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Bone erosion is one of the primary features of inflammatory arthritis and is caused by
excessive differentiation and activation of osteoclasts. Fc gamma receptors (FcgRs) have
been implicated in osteoclastogenesis. Our recent studies demonstrate that joint-
deposited lupus IgG inhibited RANKL-induced osteoclastogenesis. FcgRI is required for
RANKL-induced osteoclastogenesis and lupus IgG-induced signaling transduction. We
reviewed the results of studies that analyzed the association between FcgRs and bone
erosion in inflammatory arthritis. The analysis revealed the dual roles of FcgRs in bone
destruction in inflammatory arthritis. Thus, IgG/FcgR signaling molecules may serve as
potential therapeutic targets against bone erosion.
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INTRODUCTION

Inflammatory arthritis is a group of diseases characterized by joint inflammation and bone damage.
About 0.1% of adults develop inflammatory arthritis annually (1). Rheumatoid arthritis (RA) is a
chronic autoimmune disease characterized by progressive synovitis and bone destruction, causing
irreversible joint damage and disability (1–4). Bone erosion is the central hallmark of RA in
ultrasonography identification (5, 6). Anti-citrullinated protein antibodies (ACPAs) are considered
to be among the leading risk factors for bone destruction in RA (7). Ankylosing spondylitis (AS) and
psoriatic arthritis (PsA) are other common inflammatory arthritis diseases with bone destruction
(8, 9).

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by multi-
organ tissue damage and high levels of autoantibodies in the serum (10). Arthritis is a common
clinical manifestation with a prevalence of 69 to 95% in patients with SLE (11). However, only 4 to
6% of patients with SLE arthritis display bone erosion on plain radiographs (12–14). As to ACPA
positive SLE patients, which are also called rhupus patients, they often overlapped clinical features
and fulfilled American College of Rheumatology (ACR) criteria for RA classification (15, 16). It is
still unclear why lupus arthritis without ACPA lacks bone destruction. Recently, FcgRs have been
reported to exert a regulatory effect on osteoclastogenesis (17–25). Our recent study demonstrated
that joint-deposited lupus IgG triggered arthritis without bone erosion in mice and lupus IgG
inhibited osteoclastogenesis induced by receptor activator of nuclear factor kappa-B ligand
(RANKL). FcgRI exerted an inhibitory effect of lupus IgG on RANKL-induced osteoclastogenesis
(26). Our study suggests that FcgR could function as critical regulators of inflammatory arthritis.
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Here, we review the published studies and demonstrate
the association between the FcgR and bone erosion in
inflammatory arthritis.
Fcg RECEPTOR FAMILY

FcgRs are receptors for the constant (Fc) region of IgG; these are
expressed widely on the surface of immune cells, including
monocytes, macrophages, neutrophils, dendritic cells (DCs), B
cells, natural killer cells, and mast cells. Four different classes of
FcgRs have been identified in mice, namely FcgRI, FcgRIIB, FcgRIII,
and FcgRIV (27–29). The human and primate FcgR classifications
are more complex. Humans possess six classic FcgRs with different
IgG binding capacity and downstream signaling pathways: FcgRI
(CD64), FcgRIIA (CD32A), FcgRIIB (CD32B), FcgRIIC (CD32C),
FcgRIIIA (CD16A), and FcgRIIIB (CD16B), which are encoded by
genes FCGR1A, FCGR2A, FCGR2B, FCGR2C, FCGR3A, and
FCGR3B, respectively (Figure 1).

The affinity of FcgRs for IgG depends on the type of FcgR and
IgG isotypes (30–36). FcgRI is the only known high-affinity FcgR
(108–109 M−1) with a restricted isotype specificity. In contrast,
FcgRII and FcgRIII have a low affinity for IgG (about 106 M−1)
with a broader isotype binding pattern (31, 32). FcgRIV is a novel
receptor conserved across all mammalian species with an
intermediate affinity (107 M−1) and restricted subclass
specificity (29, 37). FcgRIIIA is engaged by IgG1 and IgG2,
whereas FcgRI and FcgRIV are engaged by IgG2 only (35). The
Frontiers in Immunology | www.frontiersin.org 2
affinity of mouse FcgRs is significantly higher compared with
their corresponding human FcgRs (36).

