Aquatic invertebrates represent the great majority of animal
biodiversity and are an extremely promising group of organisms
for stem cells and immune research. They can benefit from a
more straightforward body organization, the abundance of adult
stem cells spread throughout the body, and the lack of a complex
immune network by lacking an adaptive immunity (8).
Therefore, they represent ideal organisms to study the
interplay between stem and immune cells.

Hematopoiesis is the driver for generating circulating
immune cells able to face non-self and, in vertebrates, it has
been the subject of intensive research by immunologists and
stem cell biologists (9, 10). Conversely, in the majority of aquatic
invertebrates, stem cell origin has not yet been adequately
explored, while the immune response has been further
confirmed as a relevant endpoint in ecological risk assessment
of both legacy and emerging contaminants (8, 11).

Various stimulation experiments were carried out, and
various techniques were used in aquatic invertebrates to study
the hematopoietic tissue (HPT) in relation to the (circulating)
immune cells (i.e., hemocytes, coelomocytes). The variations in
haemocyte number are, most likely, mainly regulated by release
from the HPT, perhaps complemented by storage and release of
hemocytes in other sites (12). The majority of the cells in the
HPT are able to proliferate, and proliferation can be increased
significantly after the injection of saline or bacterial toxin like
lipopolysaccharide (LPS) (13). There is a dynamic change in the
HPT in response to LPS-induced blood loss, similar to that
observed in response to an infection by bacteria (which contain
LPS) or fungi (which contain laminarin) (14).

Although in many cases, the hematopoietic sites are still
unknown, the mesothelium lining the coelomic spaces or the
vasculature plays a vital role in the formation of the
June 2021 | Volume 12 | Article 688106
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coelomocytes/hemocytes in spiralian coelomates as a source of
hematopoietic stem cells (HSCs) that colonize specific lymphoid
organs or lymph glands (15–17). Among invertebrate
deuterostomes, in addition to the coelomic epithelium, the
pharyngeal region acquires a role in hematopoiesis (18, 19).

In the present review, we will focus on the relationships
between stem cells and the immune system in aquatic
invertebrates, compared to vertebrates. We will highlight some
selected examples stemming from the established collaboration
within the MARISTEM COST Action (8). The introduction of
modern techniques in biological research allows us to discuss
new tools and frontiers in biological research aimed to study the
links between stem and immune cells.
LINKS BETWEEN STEM CELLS
AND IMMUNITY

The interplay between immune cells and stem cells is reciprocal
(20), and the relationships between stem cells and immune
responses have been particularly well studied in mammals. For
example, the damage of the hair follicle bulge, the niche where skin
stem cells reside, induces these cells to release stress signals that
stimulate immune cells. Recruited immune cells, in turn, stimulate
stem cell proliferation to restore niche integrity, thus depicting a
scenario in which the two counterparts are finely intermingled in a
reciprocal tuning (21). Mammalian mesenchymal stem cells can
modulate immune responses by acting as antigen-presenting cells
and immune suppressors (22, 23). In addition, HSCs discriminate
non-self and respond to the infection through increased
proliferation and differentiation of immune cells. The latter,
during their differentiation, consequently to the recognition of
non-self, acquire epigenetic modifications in immune genes that
are transmitted to their descendants (24). Conversely, immune
cells can regulate stem cells activity and differentiation. For
instance, macrophages, far from being just professional
Frontiers in Immunology | www.frontiersin.org 3
phagocytes, can govern HSCs differentiation to blood cells and
modulate stem cells differentiation in the mammary gland,
epidermis and the intestinal crypts (25).

In addition, the immune system plays an important role in
tissue/organ regeneration processes as immune cells contribute
to the modulation of stem cell activation to facilitate
regeneration. Regenerative organisms generally present limited
pro-inflammatory responses, absence of scar formation and poor
immune responses, suggesting an inverse correlation between
regeneration capability and sophisticated adaptive immune
system (20, 26, 27) (Figure 1).

Immune cells affect mammalian regeneration and tissue repair
both positively and negatively (28). Different specific subtypes of
macrophages (M) and T cells play opposite roles during wound
healing, influencing the choice between regeneration and fibrotic
repair. In accordance, regenerative capacity is impaired if anti-
inflammatory processes initiate too early or if inflammation
persists too long (20, 29). During scar healing, M (IFN-gamma)
inflammatory macrophages activate T helper cells that release
inflammatory cytokines inhibiting stem cells, while M (IL-4) pro-
fibrotic macrophages induce extracellular matrix deposition. On
the contrary, during scarless healing (M(IL-10), anti-
inflammatory/anti-fibrotic macrophages activate subtypes of
regulatory T cells that secrete anti-inflammatory cytokines, while
the tissue-resident subtype gdt cell may activate stem/progenitor
cells by releasing growth factors (27).

Direct evidence of the interaction between the immune
system and tissue regeneration has also been provided in the
axolotl, where it has been demonstrated that macrophages, a
crucial component of the innate immune system, infiltrate at the
wound site and are essential for limb regeneration and their
reduction causes regeneration failure and considerable fibrosis.
Indeed, macrophage depletion induced deregulation of
dedifferentiation factors, causing the disruption of the early
regenerative blastema, formed by the accumulation of
dedifferentiated multipotent cells (30). Moreover, myeloid cells
FIGURE 1 | Schematic drawing of the relationships between stem and immune cells and their involvement in stress responses.
June 2021 | Volume 12 | Article 688106
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are implicated in salamander lens regeneration (31) and the
reduction of a specific subset of macrophages also influenced
blastema formation and fin tail regeneration in zebrafish Danio
rerio (32).

The cross-talk between immune cells, neural stem and
progenitor cells and their progeny seems to determine both the
efficacy of endogenous regenerative responses and the
mechanism of action (33). Neurons do not efficiently
regenerate in mammals and several studies suggest that the
inflammatory response to injury impedes neurogenesis (34–
36). In the zebrafish brain, which has the capacity to
regenerate and replace neurogenic activity, recent work showed
that inflammation is necessary and sufficient to initiate
neurogenesis via progenitor cell activation. A similar
phenomenon is also known in crustacean neurogenesis (37).
Immune-mediated regeneration has also been discovered in
skeletal muscle, a well-studied model for adult mammalian
regeneration that employs activation of satellite cells, the
resident progenitors of the muscle (38).

Unlike vertebrate immune systems, armored with the innate
and the adaptive forms of immunity, invertebrates, which
include more than two millions species and belong to more
than 30 phyla, use only the ancient form of germline encoded
innate immunity (39). Innate immunity in aquatic invertebrates,
as in the vertebrates, relies on recognition elements (their nature
not yet disclosed in most taxa), tightly associated with a wide
range of effector mechanisms. While many prominent properties
of innate immunity systems are shared by all multicellular
organisms (40–46), the evolutionary origin remains poorly
understood, as well as the roles of stem cells in immunological
pathways of aquatic invertebrates (47, 48). Here, we present
Frontiers in Immunology | www.frontiersin.org 4
information on the relationships between stem and immune cells
deriving from research on selected taxa of aquatic invertebrates.

Planarians
Planarians are highly regenerative organisms for which the
potential role of the innate immune system during tissue
regeneration is still largely unknown (20, 49). Their amazing
regenerative capability resides in a heterogeneous population of
adult stem cells, the neoblasts, which contains the sigma-
neoblasts, a subpopulation of pluripotent stem cells (50).
Following injury, neoblast proliferates and accumulates below
the wound producing the blastema, where the lost structures
differentiate (51, 52) (Figure 2).

Two peaks of apoptosis are required for proper tissue
regeneration and reticular cells, a macrophage-like cell type,
are recruited to clear the debris at the site of injury (53).
Recently, the presence of subsets of cathepsin-positive cells was
found. They have a dendritic-like shape and phagocytic activity
and their specification is determined by the transcription factor
foxF-1 (54).

Data support a connection between immune cell activity, stem
cells, and regenerative mechanisms. Indeed, upon injury,
planarians macrophages produce maresins, mediators of
inflammation resolution, and when their synthesis is blocked by
the lipoxygenase inhibitor baicalein, the tissue regeneration rate is
reduced (55). The infection with bacteria (Pseudomonas sp.) has
been linked to the inhibition of tissue regeneration through the
activation of TAK1/MKK/p38 innate immunity signaling (56).
Among the genes likely involved in innate immunity, some were
found specifically activated following wounding in the presence of
LPS (57). It has been demonstrated that planarians are resistant to
A B

C

FIGURE 2 | (A) Intact planaria (Dugesia japonica, asexual GI clone). (B) Electron micrograph of a neoblast, the planarian stem cell, with scanty undifferentiated
cytoplasm containing free ribosomes and mitochondria. n, nucleus; arrowhead, mitochondria. (C) A tail fragment is regenerating the head, 3 days after amputation.
Arrow indicates the unpigmented blastema containing the new differentiating eye cups. Scale bar: 100 mm in (A, C), and 800 nm in (B).
June 2021 | Volume 12 | Article 688106
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infection by a broad range of pathogenic bacteria and the key
resistant gene, MORN2, which is conserved in humans, has been
identified (58), thus making planarians a useful model for the
identification of innate resistance mechanisms (59). Given the
availability of RNAi, transcriptomic and proteomic approaches in
planarians, as well as the possibility of single-cell gene profiling by
flow cytometry analysis and single cell-transplantation (60, 61),
these invertebrates represent a model for understanding the
mechanisms integrating immune responses to stem cells and
tissue regeneration. As an example, identifying fundamental
genes involved in reticular cell differentiation and their silencing
by RNAi could select organisms with inhibited immune system
which could serve to study regenerative performance.