FcgRs are divided into activating and inhibitory receptors and
coexpressed on the same cell (38). Activating FcgRs, including
FcgRI and FcgRIII, contain an immunoreceptor tyrosine-based
activation (ITAM) in intracellular structure and transmit their
signals via the ITAM, which recruits spleen tyrosine kinase (Syk)
(39). FcgRIIB is the only known inhibitory FcgR with an
immunoreceptor tyrosine-based inhibitory motif (ITIM) in its
intracytoplasmic domain (40). The phosphorylation of ITIM
counteracts the signals mediated by activating FcgRs (41–43).
FcgRIIB is expressed widely on B cells, macrophages, and mast
cells and downregulates several cellular functions, such as B-cell
activation and mast cell degranulation (44). The activating-to-
inhibitory (A/I) ratio on the same cell acts as the specific
checkpoint for the arrest or progression of an immune
response. Surprisingly, when monomeric or low-affinity
immune complexes bind to activating FcgRs, the normally
activating ITAM domain cannot induce co-aggregation of
activating receptors, thereby partially phosphorylating the
ITAM domain. Thus, partial tyrosine phosphorylation of
ITAM by Src family kinases may result in the recruitment of
inhibitory SHIP. This is called inhibitory ITAM (ITAMi) signal
and is important in maintaining immune homeostasis (45–47).

Unlike other activating FcgRs, FcgRII proteins do not require
the common FcR g-chain for stable expression or function. They
all have signaling motifs in their intracellular cytoplasmic
domains (48). All the above FcgRs are transmembrane
FIGURE 1 | The family of classical Fc receptors for IgG. Schematic representations of FcgRs with respect to the cell membrane (brown bar), in complex with their
respective signaling subunits. Mouse and humans have one high-affinity receptor, FcgRI; all other FcgRs have a low-to-medium affinity for the antibody Fc fragment.
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glycoproteins, except for human FcgRIIIB, which is expressed on
neutrophils and is a glycophosphatidylinositol (GPI)-anchored
protein (49, 50). The mechanisms by which FcgRIIIB transduces
signals are still unknown (51).
FcgRs AND ARTHRITIS

During autoimmune diseases, such as RA and SLE, the
autoantibodies and immune complexes cause inflammation via
FcR aggregation (52). The altered expression of FcgRs on
immune cells in the circulation and synovium of RA patients
is the first indication of their involvement in inflammation (53–
60). The absence of all FcgRs does not affect the number of
osteoclast precursors or their osteoclastogenic potential.
However, it reduces joint inflammation and bone erosion
during inflammatory arthritis (61). FcgRIIB is particularly
crit ical for maintaining the balance of an efficient
inflammatory response or countering unwanted autoimmunity
attacks. Multiple clinical studies have shown that FcgRIIB is a
reliable biomarker for SLE susceptibility in different ethnic
groups. FcgRIIB and its signaling pathways represent a vital
checkpoint in peripheral and central tolerance and in controlling
the development of autoreactive antibodies (62).

In addition to the altered expression of FcgRs, genetic variants
associated with related single-nucleotide polymorphisms (SNPs)
in populations with RA and lupus arthritis have been reported.
Several genes encoding FcgRs that alter the affinity of FcgRs for
IgGs have been described in several RA populations. In
particular, some of these, such as the hFcgRIIa-R131 variant,
which is related to an increased risk of developing RA, even
influence the susceptibility to RA development and the response
to treatment (63–70). In addition, an association between lupus
arthritis and the FCGR2A as well as FCGR3A low copy number
genotypes has been observed in Taiwan patients with SLE. The
FCGR3A low copy number genotype was significantly enriched
in patients with SLE having arthritis (71–73). Moreover, a meta-
analysis revealed the association of the FcgRIIa-R131 allele with
SLE, especially in African Americans, whereas the FcgRIIIa-F176
allele was associated with SLE in Caucasians and other groups
(74). Furthermore, Tsang et al. demonstrated the association
between low-affinity FcgR polymorphisms and susceptibility to
SLE (75).