Bivalve Mollusks
Bivalves, the second largest group in Mollusca, are represented
by several species, all of ecological importance in aquatic
ecosystems, as well as of considerable economic value in
estuarine and coastal areas (62). Their ability to face infection
and their disease susceptibility have been deeply investigated in
farmed species (i.e., as mussels, oysters, clams) and provided
enormous progress in the characterization of their circulating
cells, the hemocytes, including the immune cells and their
cellular receptors and signal transduction pathways (63).

In the Mediterranean mussel Mytilus galloprovincialis, one of
the most studied bivalve species, different subpopulations of
hemocytes identified by flow cytometry have been functionally
characterized with large and small granular hemocytes,
representing phagocytes that can produce high levels of
reactive oxygen species and nitric oxide upon activation (64).
In contrast, small hyaline cells are not phagocytic and perform
other defense mechanisms; they also include hemoblast-like cells
that are suggested as possible stem cells in bivalves. The
hemocyte half-life was determined to be between 22 and 28
days (65) in various bivalve species, thus suggesting the need for
a continuous hemocyte replacement from stem/precursor cells.
In the blue musselMytilus edulis, basal proliferation can account
for up to 20% of the circulating cells indicating an essential
process of hemocyte homeostasis (66). Although the
identification of stem cells in mollusks is of physiological
interest when considering the long-life span (years) and the
extreme longevity of certain species (67), current knowledge on
pluripotent cells in general, their location and their
differentiation pathways, with special reference to immune
cells, is still limited. Therefore, the origin of hemocytes
remains an unanswered question in mollusks, including
bivalves (16). In the Manila clam, Tapes philippinarum, newly
formed hemocytes with stem cell-like features (according to
cytochemical methods) can derive from the proliferation of
undifferentiated circulating cells called hemoblasts (68). To
date, the identification of a population of cells in the sub-
epithelial connective tissue and vessels, resulting in positive for
both SOX2, a stemness marker, and superoxide dismutase, a
hemocyte marker, suggests that these cells are hemocyte
progenitor cells and is still the only report on adult somatic
progenitor cells in bivalves. It represents an essential first step in
elucidating the hematopoietic process (65). The expression of
Frontiers in Immunology | www.frontiersin.org 5
SOX2 is significantly induced by LPS and Poly I:C, two well
known activators of immune cells, in the freshwater species
Anodonta woodiana (69), indicating an influence of immune
cells on stem cells.

Overall, it is likely that adult bivalves do not produce
hemocyte precursors or mature hemocytes from distinct
hematopoietic organs, as it occurs in other molluscan taxa like
gastropods (16). Multiple or ubiquitous sites of hematopoiesis
may exist, comprising a system in which stem cells present in
both tissues and circulation receive decisive signals from
neighboring cells. The experimental challenge with bacteria,
leading to changes in hemocyte subpopulations, was useful in
identifying the expression of both proliferation and
differentiation markers in circulating hemocytes (70–72).

Available information on bivalve hematopoiesis in larval
stages has been recently reviewed (73). Based on multiple
functional and molecular evidence for the presence of immune
cells in the early developmental stages of various bivalve species,
the author hypothesized that the development of the immune
system is inextricably linked with the formation of the digestive
system from the earlier trochophora, a key stage when the
formation of the first ciliated digestive organs (such as the
mouth, esophagus, and digestive mass) occurs. In this view, at
the early stages of development, when pathogens can enter the
body via feeding, immune cells would play a double role as
digestive cells and immune cells. Developmentally, hemocytes
are closely related to the epithelial cells lining the vascular system
(endothelia) and the body cavity (mesothelia) and, in the absence
of a circulatory system and HPT in early larvae, immune cells
may be produced by precursor cells of the digestive system or
associated mesothelial cells. Only later, when the circulatory
system develops, hemocytes may be produced by tissues lining
vessels and sub-epithelial cells (73).

Crustaceans
Crustaceans represent a morphologically and physiologically
diverse group of organisms, comprising between 40,000 and
60,000 species (74). They belong to an evolutionary very
successful group of aquatic invertebrates characterized by life-
long growth, able to enlarge their organs as adults and regenerate
lost appendages.

Research on immune response in crustaceans has been largely
driven by the need to understand diseases in aquaculture and to
develop knowledge of environmental effects within a fishery
context (75). Investigation of stem and progenitor cells in
crustaceans has been primarily focused on the research of
replacement of damaged and aged cells in the tissues to ensure
homeostasis, immune responses and regeneration of lost
appendages (76). This knowledge on how stem cells and
immune cells communicate, sense damage and co-operate to
help tissues to cope with stress is available only for some species
of crustaceans.

Crustaceans have an open circulatory system, with a highly
developed cardiovascular system. Like other invertebrates, their
hemocytes have essential roles in immunity, performing
recognition, cell–cell communication, lysis of foreign cells,
melanisation, encapsulation, phagocytosis, and cytotoxicity.
June 2021 | Volume 12 | Article 688106
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They are also involved in other physiological processes, such as
the repair of the cuticle (77) or damaged skeletal muscles (78)
and neurogenesis (79), where orchestrated action of immunity
and stem cells is needed to maintain or restore homeostasis.

The number of circulating hemocytes can vary significantly
and depends on the physiological state (12). Crustaceans have
three main types of hemocytes in their hemolymph, i.e., hyaline
cells, semigranular cells, and granular cells (Figure 3), as well as
immature progenitor cells. Indeed, crustacean hemocytes are
produced and start their differentiation within the HPT, but the
final differentiation into functional hemocytes occurs once the
hemocytes are released into the circulation (80). Circulating
hemocytes do not divide and aged cells must be continuously
replaced by the release of new cells from hematopoietic organs
(81). The variations in hemocyte number are, most likely, mainly
regulated by the release of cells from the HPT, and perhaps
complemented by storage/release of hemocytes in/from other
sites. Although research on the role of hemocytes in crustaceans
is rapidly progressing, the knowledge on HPT in different species
is still limited.

In decapods, HPT comprises lobules with hemocyte precursors
at different stages of differentiation (82). Each lobule is surrounded
by connective tissue and contains stem cells, prohemocytes, and
mature hemocytes, which are then released into the hemocoel
(83). There are large variations in lobule morphology among
species (13). Stem cells exclusively occupy the apical parts of the
hematopoietic lobules and are closely attached to the extracellular
envelope of the lobules. In the shrimp Sicyonia ingentis, the
endothelial cells, capsular cells, and stromal cells, together with
the extracellular matrix envelope hematopoietic lobules, and
provide a niche-like microenvironment for the stem cells (82).

The HPT is not the only tissue harboring stem cells. The E-
cells of the hepatopancreas, the neurogenic stem cells of the
brain, the satellite cells of the heart and skeletal musculature are
Frontiers in Immunology | www.frontiersin.org 6
examples of adult stem cells (ASCs). Some of these cells are more
or less continuously active, like the neurogenic and
hematopoietic stem cells (84, 85), while others are periodically
activated like the myogenic satellite cells (86) or the E-cells (87).

A cross-talk between immune cells and stem cells was
identified by Benton et al. (88), who demonstrated that
hemocytes are a source of adult-born neurons in crayfish and
showed that the immune system is a key contributor to adult
neurogenesis. Neurogenesis is an ongoing process in the brains
of adult organisms. Noonin et al. (14) described the anterior
proliferation organ in Pacifastacus leniusculus, located at the
anterior part of the HPT, near the brain, as an organ regulating
stem cell activity, demonstrating a physical link between the HPT
and the brain. Benton et al. (88) also reported that manipulation
of circulating hemocyte levels results in highly predictable
changes in the number of neurogenic niche cells. These data
show that the neurogenic niche is dynamically regulated by the
immune system.

Crustaceans can partly regenerate their hepatopancreas, hearts
and ovaries: here, similar ultrastructural features were observed in
regenerating tissues of early adults and old specimens and included
active stem cells (89). The immune cells have only recently emerged
as key components and prominent effectors of stem cell behaviors to
help stem cells in maintaining tissue integrity and driving
regeneration (25). Common functions of the immune response in
regeneration include scavenging cellular debris and activating
progenitor cells as well as production of cytokines, and
complement factors (90). In the hepatopancreas, hovering
between cell proliferation and cell death (mainly apoptosis) plays
an important role in the maintenance of tissue homeostasis.
Hemocyte infiltration, in the form of an inflammatory-
like reaction, was also observed in the hepatopancreas of
Palaemonetes argentinus under stress conditions leading to
increased desquamation of necrotic epithelium (91).
A B D

E F G

C

FIGURE 3 | The mantis shrimp Squilla mantis (A), an edible stomatopod crustacean, common along the European coasts, and its hemocytes. (B–D): light
microscopy; (E–G): transmission electron microscopy; scale bar: 3 cm for (A); 5 µm for (B–D); 2 µm for (E–G), (B, E): hyaline cells; (C, F): semigranulocytes; (D, G):
granulocytes.
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Echinoderms
Echinoderms are very successful and ancient marine
invertebrates, which appeared more than 500 years ago, before
the Cambrian explosion (92). Many of them (e.g., sea urchins, sea
cucumbers) play a central role in the safeguarding of certain
marine ecosystem integrity and are constantly exposed to
environmental and anthropogenic pressure, including
predation, climate changes, pathogens, and pollutants (e.g.,
chemicals, nanomaterials, plastics) (93). This favors phenotypic
plasticity both in the embryonic and adult life-cycle stages, thus
conferring a notable ability to generate multiple phenotypic
shapes and responses towards an always-changing world (94).