Studies using FcgR gene-deficient mice have greatly enhanced
our understanding of the role of FcgRs in inflammatory arthritis
(76, 77). The lack of activating FcgRs alleviates the disease
severity in arthritis models (78–81). In different disease phases
of inflammatory arthritis, the individual activating FcgRs have
different significance (36, 61, 82–86). In the absence of FcgRI,
FcgRIIB, and FcgRIIIA, FcgRIV is sufficient to induce arthritis
alone (35). In contrast with activating FcgRs, the inhibitory
FcgRIIB suppresses inflammation by inhibiting the activating
signaling, as well as providing negative feedback on the
production of autoantibodies by B cells (87–92).

Autoantibodies and their immune complexes play a central
role in shaping a pro-inflammatory environment. Indeed,
Frontiers in Immunology | www.frontiersin.org 3
complexes of ACPA and rheumatoid factor (RF) induce the
production of potent inflammatory cytokines (93–96). This effect
is predominantly mediated by FcgR signaling on macrophages
(51, 97). Tumor necrosis factor (TNF)-a, in combination with
cytokines interleukin (IL)-4 and IL-13, downregulates FcgR-
mediated function by decreasing the expression of activating
FcgRs, suggesting that downregulated activating FcgRs might
have an anti-inflammatory effect (98).

The Fc receptors on white blood cells are essential for effective
phagocytosis of immune complexes and bacteria. Moreover,
FcgRI is upregulated during infection. FcgRI (CD64) has
previously been reported to distinguish systemic infections
from inflammatory autoimmune diseases and viral infections.
Patients without inflammatory and infectious conditions, such as
osteoarthritis, have a lower level of neutrophil FcgRI than those
with infections (99–104). Oppegaard et al. investigated the use of
FcgRI in discerning septic arthritis from inflammatory joint
disease and found that FcgRI is highly specific for infectious
diseases, including septic arthritis. However, its sensitivity is
poor in local infections (104). Although distinct meta-analyses
have confirmed this, more large prospective studies need to be
conducted to verify several cut-off values reported in the
neutrophil FcgRI test in the clinical setting (105, 106).

Human and murine activating FcgRs are not functionally
equivalent. A few studies performed in transgenic mice
expressing human FcgRs examined their involvement in
inflammatory arthritis (107). The results confirmed that the
expression of the human FcgRIIA is associated with
spontaneous autoimmune inflammation, with a crucial role in
autoimmune diseases (92).
FcgR ROLE IN BONE EROSION

Osteoclast Activation and Differentiation
Bone balance depends on a dynamic regulation of bone
formation and resorption, which are predominantly mediated
by osteoblasts and osteoclasts, respectively (108, 109). Enhanced
osteoclast activity could result in severe bone destruction as
exemplified in autoimmune inflammatory diseases such as RA,
whereas defective osteoblast differentiation causes diseases with a
high bone mass, including osteopetrosis. Osteoclasts are the only
bone-resorbing cells and play a central role in bone erosion.
Osteoclasts are derived from multinucleated progenitors of the
monocyte/macrophage family and are the link between immune
and bone systems. RANK and RANKL are critical factors that
together regulate osteoclast functions. In addition, macrophage
colony-stimulating factor (M-CSF) is an essential cytokine in
osteoclastogenesis (109–111). RANKL is majorly secreted by
osteoblasts, osteocytes, T cells, and endothelial cells. And
osteocytes express a much higher amount of RANKL required
for osteoclastogenesis than osteoblasts (112, 113). The most
important negative regulator of RANKL is the decoy receptor
osteoprotegerin (OPG), which inhibits osteoclastogenesis by
preventing RANKL–RANK interaction. The RANKL–RANK–
OPG system modulates bone homeostasis by regulating
June 2021 | Volume 12 | Article 688201
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osteoclasts (114). Osteoblasts and osteocytes also produce OPG
to suppress osteoclastogenesis by masking RANKL signaling
(115, 116). RANKL initiates osteoclastogenesis by inducing
nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1),
via TNF receptor-associated factor 6 (TRAF6) and c-Fos
pathways (117) (Figure 2). NFATc1 is the master transcription
factor for pro-osteoclastogenic genes. In addition, several pro-
inflammatory cytokines produced by innate immune cells and T
cells, such as TNFa, IL-17, IL-1, and IL-6, stimulate
osteoclastogenesis directly or indirectly (118).