Echinoderm immune cells are the so-called coelomocytes, a
heterogeneous population of cells freely circulating in all
coelomic spaces, including the perivisceral coelomic cavities,
the open water-vascular system, the perihemal system, but also
in the main tissues and organs (95–97). A general consensus on
echinoderm coelomocyte types is lacking, possibly due to the
actual diversity of morphotypes among the different classes (93)
but mostly to the diversity of techniques and protocols used to
analyze them (98). For this reason, from two to up to twelve
cytotypes are reported in the literature (97, 99–105). The most
common types are phagocytes, red and white amoebocytes, and
vibratile cells (93, 97). Gorshkov et al. (101) described mature
and immature coelomocytes, the latter possibly representing a
progenitor population of the former. Echinoderm immune cells
carry out many functions, such as clot formation, phagocytosis,
encapsulation, clearance, oxygen transport, inflammation and
cell recruitment at the wound and regenerative sites (93). They
are a big source of bioactive molecules secreted into the coelomic
fluid to maintain homeostasis and intercellular crosstalk (106).
Under homeostatic conditions, these cells work together to
maintain physiological balance within the organism while,
under perturbation, the stimulus may induce an energetically
expensive reprogramming of the immune cells, resulting in
either a reduced reactivity (tolerogenic immunological
response) or an increased response (potentiation) (107, 108).

The exact origin of coelomocytes is still a matter of debate.
The coelomic epithelium is the favored HPT, as proposed by the
pioneering work of Bossche and Jangoux (109) and further
supported by more recent studies (105, 110, 111). Other
structures/organs have also been proposed such as Tiedmann’s
body, the axial organ and more recently the pharynx (19, 112,
113). It must be stressed, however, that all these “alternative”
structures are always more or less directly linked to coelomic
spaces and, therefore, to coelomic epithelium. A recent study by
Sharlaimova et al. (105, 114) provided ultrastructural evidence of
the release of different cell types from the perivisceral coelomic
epithelium, thus demonstrating a hematopoietic role for this
tissue. According to their model, the free-swimming population
of coelomocytes is physiologically replenished by the coelomic
epithelium through both apical detachment of differentiated cells
and small scarcely differentiated cells. The latter could be
regarded as stem/progenitor cells of at least a subpopulation of
coelomocytes (114). The presence, although rare, of these
undifferentiated cells within the coelomic lining would be
Frontiers in Immunology | www.frontiersin.org 7
consistent with the proliferative activity often reported in this
tissue in both physiological and regenerating conditions (19,
110, 115).

Some echinoderms possess extraordinary regenerative
abilities (116, 117) in which immune cells play a fundamental
role. Sea urchin diseases, consequent to lesions associated with
body injuries or abrasions, induce loss of spines and other
appendages and a bald patch, sometimes associated with a
green mark probably due to a cellular infiltration into the
affected area, which starts wound repair and drives tissue
regeneration and recovery. Regardless of the origin of the
wound (disease, autoamputation, or traumatic insult), immune
cells are recruited first to create a clot (117) then to clear debris
and pathogens as well as secrete numerous signaling molecules
inducing appropriate cell proliferation and differentiation
program essential for successful regeneration (20). Besides
providing new circulating coelomocytes, the coelomic
epithelium can also provide progenitor cells for the
reconstruction of the regenerating tissue as reported in
crinoids (116). This can occur thanks to a dedifferentiation
process followed by epithelial-mesenchymal transition,
allowing migration of scarcely differentiated cells in the
underlying developing connective tissue (117–120). After arm
amputation, trauma-stressed sea stars (Asterias rubens) show an
increase both in the total number of the circulating coelomocytes
and in the levels of Hsp70 stress protein within the cells. Besides,
a protein known to be involved in coelomocyte adhesion
(toposome) is massively expressed in the coelomic epithelium
of trauma-stressed arms of A. rubens (121) (Figure 4).

Ascidians
Ascidians are members of the subphylum Tunicata, the sister
group of vertebrates (122). Their defense from environmental
assaults relies mainly on the tunic and the circulating immune
cells in the adults, and, likely, on the test cells in early embryonic
stages (Figure 5).

The tunic is the external layer embedding the ascidian body
(Figures 5A–C). It includes a gelatinous matrix rich in fibers
(collagen, tunicin). It is always speckled with several types of free
cells, some of which are permanently located within the tunic,
while other cell types perambulate between the tunic and the
body wall (123, 124). In some species, the tunic contains
hemolympathic vessels (125). Among the various types of
cells found within the tunic, there are cells functioning in
innate immunity and allorecognition (phagocytes), chemical
defense (bladder cells), light protection (pigmentary cells),
photosymbiosis (phycocytes), tunic contraction (myocytes); for
some of the tunic cells (e.g., granulocytes, amoebocytes), the
functions are unknown (123). The tunic is secreted by the
epidermal cells and tunic cells derive from both the epidermis
and the hemocytes that enter the tunic in response to infections
(123, 125, 126).

Circulating immune cells of ascidians are represented by
phagocytes and cytotoxic morula cells (MCs), the latter
containing the enzyme phenoloxidase inside their granules (127)
(Figure 5D). Both the immunocyte types assure the organis’m
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defense against non-self and, in colonial species, trigger the
inflammatory response consequent to allorecognition (128).

In Botryllus schlosseri, a model species for the study of
immunobiology (Figure 5A), allorecognition and asexual
reproduction, including whole-body regeneration (119, 129–
131), colonies increase their size through periodical cycles of
asexual reproduction requiring the involvement of stem cells.
Unlike most species, where the body is long-lived and
maintained by cellular replacement, B. schlosseri regenerates
new colonial units (buds) on a biweekly basis from stem cells
that remain for life, replacing the previous generation’s zooids
and, partly, the circulatory cells (129, 132–137), Circulating
immune cells influence the process as they assure the cross-
talk between blastogenic generations at the generation change
(takeover) (Figure 5D): cytotoxic MCs increase the transcription
of the complement factor 3 (C3) and stimulate phagocytosis,
required for the removal of apoptotic cells in tissues of old zooids
(138, 139). Phagocytes are also required for the completion of the
takeover and the formation of new buds as the prevention of
phagocytosis blocks the process (140).

By limited dilution transplantation of cells that express the
high enzymatic activity of aldehyde dehydrogenase, a stemness
marker, and from a set of serial engraftment assays, Laird et al.
(141) revealed that multipotent stem cells are responsible for
stable long-term chimerism and budding in B. schlosseri colonies.
A major adult somatic stem cell niche was further identified in
the anterior ventral side of the endostyle (18), the long glandular
groove extending medially at the ventral face of the zooid
Frontiers in Immunology | www.frontiersin.org 8
pharynx (Figures 5E–G). It is immersed in the hemolymphatic
flow through the large subendostylar sinus and other sinuses
(142). Cells that contribute to gonad formation were identified in
cell islands along the endostyle (143). These stem cells and stem
cell niches were identified by direct visualization of cells that
exhibit fundamental and important aspects of mammalian stem
cell biology, including self-renewal, homing into developing
buds, expansion, differentiation, and multilineage potential (18,
141, 143). The involvement of circulating stem cells in the
formation of new buds is also supported by the case of
vascular budding or whole-body regeneration, where new buds
can originate from the aggregation, inside the tunic vessels, of
undifferentiated circulating cells even in the absence of adult
zooids (144–152).

Ascidian eggs are enveloped by outer and inner follicle cells,
the vitelline coat and the test cells (125). In B. schlosseri, all these
cells share common surface antigens with hemocytes and tunic
cells (153). Test cells constitute an ascidian-specific cell envelope
encased in oocyte depressions beneath the other egg envelopes.
During development, test cells adhere to the tunic surface and are
discharged at hatching (154). Test cells are of maternal origin
and are first detected during early oogenesis (155). They express
markers that can be associated with immune defense but also
with the stem lineages: (i) DDX1 (156) known to function as
sensors of viral and bacterial RNAs and in inhibition of virus
replication (157, 158); (ii) a IAP orthologue [IAP28 (159);
Figure 6] that was correlated with cell proliferation control
(160) and activation of caspases leading to apoptosis,
A

B C

FIGURE 4 | Immune cells from Paracentrotus lividus sea urchin collected as a total cell population in an anticoagulant solution containing EGTA. (A) Phagocytes,
(B) vibratile cell, (C) red and white amoebocytes.
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depending on its subcellular location; (iii) Vasa and DDX3
(PL10), RNA helicases highly associated with soma/germ stem
cells and germ lineages [(156, 161); Figure 6]. PL10 is also a
modulator of the NF-kB pathway, known to be involved in
responses to stress and viral/bacterial infections.

Allorecognition in Aquatic Invertebrates:
Stem Cell-Related Immunity
The term allorecognition is generally defined as the capability of
intraspecific recognition of non-self. Here, we will consider the
animal immune-related phenomena of allograft rejection/
acceptance and colony specificity that usually implies the
triggering of an inflammatory reaction leading to the killing of
the alien tissues.