FcgRs and Osteoclastogenesis
Apart from the M-CSF and RANKL signaling, an ITAM
costimulatory signal provided by the accessory protein for
RANKL-RANK is required for osteoclastogenesis (119).
Takayanagi et al. first reported that the activation of NFATc1
was insufficient for terminal differentiation of monocytes/
macrophages into osteoclasts; calcium signals and calcineurin
activation are essential for this process (117, 120). Calcium
signals in myeloid cells are provided by the ITAM-bearing
proteins, Fc receptor g subunit, and its functional analog
DNAX activation protein of 12 kDa (DAP12). Both the
accessory proteins are intracellular adaptor molecules and play
a crucial function in transducing the costimulatory signals for
Frontiers in Immunology | www.frontiersin.org 4
RANKL (121). Mice lacking the accessory proteins display a
severe osteopetrotic phenotype with deficient osteoclast
function (122).

FcRg-chain is associated with immunoglobulin (Ig)-like
receptors, such as osteoclast-associated receptor (OSCAR) and
paired Ig-like receptor-A (PIR-A) (Figure 2). DAP12 is
associated with its signaling counterpart, triggering receptor
expressed on myeloid cell-2 (TREM-2), and signal-regulatory
protein b1 (SIRPb1), which are expressed on the cell membrane
of osteoclast precursors and are essential for the communication
between osteoclast precursors (33, 123). Activation of RANKL-
RANK rapidly phosphorylates the ITAM motifs and recruits the
protein kinase Syk, subsequently activating multiple downstream
signaling cascades, such as phospholipase Cg (PLCg) and
Bruton’s tyrosine kinase (BTK) as well as Tec kinases. They all
enhance the effects of RANKL-signaling by augmenting the
calcium influx required for the activation of NFATc1. NFATc1
subsequently migrates to the nucleus, where it binds to its gene
promoter and triggers an auto-amplifying feedback loop
(124, 125).

Osteoclasts and their precursors express FcgR (126), whereas
FcgRI, FcgRIIB, and FcgRIIIA are significantly upregulated
during human ex vivo osteoclastogenesis (127). Blocking of the
FcR and deleting the FcgR gene reduce osteoclastogenesis
FIGURE 2 | Overview of the osteoclast signaling network. A schematic representation of ITAM-mediated costimulatory signal in the RANKL-induced TRAF6
signaling pathway of osteoclast differentiation. In osteoclast precursors, phosphorylation of ITAM stimulated by immunoreceptors and RANKL–RANK interaction
recruits the Syk family kinases, thus activating phospholipase Cg (PLCg), Bruton’s tyrosine kinase (BTK), as well as Tec kinases. They augment the calcium influx
required for the activation of NFATc1. NFATc1 subsequently migrates to the nucleus, where it binds to its gene promoter and triggers an auto-amplifying feedback
loop. Calcium signals in osteoclast precursors are provided by the ITAM-bearing proteins, Fc receptor g subunit, and its functional analog DNAX activation protein of
12 kDa (DAP12). FcRg-chain is associated with the immunoglobulin (Ig)-like receptors, such as osteoclast-associated receptor (OSCAR) and paired Ig-like receptor-A
(PIR-A). DAP12 is associated with its signaling counterpart, triggering receptor expressed on myeloid cell-2 (TREM-2), and signal-regulatory protein b1 (SIRPb1).
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stimulated by IgG complexes on osteoclast precursor cells (25).
Although FcgRs are required for osteoclastogenesis and bone
resorption in inflammatory disorders, their specific role in bone
homeostasis is not completely understood.