Allorecognition is central to the understanding of innate
immunity in vertebrates (39), and is one of the most
highlighted features of aquatic invertebrates. It reflects the
Frontiers in Immunology | www.frontiersin.org 9
facility for self and non-self discrimination between
conspecifics, a phenomenon that evolved over 600 million
years ago, in concert with the development of multicellularity
(162, 163), and reveals, with the few available examples on the
formal genetics of allorecognition in marine invertebrates, levels
of polymorphism at allorecognition loci that exceed typical levels
associated with other polymorphic loci (164). One such example
is the colonial tunicate B. schlosseri, where populations from
several sites, worldwide, revealed 80 to 300 allorecognition alleles
at the fusibility locus/site (165–168). Indeed, while no homology
has been established between marine invertebrates and
vertebrates allorecognition genes, and not even among those of
different invertebrate species (47, 169–171), a wide range of
marine invertebrates, including sponges, cnidarians, bryozoans,
and ascidians, reveal allorecognition competencies that represent
high specificity and accuracy (44, 172, 173), also reflecting highly
conserved effector mechanisms for innate immunity in the
A B

D E F
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C

FIGURE 5 | (A) Colony of the tunicate ascidian Botryllus schlosseri. The colony has concluded the change of generation and adult blastozooids (ab) coexist together
with regressing zooids (rz). am, blood ampullae in tunic; t, tunic; tv, tunic vessel. Dorsal view. Scale bar: 2.2 mm. (B, C) Histological sections of the tunic of the solitary
ascidian Ciona robusta. Square area in (B) is enlarged in (C) to show tunic fibers (arrows) and cells (arrowheads). Hematoxylin–eosin. be, branchial epithelium; ep,
epidermis. Scale bar in B: 200 µm; in C: 50 µm. (D) Transmission electron microscopy of immunocytes in B. schlosseri. Yellow dotted line: large phagocyte with
phagosomes of different size. Red dotted line: morula cells characterized by large vacuoles with an electrondense core. Scale bar: 10 µm. (E) Ventral view of an adult
blastozooid (ab) of B. schlosseri with its primary bud (1b) bearing a secondary bud (2b). White circles label the cell islands in the left ventral body wall. Whole mount,
ventral view; hematoxylin. o, oocyte in gonad rudiment in primary bud; i, intestine; st, stomach; te, testis. Scale bar: 500 µm. (F) Transmission electron microscopy of a
candidate stem cells in B. schlosseri. n, nucleus; nu, nucleolus. Scale bar: 1 µm. (G) Transverse histological section of an adult blastozooid (ab) of B. schlosseri with its
primary bud (1b). The latter bears a secondary bud (2b). The endostyle (e) niche and the cell island (ci) on the right are enlarged in upper left and bottom right insets,
respectively. The contralateral cell island is contained by the black circle. Note in insets that small hemoblasts (black arrowheads) are recognizable in both the endostyle
niche and in the cell island. In the latter, they are close to large phagocytes (white arrowheads). g, gonad rudimenti in primary bud; t, tunic. Hematoxylin–eosin. Scale
bar in G: 200 µm; in GI-GII: 50 µm. (H, I) Regression between two incompatible colonies (C1 and C2) of B. schlosseri. Necrotic areas (arrowheads) are recognizable
between the contacting tunics (white dotted line). am, blood ampullare; t, tunic; tv, tunic vessels. Scale bar in H: 1.2 mm; in I: 0.47 mm.
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animal kingdom (40, 42–44, 46). The discovery of specific and
complex non-transitive hierarchies in marine invertebrates
(174–176) is dictated by a variety of effector mechanisms that
are tailored to recognize different conspecifics (177).

Allorecognition in aquatic invertebrates has been probably
developed for purposes such as the regulation of gametic
compatibility (164, 178), for the discriminatory machinery of
within-organism conflicts (179), as a platform to purge nascent
selfish cells (39), as a partisan tool following the completion of
each major evolutionary transmission (180) and for protection
against predatory cell lineages of the same species, part of the
costs of fusion with non-self, where stem cell lineages play a
major role (47, 181–184). It is manifested by specificity, immune
priming, allogeneic maturation and natural chimerism (176,
185–188), many of them managed by stem cells. These
allorecognition phenomena exhibit suites of effector
mechanisms (specific and non-specific) that are based on
extreme allotypic diversity, commonly emerged in wide groups
of marine invertebrates, and are recurrently seen in nature in the
wake of tissue contacts among conspecifics. The genetic
blueprints of allorecognition in marine invertebrates were
elucidated in just two model species, the hydrozoan
Hydractinia symbiolongicarpus (189, 190) and the colonial
ascidian B. schlosseri (171). Yet, transcriptomic profiling for
other allorecognition responses also exists for other marine
invertebrates, like sponges (191) and corals (44).

Ascidian Allorecognition as an Immune Phenomenon
In solitary ascidians, allorecognition is observed morphologically as
fusion/rejection reactions of allografts (192, 193) or in vitro as
“contact reaction” responses among co-cultured hemocytes (194–
196). Both allorejection and contact reactions trigger inflammatory
Frontiers in Immunology | www.frontiersin.org 10
responses with a decisive role of cytotoxic hemocytes, known as
MCs (197) that underwent degranulation and induced cytotoxicity
(99). In Styela plicata, during the allograft rejection, there is
significant recruitment of MCs within the allograft bed and the
neighbor tissues within days of transplantation, followed by a slower
increase of circulating undifferentiated cells, commonly known as
lymphocyte-like cells or hemoblasts, in the tunic surrounding the
graft. This response reaches a peak around day 30 from the
transplantation (99, 193). Since MC-induced inflammation leads
to cell death (see below), the hemoblast increase suggests the
activation of hematopoietic activity with the release in the
circulation of new cells, in order to replace the effete cells. This
idea is further corroborated by the observation that, in Styela clava,
the injection in the tunic of allogeneic hemocytes induces the
proliferation of hemoblasts with a peak at 5 days post-
injection (198).

In colonial ascidians, allorecognition manifests itself as colony
specificity occurring whenever colonies contact each other. This
leads to either a fusion between genetically compatible colonies,
with the formation of a chimeric colony (Figure 7), or a rejection
between incompatible colonies, with the appearance of a region of
dead tissue along the contact border. In Didemnum vexillum
allogeneic partners may, initially, form chimeric entities.
Subsequently, zooids of differing genotypes coordinatively retreat
away from the fusion zones and within a few days, they detached
leading to the formation of zooid-depauperate tunic zones (199).
The genetic control of fusion/rejection was particularly studied in
the colonial species of the genus Botryllus. As previously reported,
fusibility is controlled by a highly polymorphic fusibility/
histocompatibility locus and fusion always occurs when
contacting colonies share at least one allele at this locus (200–
202). Fused colonies share both the tunic and the circulatory system.
A
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FIGURE 6 | (A) Scheme of Ciona robusta oocyte showing the envelopes surrounding it. Test cells are located under the vitelline coat. Right: immunohistochemical
analysis of Botryllus schlosseri oocytes (B, C, E, H) and embryos (D, F, G, I, J) with Vasa (B–D), PI10 (E–G) and IAP antibodies (H–J). Bar=250 µm.
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Without a common allele on the fusibility locus, an inflammatory
(rejection) reaction follows the initial limited fusion of the tunics
that allows the diffusion of soluble factors from one colony to the
alien one. The outcomes of the rejection reaction are a series of
melanic, necrotic spots along the contact border known as points of
rejection (128, 203–206). At the cellular level, upon the recognition
of the alien factor(s), MCs exit the colonial vasculature and enter the
tunic at the contact points where they degranulate. The released
materials, mainly the enzyme phenoloxidase and its polyphenolic
substrata, induce a local cytotoxicity (128, 205–209). A “contact
reaction”, similar to the one observed in solitary ascidians, leading to
the release of fluorescent material from MCs and their ultimate
death, together with that of neighboring cells, can also be observed
when hemocytes from incompatible colonies are mixed in vitro
(210). This implies that the dead cells must be replaced by new cells
entering the circulation from hematopoietic sites. Indeed,
experiments carried out in the Japanese species Botryllus
primigenus indicate that X-ray irradiation can alter the intensity
of the rejection reaction, likely affecting stem cells, commonly
known as X-ray-sensitive cells (211). As a second step in
allorecognition, the progressive resorption of one compatible
partner frequently occurs (203, 212–214). The resorption of the
zooids can be mimicked by the injection in the colonial vasculature
of MCs from a fusible partner (215).

Ascidian Allorecognition and Stem Cell
Lineage Competition
When colonies of B. schlosseri with opposite genotypes (AAbb
and aaBB, respectively), relative to two Mendelian loci controlling
zooid pigmentation, were separated after a short (few days) period
of fusion, and crossed with the double recessive aabb, in addition
to the expected offspring phenotypes (Ab and aB), a certain
Frontiers in Immunology | www.frontiersin.org 11
number of colonies with the aB and Ab phenotypes were
obtained from the AAbb x aabb and aaBB x aabb crosses,
respectively. This is indicative of the persistence of germ stem
cells from the previously fused colony competing with the host
stem cells to produce gametes (216). As, during the cyclical
(weekly) generation replacement (blastogenesis) of Botryllus
colonies (129), stem cells leave their temporary niches and,
through the circulation, move to new niches in the growing
buds (18, 143), it was possible to record the production of
heterochtonous offspring for 15 blastogenetic generations and,
in few cases, the entire offspring was heterochtonous, indicative of
the complete germline parasitism of the host gonad by the alien
stem cells (216).