FcgRs and Bone Erosion
Costimulatory signals mediated by the ITAM motif cooperate
with RANKL for bone homeostasis, suggesting the link between
ITAM-harboring adaptors FcgRs and bone erosion (117). As an
important link binding the bone system and immune system,
FcgRs are not only receptors for the Fc portion of IgG but are also
costimulatory molecules for RANKL-induced osteoclastogenesis
(119, 121). Bone damage has been reported in seropositive RA
patients before clinical disease onset, highlighting that
osteoclastogenesis is independent of joint inflammation (128).
This finding challenged the concept that inflammation is the
primary trigger for bone erosion in inflammatory arthritis and
indicated that bone loss might precede inflammation (129).

The expression of Fcg receptors onosteoclast precursor cells and
mature osteoclasts has been measured. FcgRI and FcgRIII are
primarily expressed on human preosteoclasts, whereas the
inhibitory FcgRIIB is majorly expressed on mature osteoclasts
(127). Under physiological conditions, activating FcgRI and
FcgRIV in mice does not have a major role in bone characteristics
and osteoclast development (22). Bone homeostasis is not
significantly different in mice with FcgRI or IV deficiency
compared with wild mice (17). In addition, the deficiency of
FcgRIIB does not affect osteoclastogenesis (23). Activating FcgRs
transmit the positive signal. In contrast, FcgRIII functions as an
inhibitory receptor in thedifferentiationofosteoclast precursor cells
under physiological conditions. FcgRIII deprives the FcRg subunit’s
availability for other Ig-like receptors activating receptors, such as
PIR-A and OSCAR, thus transmitting an ITAM-mediated
inhibitory signal for osteoclastogenesis (130). Naive FcgRIII–/–

mice have increased osteoclast numbers and an osteoporotic
phenotype (22).

The relative importance of various FcgRs in osteoclastogenesis
changes in the inflammatory arthritis microenvironment. Studies
demonstrated that the stimulation of FcgRI and FcgRIV increases
both osteoclast differentiation and function both in vitro and in vivo
(22, 30). FcgRIII levels are increased, and FcgRIIB levels are
decreased on bone marrow cells from mice with collagen-induced
arthritis (CIA), indicating that FcgRIII induces osteoclastogenesis
under inflammatory conditions (22). Furthermore, human RA
patients with the FcgRIIIa-158V allele endure severe bone erosion
compared with patients with the FcgRIIIa-158F allele (131, 132).
Similarly, artificial crosslinking of FcgRI and FcgRIV leads to
increased osteoclast differentiation without affecting their
resorbing function in vitro (17). Osteoclast numbers and bone
erosionwere decreased in FcgRIV–/–mice comparedwithwildmice
in a serum transfer model (17). FcgRIIB–/–mice spontaneously
developed osteoporosis, which was reversed by an additional
knockout of activating FcgRs (22).

De-sialylated IgGs binding to FcgRs with strong affinity have
substantially high stimulatory effects on both murine and human
osteoclasts (127, 133). In addition, IgGs were less sialylated during
Frontiers in Immunology | www.frontiersin.org 5
inflammation (22). Harre et al. confirmed that the interactions
between immune complexes and osteoclasts were related to the
degree of IgG sialylation, and only non-sialylated or low-sialylated
immune complexes drive osteoclastogenesis. RA patients with low
Fc sialylation levels of IgGs have significantly higher bone loss. The
pro-osteoclastogenic effectofnon-sialylated immunecomplexes is a
common feature of all IgG antibodies (127). A recent study showed
that in inducedpluripotent stemcellderivedmesenchymal stemcell
(iMSCs), the sialylation degree of IgG determines the antibodies
directed osteogenic potential by regulating immune responses and
osteoclastogenesis (24),but desialylated IgG complexes do not affect
arthritis-mediated bone loss (134).

Although the signaling of activating FcgRsmediated by immune
complex increases osteoclast differentiation, different results exist
for immune complex/FcgR on osteoclastogenesis and osteoclast
function (Table 1). Previous studies demonstrated the immune
complex-induced inhibition of osteoclastogenesis, which possibly
acts via activating FcgRs (23, 139). This suggests that FcgRs may
have dual roles in bone destruction in inflammatory arthritis. High
levels of autoantibodies are a characteristic feature of SLE compared
with other inflammatory arthritis (140, 141). The deposition of
autoantibodies or immune complexes causes lupus nephritis (142),
skin damage (143), splenomegaly (144), and damage to other
organs. Lupus IgG can promote the differentiation of monocytes
into DCs (145). These indicate that lupus autoantibodies may also
play a protective role in bone destruction in inflammatory arthritis.
Recently, our research results (26) demonstrated that joint-
deposited lupus IgG induced arthritis without bone erosion by
intraarticular injection of lupus IgG in mice. Monocytes/
macrophages and their product TNFa are required for the
development of lupus IgG-induced arthritis. To understand the
mechanism of lupus IgG-induced arthritis with deficiency of bone
erosion, we determined whether lupus IgG inhibited RANKL-
induced osteoclastogenesis. We found that lupus IgG directly
suppressed RANKL-induced osteoclastogenesis in a dose-
dependent manner in vitro. The inhibitory effect of lupus IgG on
osteoclastogenesis is related to timepoint in lupus IgG and RANKL
treated macrophages. Deficiency of FcgRII and FcgRIII did not
affect the inhibitory effect of lupus IgG on osteoclastogenesis,
indicating that the inhibitory effect of lupus IgG on
osteoclastogenesis is dependent on FcgRI. Lupus IgG and RANKL
can downregulate the surface expression of FcgRI on bonemarrow
macrophages (20). Research results suggest that lupus IgG inhibits
osteoclastogenesis by competitively occupying FcgRI on
monocytes/macrophages and reducing RANKL signaling. The
effect of activation or repression of RANKL-induced
osteoclastogenesis depends on the extent of FcgRI occupancy by
IgG. This protective mechanism explains non-destructive arthritis
in SLE. In addition, it implies that FcgRI could be a therapeutic
target for bone erosion in inflammatory arthritis.

The deposition of ACPA is important for osteoclastogenesis
in RA (146). Different studies have identified that ACPA
prevalence is significantly increased in SLE patients with
erosive arthritis (16). Recent studies have explored the direct
effect of ACPA-mediated bone erosion. ACPA IgG together with
their citrullinated antigens forms immune complexes that
June 2021 | Volume 12 | Article 688201

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zuo and Deng FcgRs Regulate Bone Erosion
stimulate immune cells via their interaction with FcgRs (93, 147).
By using polyclonal ACPAs purified from ACPA-containing
serum of RA patients, Harre et al. provided the first validation
that ACPAs can directly promote osteoclast differentiation and
activation (7). ACPA IgG might affect osteoclastogenesis by the
activation of Fc receptors on osteoclasts directly. IgG Fc
sialylation is crucial for immune complex–osteoclast
interactions (127). Besides, ACPA IgG is shown less sialylated
than random IgG (148). There are other published papers
regarding the detailed mechanisms of ACPA’s direct
regulation, but the exact mechanism of ACPA’s direct effect on
erosion remains unclear (149–152).
FcgR IMMUNOTHERAPY

The crucial role of FcgRs in both inflammatory arthritis and bone
erosion may offer a promising therapeutic target for bone
destruction in inflammatory arthritis. One indirect mechanism
involves the neutralization of autoimmune IgG Fc by soluble
FcgRs, These drugs include the recombinant soluble FcgIIB
receptor SM101 (NCT03851341) and monoclonal antibody
targeted the receptors. For example, antagonistic monoclonal
antibody against the hFcgRIIIA has been shown to be effective in
a patient with immune thrombocytopenia (ITP) refractory to all
conventional therapies (153). And human recombinant soluble
FcgRIIB treatment could ameliorate collagen-induced arthritis
by reducing immune complexes-stimulated inflammation and
joint swelling (154). Besides, recombinant human soluble FcgRII
was evaluated as an effective therapeutic strategy in inhibiting
chronic murine lupus pathology (155).