Somatic parasitism can also be demonstrated when compatible
colonies sharing one allele at the Fu/Hc locus (e.g., with AC and AD
genotypes) were fused for at least four days before their separation.
When AC colonies previously fused with AD colonies and AD
colonies previously fused with AC colonies were challenged with BC
and BD colonies, respectively, it was possible to observe an
alteration of fusibility as colonies alternated fusibility and rejection
with BC and BD colonies. This alteration, in few cases, was
observed up to 2 years from the initial fusion and is indicative of
the persistence of a renewing population of cells from the
alien colony responsible for the observed effect. This is supported
by the observation that the electrophoretic patterns of the
enzyme phosphoglucoisomerase and amplified fragment
length polymorphism in the AC colonies previously fused with
AD colonies combine the pattern of AC and AD colonies
(217–219).

In addition, as reported before, both somatic and germ cell
parasitism can be obtained through the injection, in the
circulation of compatible colonies, of hemocytes selected based
FIGURE 7 | Botryllus chimera. Two genetically compatible colonies fused into a single chimeric colony, sharing the tunic and the circulatory system, after their contact.
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on their high aldehyde dehydrogenase activity, a marker of stem
cells in mammals (141).

Even in the case of colony resorption, the somatic and
germline of the resorbed colony is not lost. Germ stem cells
can invade the host gonads and give rise to germ cell parasitism
with the production of heterochtonous offspring (203, 217, 219–
221); somatic stem cells also persist in previously fused colonies,
as demonstrated using microsatellites as molecular markers (220,
221). In addition, a chimera can express one or another genotype
according to changes in seawater temperature (219), indicative of
the capability of a colony to modulate its stem cell reservoir when
the environment changes.

Although there are no direct data on the proliferation of
circulating hemoblasts following allorejection (but see (184) for
hemocyte xenotransplantations) or alloresorption, in both cases
a MC-driven inflammatory event is activated leading to the
ultimate death of these cells upon their degranulation (215).
This suggests that, similarly to allograft rejection and contact
reaction in solitary ascidians, new hemocytes should enter the
circulation as a product of hematopoiesis activation. The
relationships between inflammation and hematopoiesis, still
unclear, deserves further investigation in the next future.

Stem Cells-Immune Cells Cross-Talk in
Stress and Toxicity
Immune and stem cells of invertebrate species have already been
recognized as valuable models in ecotoxicology for both in vitro
and in vivo studies. However, rarely the behavior of both cell type
and their cross-talk in preserving and restoring homeostasis have
been used as ecotoxicological endpoints (7, 11).

Recently, the potential application of aquatic invertebrate
ASCs in ecotoxicology has been underlined in a very
comprehensive review (7). The authors point out that, due to
their lower genetic complexity, aquatic invertebrate ASCs
represent a valuable and reliable tool for understanding
fundamental biological processes, mode of action of pollutants
andmechanisms of epigenetic toxicity. It was suggested that ASCs
from selected invertebrate species having a key role in aquatic
ecosystems could be harnessed in ecotoxicological testing.

However, up to now, the majority of ecotoxicological studies
largely involved the use of immune cells instead of stem cells (11,
97, 222, 223). Few contributions investigating immune cells
responses towards pollutants include aspects of hematopoietic
tissue or circulating stem-cells/stem-like cells. Ambrosone et al.
(224) investigated the effects of engineered nanoparticles (EPs)
on regeneration success and proliferation of stem-cells of Hydra
vulgaris using the bromodeoxyuridine immunodetection assay.
Also, gene expression of the transcription factor Hymyc1,
involved in stem cell proliferation/differentiation, was
monitored. Furthermore, the impact of EPs as well as of 4-
methylumbelliferon) on hematopoietic organ and circulating
hematopoietic stem cells of silkworm (Bombyx mori) larvae
was investigated (225–227). The rate of hematopoiesis in
hematopoietic organ in vitro, apoptosis of circulating
hemocytes, and internalization of EPs by prohemocytes (227)
referring to it as “hematopoiesis toxicity” were reported (226).
Frontiers in Immunology | www.frontiersin.org 12
These kinds of studies benefit from the extensive knowledge of
hemocyte proliferation and of the final steps of hemocyte
maturation in the silkworm (228). Similarly, Oweson et al.
(229) reported the effects of manganese on circulating immune
cells of the common sea star A. rubens. Manganese induces the
proliferation of the cells of the coelomic epithelium, a putative
hematopoietic organ of echinoderms (see above), and increases
the number of circulating coelomocytes. At the same time,
coelomocytes showed stress response and their phagocytic
capacity was negatively affected. Such findings can be
considered as a building block in the understanding of the
interplay between immune and stem cells in invertebrate
species. The complex “defence” machinery used by them to
face external stressors, including exposure to pollutants clearly
identifies the involvement of both in the organism’s response and
ability to recover and evolve. Taking into account the increasing
environmental changes faced by aquatic invertebrate species in
their natural environment and the variety of stressors to which
they must adapt to survive, greater knowledge of the interplay
between the immune system and stem cells would be useful for
predicting new future scenarios and identify those species more
prone to deal with it (Figure 8).
STEM AND IMMUNE CELLS OPEN
QUERIES NEW TOOLS, AND FUTURE
PERSPECTIVES

Research on aquatic invertebrate immunity and stem cells suffers
from the scarce consideration of this group of animals as model
organisms for biological research, with few notable exceptions
represented by Hydra and planarians. Moreover, the lack of
suitable in vitro models as well as of specific protocols for cell
identification and cell culture limit their application also in
ecotoxicity. Here below, we present some critical points that
deserve consideration in the near future and can lead to rapid
and significant advancements if tackled correctly.

Identification of Stem and Immune Cells
The paucity of available molecular markers to precisely identify
stem and immune cells in aquatic invertebrates is still a
limitation. Recently some progress has been made as for
instance, in mussel hemocytes. Freshly isolated hemocytes
from the mussel M. galloprovincialis have been shown to be
highly responsive to mammalian stem cell growth factor in terms
of both increased proliferation, and changes in immunoreactivity
to the HSC marker CD117, or Kit-ligand receptor [(230); Canesi,
personal communication] (Figure 9).

Up to now, light and electron microscopy have been the
major methods for the identification of stem and immune cells of
aquatic invertebrates. Light microscopy could be associated with
immunohistochemistry or in situ hybridization to reveal the
location of enzymatic activities or molecular markers. In
addition, differential interference contrast and phase-contrast
microscopy were also used for cell characterization (231–235).
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Scanning electron microscopy (SEM) was successfully applied to
distinguish various hemocyte populations in aquatic
invertebrates, as well as visualize the putative stem cells of
some organisms (232, 236–239). Holland and Somorjai (240)
used serial block-face scanning electron microscopy to
distinguish the population of stem cells in invertebrate chordate.
Frontiers in Immunology | www.frontiersin.org 13
Despite demanding sample preparation and time-consuming
inspection of samples, transmission electron microscopy is the most
widespread technique for the study of the ultrastructure of
invertebrate circulating cell and putative stem cells (231, 232, 236,
241–250). However, new imaging technologies are emerging, such
as optical coherence tomography, optical coherence phase
FIGURE 9 | Schematic illustration of system biology: it exploits -omics technology to study the interplay among stem cells, immune cells, and microbiota. ROS,
Reactive oxygen species; NLRP3, NOD-like receptor P3; nc, nucleus; mt, mitochondrion.
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FIGURE 8 | Mytilus galloprovincialis. (A, B) Scanning electron microscopy (SEM) image of freshly isolated cells (courtesy of Dr. Manon Auguste). (C, D) Light
microscopy of control hemocytes (C) and hemocytes exposed to human Stem Cell Growth Factor (SCF) (24 h, 50 µg/mL, in the presence of 5 µg/mL Con-A (D).
(E) Effects of SCF on hemocyte proliferation evaluated by the MTT assay. *P < 0.05 Mann-Whitney U test.
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microscope, microcirculation imaging, confocal reflectance
microscopy, super-resolution microscopy, microcomputed
tomography, FIB/SEM milling and subsurface imaging,
radionuclide imaging that, if applied to aquatic invertebrates, can
lead to a finer description of cell morphology and better
identification and discrimination of stem and immune cells.

In crustaceans, the identification of different hemocyte lineages
based on their morphology (251) was upgraded by studying the
expression of some hematopoietic transcription factors (GATA,
RUNX) and signal pathway molecules (JAK/STAT, Notch) (252).
In addition, specific protein markers have been used for the
identification of semigranulocytes (Kazal-type proteinase inhibitor
and crustacean hematopoietic factor) and granulocytes (superoxide
dismutase and mannan-binding lectin) (253, 254).

Homologues of the vertebrate stemness genes have been
identified in many aquatic invertebrates studied so far (255–
258) and were used as stem cell markers in various species (259–
265). Furthermore, the application of flow cytometry, together
with different markers of stem cells and hematopoietic cells, to
circulating hemocytes/coelomocytes or to dissociated cells from
early larval stages, can represent a powerful tool for investigating
stem cells and innate immunity in adult and developing aquatic
invertebrates. Recently, using flow cytometry sorting, whole-
transcriptome sequencing, and diverse transplantation essays,
Rosental et al. (266) identified hematopoietic stem cells and
hematopoietic niches in the tunicate B. schlosseri. This study
revealed that the subendostylar sinus is a hematopoietic stem cell
niche while its molecular signature further suggests that the
vertebrate hematopoietic bone marrow niche evolved from an
organ resembling the B. schlosseri endostyle (266). The
comparison of the HSC molecular signature during
embryogenesis and blastogenesis, showed a similar early/late
pattern of the HSC-associated gene enrichment, suggesting
similar molecular dynamics of HSC development in
embryogenesis and blastogenesis in B. schlosseri (137).

In Vitro Cell Cultures
Although many efforts have been spent over many years of
research, no established cell line from aquatic invertebrates is
available today. This represents a serious obstacle to the full
elucidation of the stem cell and immune cell properties in this
group of animals and to promote their application in various
disciplines (267, 268). The main limitations in cell harvesting lie
in the in vitro requirements which leads to the failure of most
invertebrate primary cultures within 24-72 h post cell isolation
(7, 267), a topic that has been recently tested from an
experimental point of view (269). However, some progress has
been made as reported below. Conkling et al. (270) were able to
keep in culture dissociated sponge cells for more than one month
observing a significant increase in their number, Munroe et al.
(271) have developed a genetic algorithm as an optimization tool
for the development of sponge cell culture media, and efforts
have been invested in studies on the establishment of sponge
transgenesis (272). Ventura et al. (273) succeeded in maintaining
primary cell cultures from dissociated tentacle cells of the
cnidarian Anemonia viridis for one month. In crustaceans,
long-term primary cultures of crayfish HPT cells were possible
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with the use of astakine, a new invertebrate cytokine directly
involved in hematopoiesis, thus allowing the study of the
molecular mechanism involved in the production of hemocytes
(84, 252, 274). Transfection methods were also studied on
the hematopoietic primary culture system from Cherax
quadricarinatus (275) and efforts were invested in long-term
ostracod epidermal cultures (276).

Recently, a method for the harvesting and short-/long-term
maintenance of primary immune cells from sea urchin
Paracentrotus lividus has been proposed (277). This method
uses the coelomocyte culture medium, containing a high-affinity
Ca2+ chelator, for short-term culture (≤48 h), and the artificial
seawater as the master medium that maintains cell survival and
in vitro-ex vivo physiological homeostasis over 2 weeks. Such
method could unravel complex cellular phenomena and is
pivotal in establishing the sea urchin invitrome (107, 108).

‘-Omics’-Based Technologies
Microscopy and molecular analysis of aquatic invertebrate stem-cell
behavior can be fostered by the -omics tools pioneered for studying
regeneration and immune responses. The last two decades have
seen the generation of draft genomes of various aquatic invertebrate
species (163, 278–293). The increasing number of data has been
accompanied by increasing quality of assemblies and annotations,
for example in oysters (294) and mussels (295). Studies on the
genome of selected species are contributing to elucidate the
molecular mechanisms underlying the processes of proliferation
and differentiation of immune cells from stem cells. Moreover, the
application of transcriptomic approaches to early developmental
stages is helping to unravel the molecular signature of
undifferentiated cells, including the expression of stem cell
markers, transcription factors, and epigenetic modifications. For
instance, Mao et al. (296) reported transcriptomic evidence of the
molecular basis underlying functional differentiation of hemocytes
in the bivalve Crassostrea sp., whereas Söderhäll and Junkunlo (297)
recently reported a complete proteomic analysis from purified cell
types from the crayfish HPT, the anterior proliferation center. This
last work allowed the detection of several cell type-specific proteins
and new putative biomarkers within the crayfish hematopoietic
lineage that can be used to increase the understanding of how the
differentiation process is regulated, are described.

Besides the nuclear genome, the mitochondrial genome’s omics
approach can provide further information on the relationships
between stem and immune cells. The release of DNA and/or
reactive oxygen species by mitochondria represents a signal
influencing immune cell transcription (298). Mitochondria can
also regulate immunity through the alterations of metabolic
pathways and are associated with NLRP3 inflammasome
activation (299): mitochondria-induced transcriptional changes
can lead to entirely different outcomes in immune cells (300).
Mitochondria are also essential for stem cell plasticity (301) and it
has been reported that mitochondria have a role in deciding stem
cell fate by keeping the records of divisional histories (302, 303).
Indeed, stem cell fate decisions are controlled by a complex balance
between mitochondrial-nuclear interactions and Ca2+ flux that
further modulates mitochondrial features during proliferation,
metabolism, differentiation, and apoptosis (302, 304, 305).
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Single-Cell Transcriptomics
Stem and immune cells live in a complex environment aimed at
protecting tissue integrity and homeostasis upon changes in
functional demands; they have various genetic backgrounds
and are endowed with disparate receptors on their plasma
membrane (306). All these features are under the control of
their genome, whose expression varies upon cell type. Today,
it is possible to associate each cell with its “single-cell
transcriptomics” (SCT) profile. Current SCT studies offer
unprecedented opportunities to trace the evolutionary origins
of every cell within a tissue/organ and reveal their activation
pathways (258) and encompass a broad spectrum of organisms
and cell types (307–316). SCT approaches can be used to
elucidate how stem cells differentiate into the set of cells that
make the body of the larval/adult organisms (258, 317, 318). The
application of this technique to stem and immune cells of aquatic
invertebrates can provide researchers with valuable information
on transcriptome trajectories, regulatory differentiation cascades,
and common gene networks underlying cell differentiation/
activation during development and upon nonself recognition
and response.

Epigenetics Modifications
Cytosine methylation is one of the main covalent base
modifications in eukaryotic genomes. It is involved in the
epigenetic regulation of gene expression in a cell-type-specific
manner, is reversible, and can remain stable through cell division.
In mammals, epigenetic changes associated with stem cell self-
renewal and differentiation (319, 320) as well as with the activation
of immune cells (321) have been reported. Whereas invertebrates
such as Drosophila melanogaster and Caenorhabditis elegans do
not exhibit cytosine methylation and consequently do not have
CpG rich and poor regions but rather a steady CpG frequency over
the genome (322), some studies provided evidence of epigenetic
modification in planarian stem cells (323) and in tissues of buds
and regenerating zooids in colonial tunicates (324), but no
investigation was addressed to aquatic invertebrate immune
cells. Therefore, the study of histone methylation patterns can
provide relevant information on its role in the maintenance of
stem cell identity by chromatin remodeling and transcriptional
control of pluripotency genes as well as in immune cell activation.
In addition, the techniques of chromatin immunoprecipitation
followed by sequencing (ChIP-Seq) for genome-wide profiling of
DNA-binding proteins, histone modifications, or nucleosomes
offer the possibility of a better understanding of the importance
of chromatin modification in stem cell differentiation and immune
cell activation. This can elucidate the gene regulatory networks
characterizing the interplay between the transcriptome and the
epigenome (325–327) in the cross-talks between stem and
immune cells.

Stem Cells, Immune Cells,
and Gut Microbiota
It is widely accepted that the gut community of microorganisms
has beneficial effects on animals and host-microbiome
Frontiers in Immunology | www.frontiersin.org 15
interactions contribute to the general organism homeostasis.
Various data suggest the importance of gut microbiota in
shaping an organism’s immune system/response (328–331).
The opposite is also true: the immune system influences the
microbial community in the gut (332). A clear demonstration of
the close relationships among gut microorganisms and immune
cells in humans comes from the observation that patients with
inflammatory bowel disease are characterized by restricted
biodiversity and unbalanced bacterial composition in their
intestines associated with immune dysregulation (333, 334).
Gut microbiota is also important for the establishment of the
innate immune memory or immune priming in both vertebrates
and invertebrates (331, 335, 336). Stem cell activity is also
influenced by the gut microbiota, although few researchers
focused on this (337, 338). Studies on the gut microbiota in
aquatic invertebrates are still at the very beginning (339–343).
However, since the gut microbiota of invertebrates is simpler
than that of vertebrates (341), the former can be used as a
suitable model to study its intimate dialogue with stem and
immune cells. Indeed, Arnold et al. (56) reported evidence that
innate immune responses and the machinery required for
regeneration (which includes neoblasts) are modulated by the
shift in gut microbial composition in the planarian Schimdtea
mediterranea. Liberti et al. (344) recently provided an exhaustive
review on the interaction between the immune system and the
gut microbiota in the solitary ascidian Ciona robusta, but no data
are available on the modulation of the stem cell activity by the
microorganisms hosted in the gut.