Another mechanism involves the direct blocking of the IgG-
binding site on FcgRs. Recombinant multimeric Fc fragments
with a high affinity for FcgRs have been shown to be efficacious in
Frontiers in Immunology | www.frontiersin.org 6
animal models of RA, ITP, and graft-versus-host disease
(GVHD) (156). These include PF-06755347 (NCT03275740),
CSL730 (NCT04446000) and CSL777 (Preclinical) (157).
However, nonspecific crosslinking of activating FcgRs could
lead to undesired clinical adverse events, and monovalent
antibody derivatives, such as Fab, may reduce severe clinical
adverse events (158). Up to now, results of above molecules from
clinical trials have been promising in autoimmune diseases, but
further long-term data are needed (159, 160).

Intravenous immunoglobulin (IVIG) treatment is efficient in
several different immune disorders (161, 162). IVIG consists
predominantly of IgG and a small fraction of immune
complexes. It exerts anti-inflammatory effects in both humans
and animal models by its Fc but not Fab fragments (163).
Besides, previous studies confirmed that IVIG could directly
inhibits human osteoclastogenesis by suppressing the RANK
signaling, the suppressive effect is partly mediated by IgG
immune complexes contained within IVIG preparations (138).
Our study showed that lupus IgG induced synovial inflammation
but inhibited RANKL-induced osteoclastogenesis. The
suppressive effect is mediated by the competitive occupation of
FcgRI on monocytes/macrophages (26).
CONCLUSIONS AND FUTURE
PERSPECTIVES

Bone erosions are remarkable features in inflammatory arthritis,
such as RA, but not in lupus arthritis. Osteoclasts aremajor cells for
bone erosions. Activating FcgR containing ITAMmotifs is required
for RANKL-induced osteoclastogenesis. FcgR can effectively regulate
inflammatory arthritis and bone erosions. Based on published
studies, we conclude that FcgR may have dual roles in
osteoclastogenesis. The effect of activating and inhibiting
TABLE 1 | Different roles of FcgRs in arthritis and bone destruction.

FcgR
subtype

Animal model Function Mechanism Reference

FcgRI CIA; K/BxN arthritis activation involving in the early arthritis pathology (18)
lupus-like arthritis; activation OR

inhibition
depending on the extent of FcgRI occupancy by IgG and RANKL (26)

FcgRIIA CIA; K/BxN arthritis activation crosstalking with C5a
receptor; driving the osteoclastogenesis independent of RANKL and inflammatory
cytokines by binding to IgG-ICs

(107, 135)

FcgRIIB AIA; CIA; lupus-like disease in
FcgRIIB−/− mice

inhibition inhibition of FcgRI/III; efficient clearance and endocytosis of ICs (18, 89, 136,
137)

FcgRIII CIA; K/BxN arthritis activation being required for early arthritis onset (18, 35)
FcgRIV AIA; K/BxN arthritis activation cross-linking with ICs directly; inducing the influx of S100A8/A9-producing

neutrophils into the arthritic joint.
(5, 17, 35)

Unclassified K/BxN arthritis inhibition activating FcgRs, but not FcgRIIB mediate IC-induced inhibition of
osteoclastogenesis

(23)

CIA; IC-induced bone destruction activation OR
inhibition

the relative expression of FcgRI/III/IV and FcgRIIB; the availability of ICs (22)

CIA activation OR
inhibition

the degree of IgG sialylation determines the effect of FcgRs (127)

TNF-induced osteolysis model inhibition cross-linking of FcgRs with IVIG suppresses osteoclastogenesis by inducing A20
expression.

(138)
June 2021 | Volume 12 |
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osteoclastogenesis depends on the extent of FcgRI occupancy by IgG
and RANKL, respectively. Specific IgG molecules or Fc fragments
with a high affinity for FcgRI designed to occupy FcgRImay exert the
inhibitory effect on bone erosion. The sialylation level of IgG Fc
binding to FcgRs needs to be taken into account as well. A deeper
understanding of FcgRs involved in physiological and pathological
osteoclastogenesis will be valuable in identifying new targets and
developingpotential therapeutic strategies for inflammatory arthritis.
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