Systems Biology: Multi-Omics Approach
System biology is the integrative study of biological systems. It
exploits the high volume of data from genomics, proteomics,
metabolomics, and other omics- technologies and combines
mathematical and computational models to characterize
functional changes across different contexts (345, 346). Studies
using a multi-omics approach integrating metagenomics,
metatranscriptomics, metaproteomics and metabolomics data
are already ongoing to clarify the molecular basis of some
human diseases (347, 348). As far as aquatic invertebrates are
concerned, multi–omics approaches, involving bioinformatics
tools for the analysis of high throughput sequencing data,
database designs for proteomics and metabolomics data, use of
algorithms to detect transcriptional and translational changes is a
new venture that will certainly help researchers in understanding
their biological systems. A multi-omics approach was recently
followed for studying the interaction between the host and the
gut microbiota in the solitary ascidian C. robusta (344). Another
aspect of system biology is the combination of omics-based data
and morphological data. For instance, in the compound ascidian
B. schlosseri, transcriptomic data were combined with multiple
microscopy techniques to investigate the changes in molecular
and morphological signatures of cells during embryogenesis and
blastogenesis (314). This comprehensive approach will certainly
help in identifying differentiation/activation pathways for stem
and immune cells.
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CONCLUSION

Our review presents the state-of-the-art of the current knowledge
on the relationship between stem cells and the immune system in
selected aquatic invertebrate phyla. We point out the need to
bridge two seemingly disparate disciplines, stem cell biology and
the immune system research. The need to integrate current
knowledge, methodological tools and concepts to provide a
more holistic understanding of how organisms maintain and
restore homeostasis using stem cells and immune system is
underlined. Here we propose aquatic invertebrates as suitable
models to deeply investigate the interplay between stem and
immune cells, starting by addressing the basic equations in
biology and further applying the acquired knowledge in other
fields as ecotoxicology, biotechnology, and medicine. A parallel
to vertebrates is presented to demonstrate how these two fields of
research can be interwound.

The integrated analysis of existing information needs to be
coupled with the generation of new data and the new tools
available will allow cross-species extrapolations. The biological
read-across can only be achieved by understanding similarities
and differences in biological pathways through the involvement
of a variety of species.
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Gold Nanoparticles Coated With Polyvinylpyrrolidone and Sea Urchin
Extracellular Molecules Induce Transient Immune Activation. J Hazard
Mater (2021) 402:123793. doi: 10.1016/j.jhazmat.2020.123793

108. Alijagic A, Gaglio D, Napodano E, Russo R, Costa C, Benada O, et al.
Titanium Dioxide Nanoparticles Temporarily Influence the Sea Urchin
Immunological State Suppressing Inflammatory-Relate Gene Transcription
and Boosting Antioxidant Metabolic Activity. J Hazard Mater (2020)
384:121389. doi: 10.1016/j.jhazmat.2019.121389

109. Bossche JPV, Jangoux M. Epithelial Origin of Starfish Coelomocytes. Nature
(1976) 261:227–8. doi: 10.1038/261227a0

110. Holm K, Dupont S, Sköld H, Stenius A, Thorndyke M, Hernroth B. Induced
Cell Proliferation in Putative Haematopoietic Tissues of the Sea Star Asterias
rubens (L). J Exp Biol (2008) 211:2551–8. doi: 10.1242/jeb.018507

111. Hernroth B, Farahani F, Brunborg G, Dupont S, Dejmek A, Sköld HN.
Possibility of Mixed Progenitor Cells in Sea Star Arm Regeneration. J Exp
Zool Part B Mol Dev Evol (2010) 314 B:457–68. doi: 10.1002/jez.b.21352

112. Ferguson JC. Cell Production in the Tiedemann Bodies and Haemal Organs
of the Starfish Asterias forbesi. Trans Am Microsc Soc (1966) 85:200.
doi: 10.2307/3224630

113. Bachmann S, Goldschmid A. The Echinoid Axial Complex and Tiedemann
Bodies - the Different Pathways and Accumulation Sites of Coelomocytes
With Regard to Waste Disposal in the Organism. In: Jangoux M, editor.
Echinoderms: Present & Past. Proceeding of the European Colloquium on
Echinoderms. Balkema: Rotterdam (1981).

114. Sharlaimova N, Shabelnikov S, Petukhova O. Small Coelomic Epithelial Cells
of the Starfish Asterias rubens L. That Are Able to Proliferate In Vivo and In
Vitro. Cell Tissue Res (2014) 356:83–95. doi: 10.1007/s00441-013-1766-8

115. Moss G. Patterns of Bromodeoxyuridine Incorporation and Neuropeptide
Immunoreactivity During Arm Regeneration in the Starfish Asterias rubens.
Philos Trans R Soc B Biol Sci (1998) 353:421–36. doi: 10.1098/rstb.1998.0220

116. Candia Carnevali MD. Regeneration in Echinoderms: Repair, Regrowth and
Cloning. ISJ-Invertebr Surviv J (2006) 3:64–76.

117. Ben Khadra Y, Sugni M, Ferrario C, Bonasoro F, Oliveri P, Martinez P, et al.
Regeneration in Stellate Echinoderms: Crinoidea, Asteroidea and Ophiuroidea.
In: Kloc M, Kubiak J, editors. Results and Problems in Cell Differentiation. Cham:
Springer (2018). p. 285–320. doi: 10.1007/978-3-319-92486-1_14
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237. Castellanos-Martıńez S, Prado-Alvarez M, Lobo-da-Cunha A, Azevedo C,
Gestal C. Morphologic, Cytometric and Functional Characterization of the
Common Octopus (Octopus vulgaris) Hemocytes. Dev Comp Immunol
(2014) 44:50–8. doi: 10.1016/j.dci.2013.11.013

238. Odintsova NA. Stem Cells of Marine Invertebrates: Regulation of
Proliferation and Induction of Differentiation In Vitro. Cell Tissue Biol
(2009) 3:403–8. doi: 10.1134/S1990519X09050010

239. Bosch TCG. Hydra and the Evolution of Stem Cells. BioEssays (2009)
31:478–86. doi: 10.1002/bies.200800183

240. Holland ND, Somorjai IML. Serial Blockface SEM Suggests That Stem Cells
may Participate in Adult Notochord Growth in an Invertebrate Chordate,
the Bahamas Lancelet. Evodevo (2020) 11:22. doi: 10.1186/s13227-020-
00167-6

241. Zhang ZF, Shao M, Ho Kang K. Classification of Haematopoietic Cells and
Haemocytes in Chinese Prawn Fenneropenaeus chinensis. Fish Shellfish
Immunol (2006) 21:159–69. doi: 10.1016/j.fsi.2005.11.003

242. Giulianini PG, Bierti M, Lorenzon S, Battistella S, Ferrero EA. Ultrastructural
and Functional Characterization of Circulating Hemocytes From the
Freshwater Crayfish Astacus leptodactylus: Cell Types and Their Role After
In Vivo Artificial Non-Self Challenge.Micron (2007) 38:49–57. doi: 10.1016/
j.micron.2006.03.019

243. Chevalier F, Herbinière-Gaboreau J, Bertaux J, Raimond M, Morel F,
Bouchon D, et al. The Immune Cellular Effectors of Terrestrial Isopod
Armadillidium vulgare: Meeting With Their Invaders, Wolbachia. PloS One
(2011) 6:e18531. doi: 10.1371/journal.pone.0018531

244. Rebelo M de F, Figueiredo E de S, Mariante RM, Nóbrega A, de Barros CM,
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257. Fierro-Constaıń L, Schenkelaars Q, Gazave E, Haguenauer A, Rocher C,
Ereskovsky A, et al. The Conservation of the Germline Multipotency
Program, From Sponges to Vertebrates: A Stepping Stone to
Understanding the Somatic and Germline Origins. Genome Biol Evol
(2017) 9:evw289. doi: 10.1093/gbe/evw289

258. Cao C, Lemaire LA, Wang W, Yoon PH, Choi YA, Parsons LR, et al.
Comprehensive Single-Cell Transcriptome Lineages of a Proto-Vertebrate.
Nature (2019) 571:349–54. doi: 10.1038/s41586-019-1385-y

259. Reddien PW, Oviedo NJ, Jennings JR, Jenkin JC, Sánchez Alvarado A.
Developmental Biology: SMEDWI-2 Is a PIWI-Like Protein That Regulates
Planarian Stem Cells. Science (2005) 310:1327–30. doi: 10.1126/science.1116110

260. Pfister D, De Mulder K, Philipp I, Kuales G, Hrouda M, Eichberger P, et al.
The Exceptional Stem Cell System of Macrostomum lignano: Screening for
Gene Expression and Studying Cell Proliferation by Hydroxyurea Treatment
and Irradiation. Front Zool (2007) 4:1–14. doi: 10.1186/1742-9994-4-9

261. Palakodeti D, Smielewska M, Lu YC, Yeo GW, Graveley BR. The PIWI
Proteins SMEDWI-2 and SMEDWI-3 Are Required for Stem Cell Function
and piRNA Expression in Planarians. RNA (2008) 14:1174–86. doi: 10.1261/
rna.1085008

262. Rinkevich Y, Rosner A, Rabinowitz C, Lapidot Z, Moiseeva E, Rinkevich B.
Piwi Positive Cells That Line the Vasculature Epithelium, Underlie Whole
Body Regeneration in a Basal Chordate. Dev Biol (2010) 345:94–104.
doi: 10.1016/j.ydbio.2010.05.500
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Margulies EH, et al. Identification and Analysis of Functional Elements in
1% of the Human Genome by the ENCODE Pilot Project. Nature (2007)
447:799–816. doi: 10.1038/nature05874

327. Celniker SE, Dillon LAL, Gerstein MB, Gunsalus KC, Henikoff S, Karpen
GH, et al. Unlocking the Secrets of the Genome. Nature (2009) 459:927–30.
doi: 10.1038/459927a

328. Dobber R, Hertogh-Huijbregts A, Rozing J, Nagelkerken L, Bottomly K. The
Involvement of the Intestinal Microflora in the Expansion of Cd4+ T Cells
With a Naive Phenotype in the Periphery. Dev Immunol (1992) 2:141–50.
doi: 10.1155/1992/57057

329. Geuking MB, Köller Y, Rupp S, McCoy KD. The Interplay Between the Gut
Microbiota and the Immune System. Gut Microbes (2014) 5:411–8.
doi: 10.4161/gmic.29330

330. Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How Colonization by
Microbiota in Early Life Shapes the Immune System. Science (2016)
352:539–44. doi: 10.1126/science.aad9378

331. Negi S, Pahari S, Bashir H, Agrewala JN. Gut Microbiota Regulates Mincle
Mediated Activation of Lung Dendritic Cells to Protect Against Mycobacterium
tuberculosis. Front Immunol (2019) 10:1142. doi: 10.3389/fimmu.2019.01142

332. Franzenburg S, Walter J, Künzel S, Wang J, Baines JF, Bosch TCG, et al.
Distinct Antimicrobial Peptide Expression Determines Host Species-Specific
Bacterial Associations. Proc Natl Acad Sci USA (2013) 110:E3730–8.
doi: 10.1073/pnas.1304960110
Frontiers in Immunology | www.frontiersin.org 24
333. Fakhoury M, Negrulj R, Mooranian A, Al-Salami H. Inflammatory Bowel
Disease: Clinical Aspects and Treatments. J Inflammation Res (2014) 7:113–
20. doi: 10.2147/JIR.S65979

334. Ocansey DKW, Wang L, Wang J, Yan Y, Qian H, Zhang X, et al.
Mesenchymal Stem Cell–Gut Microbiota Interaction in the Repair of
Inflammatory Bowel Disease: An Enhanced Therapeutic Effect. Clin Transl
Med (2019) 8:1–17. doi: 10.1186/s40169-019-0251-8

335. Rodrigues J, Brayner FA, Alves LC, Dixit R, Barillas-Mury C. Hemocyte
Differentiation Mediates Innate Immune Memory in Anopheles gambiae
Mosquitoes. Science (2010) 329:1353–5. doi: 10.1126/science.1190689

336. Ganal SC, Sanos SL, Kallfass C, Oberle K, Johner C, Kirschning C, et al.
Priming of Natural Killer Cells by Nonmucosal Mononuclear Phagocytes
Requires Instructive Signals From Commensal Microbiota. Immunity (2012)
37:171–86. doi: 10.1016/j.immuni.2012.05.020

337. Jiang H, Patel PH, Kohlmaier A, Grenley MO, McEwen DG, Edgar BA.
Cytokine/Jak/Stat Signaling Mediates Regeneration and Homeostasis in the
Drosophila Midgut. Cell (2009) 137:1343–55. doi: 10.1016/j.cell.2009.05.014

338. Nigro G, Sansonetti PJ. Microbiota and Gut Stem Cells Cross-Talks: A New
View of Epithelial Homeostasis. Curr Stem Cell Rep (2015) 1:48–52.
doi: 10.1007/s40778-014-0005-x

339. Harris JM. The Presence, Nature, and Role of Gut Microflora in Aquatic
Invertebrates: A Synthesis. Microb Ecol (1993) 25:195–231. doi: 10.1007/
BF00171889

340. Hakim JA, Koo H, Kumar R, Lefkowitz EJ, Morrow CD, Powell ML, et al.
The Gut Microbiome of the Sea Urchin, Lytechinus variegatus, From Its
Natural Habitat Demonstrates Selective Attributes of Microbial Taxa and
Predictive Metabolic Profiles. FEMS Microbiol Ecol (2016) 92:fiw146.
doi: 10.1093/femsec/fiw146

341. Petersen JM, Osvatic J. Microbiomes in Natura: Importance of Invertebrates
in Understanding the Natural Variety of Animal-Microbe Interactions.
mSystems (2018) 3:2. doi: 10.1128/msystems.00179-17

342. Faddetta T, Ardizzone F, Faillaci F, Reina C, Palazzotto E, Strati F, et al.
Composition and Geographic Variation of the Bacterial Microbiota
Associated With the Coelomic Fluid of the Sea Urchin. Paracentrotus
lividus Sci Rep (2020) 10:1–12. doi: 10.1038/s41598-020-78534-5

343. Schwob G, Cabrol L, Poulin E, Orlando J. Characterization of the Gut
Microbiota of the Antarctic Heart Heart Urchin (Spatangoida). Abatus
agassizii. Front Microbiol (2020) 11:308. doi: 10.3389/fmicb.2020.00308

344. Liberti A, Natarajan O, Atkinson CGF, Sordino P, Dishaw LJ. Reflections on
the Use of an Invertebrate Chordate Model System for Studies of Gut
Microbial Immune Interactions. Front Immunol (2021) 12:642687.
doi: 10.3389/fimmu.2021.642687

345. Yu J, Peng J, Chi H. Systems Immunology: Integrating Multi-Omics Data to
Infer Regulatory Networks and Hidden Drivers of Immunity. Curr Opin Syst
Biol (2019) 15:19–29. doi: 10.1016/j.coisb.2019.03.003

346. Villa A, Sonis ST. System Biology. In: ST Sonis and A Villa, editors.
Translational Systems Medicine and Oral Disease. Academic Press: London
(2020). p. 9–16. doi: 10.1016/B978-0-12-813762-8.00002-5

347. Heintz-Buschart A, May P, Laczny CC, Lebrun LA, Bellora C, Krishna A,
et al. Integrated Multi-Omics of the Human Gut Microbiome in a Case Study
of Familial Type 1 Diabetes. Nat Microbiol (2016) 2:1–13. doi: 10.1038/
nmicrobiol.2016.180

348. Thaiss CA, Zmora N, Levy M, Elinav E. The Microbiome and Innate
Immunity. Nature (2016) 535:65–74. doi: 10.1038/nature18847

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Ballarin, Karahan, Salvetti, Rossi, Manni, Rinkevich, Rosner,
Voskoboynik, Rosental, Canesi, Anselmi, Pinsino, Tohumcu, Jemec Kokalj, Dolar,
Novak, Sugni, Corsi and Drobne. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.
June 2021 | Volume 12 | Article 688106

https://doi.org/10.1126/science.aar4362
https://doi.org/10.1038/s41586-019-0969-x
https://doi.org/10.1101/758276
https://doi.org/10.1038/s41586-019-0933-9
https://doi.org/10.1016/j.ydbio.2018.09.023
https://doi.org/10.1126/science.aaq1736
https://doi.org/10.1126/science.aaq1723
https://doi.org/10.1161/CIRCRESAHA.111.243709
https://doi.org/10.3390/genes10090695
https://doi.org/10.1038/s41422-020-0374-x
https://doi.org/10.1101/gad.2037511
https://doi.org/10.1101/gr.239848.118
https://doi.org/10.1002/dvdy.24212
https://doi.org/10.1038/nrg2641
https://doi.org/10.1038/nature05874
https://doi.org/10.1038/459927a
https://doi.org/10.1155/1992/57057
https://doi.org/10.4161/gmic.29330
https://doi.org/10.1126/science.aad9378
https://doi.org/10.3389/fimmu.2019.01142
https://doi.org/10.1073/pnas.1304960110
https://doi.org/10.2147/JIR.S65979
https://doi.org/10.1186/s40169-019-0251-8
https://doi.org/10.1126/science.1190689
https://doi.org/10.1016/j.immuni.2012.05.020
https://doi.org/10.1016/j.cell.2009.05.014
https://doi.org/10.1007/s40778-014-0005-x
https://doi.org/10.1007/BF00171889
https://doi.org/10.1007/BF00171889
https://doi.org/10.1093/femsec/fiw146
https://doi.org/10.1128/msystems.00179-17
https://doi.org/10.1038/s41598-020-78534-5
https://doi.org/10.3389/fmicb.2020.00308
https://doi.org/10.3389/fimmu.2021.642687
https://doi.org/10.1016/j.coisb.2019.03.003
https://doi.org/10.1016/B978-0-12-813762-8.00002-5
https://doi.org/10.1038/nmicrobiol.2016.180
https://doi.org/10.1038/nmicrobiol.2016.180
https://doi.org/10.1038/nature18847
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

	Stem Cells and Innate Immunity in Aquatic Invertebrates: Bridging Two Seemingly Disparate Disciplines for New Discoveries in Biology
	Introduction
	Links Between Stem Cells and Immunity
	Planarians
	Bivalve Mollusks
	Crustaceans
	Echinoderms
	Ascidians
	Allorecognition in Aquatic Invertebrates: Stem Cell-Related Immunity
	Ascidian Allorecognition as an Immune Phenomenon
	Ascidian Allorecognition and Stem Cell Lineage Competition

	Stem Cells-Immune Cells Cross-Talk in Stress and Toxicity

	Stem and Immune Cells Open Queries New Tools, and Future Perspectives
	Identification of Stem and Immune Cells
	In Vitro Cell Cultures
	‘-Omics’-Based Technologies
	Single-Cell Transcriptomics
	Epigenetics Modifications
	Stem Cells, Immune Cells, and Gut Microbiota
	Systems Biology: Multi-Omics Approach

	Conclusion
	Author Contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


