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We present a stochastic mathematical model of the intracellular infection dynamics of
Bacillus anthracis in macrophages. Following inhalation of B. anthracis spores, these are
ingested by alveolar phagocytes. Ingested spores then begin to germinate and divide
intracellularly. This can lead to the eventual death of the host cell and the extracellular
release of bacterial progeny. Some macrophages successfully eliminate the intracellular
bacteria and will recover. Here, a stochastic birth-and-death process with catastrophe is
proposed, which includes the mechanism of spore germination and maturation of
B. anthracis. The resulting model is used to explore the potential for heterogeneity in
the spore germination rate, with the consideration of two extreme cases for the rate
distribution: continuous Gaussian and discrete Bernoulli. We make use of approximate
Bayesian computation to calibrate our model using experimental measurements from
in vitro infection of murine peritoneal macrophages with spores of the Sterne 34F2 strain of
B. anthracis. The calibrated stochastic model allows us to compute the probability of
rupture, mean time to rupture, and rupture size distribution, of a macrophage that has
been infected with one spore. We also obtain the mean spore and bacterial loads over
time for a population of cells, each assumed to be initially infected with a single spore. Our
results support the existence of significant heterogeneity in the germination rate, with a
subset of spores expected to germinate much later than the majority. Furthermore,
in agreement with experimental evidence, our results suggest that most of the spores
taken up by macrophages are likely to be eliminated by the host cell, but a few germinated
spores may survive phagocytosis and lead to the death of the infected cell. Finally, we
discuss how this stochastic modelling approach, together with dose-response data,
allows us to quantify and predict individual infection risk following exposure.

Keywords: Bacillus anthracis, Markov process, intracellular model, spore germination, rupture size distribution,
approximate Bayesian computation, time to macrophage rupture, dose-response
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INTRODUCTION

Anthrax is an infectious disease, caused by the bacterium Bacillus
anthracis. Under adverse conditions, B. anthracis forms a
dormant spore, unable to replicate. These spores monitor their
environment, and when favourable conditions are detected, such
as the nutrient content of a host, the spores begin to germinate
into vegetative bacteria, which can replicate inside the host (1).
B. anthracis spores in the surrounding air inhaled into the lungs
can lead to inhalational anthrax, which is usually fatal if not
rapidly detected and treated (2). Even with treatment, fatality
rates for inhalational anthrax can be rather high if the treatment
is not started early enough after exposure and symptoms onset.
B. anthracis spores can be produced and preserved, making
inhalational anthrax a potential bio-terror threat (3).

Inhalational anthrax is initiated by ungerminated, dormant
B. anthracis spores, inhaled by a host. The spores travel through
the air passages and eventually reach the alveoli of the lungs.
There is some evidence that spores may be able to germinate
extracellularly in the lungs (4). However the generally accepted
model of inhalational anthrax infection is the Trojan horse
model, which assumes that ungerminated spores must be
engulfed by alveolar phagocytes before they begin to germinate
(5). Once the spores have been phagocytosed, the infected
phagocytes migrate into the nearby lymph nodes in the
mediastinum. Macrophages play a key role in the early
infection stages of anthrax, since they can induce microbicidal
defences against intracellular pathogens and help to clear the
infection (6). It has also been shown that 1-2 hours after
phagocytosis, newly germinated bacteria are able to escape
from macrophage phagosomes and begin to replicate in the
cytosol, before being released from the macrophage into the
extracellular environment when the host cell ruptures and dies
(7). Dendritic cells are also thought to play a role in the
trafficking of B. anthracis to the lymph nodes during the early
stages of infection, since they have been found to readily engulf
B. anthracis spores (8, 9), and transport them to the lymph nodes
in a mouse model of inhalational infection (10). Once an infected
host cell ruptures, the extracellular bacteria continue to multiply,
leading to oedema and haemorrhage of the mediastinal lymph
nodes, and large amounts of fluid in the pleural cavity, which can
severely affect breathing (11). The bacteria can also spread into
the bloodstream and other organs to establish a systemic
infection (12). One of the characteristic virulence factors of
B. anthracis is the production of toxins. The two anthrax
toxins, oedema toxin and lethal toxin, cause different cellular
responses and are essential factors for the survival of bacteria
in the infected host. Lethal toxin disrupts cell signalling pathways
of macrophages and some other cells, leading to cell death,
whereas oedema toxin inhibits the phagocytosis of bacteria by
neutrophils (13). In some cell types, oedema toxin also increases
the levels of cyclic adenosine monophosphate, which is a
chemical messenger that plays a major role in controlling
many intracellular processes. Together, the anthrax toxins
cause suppression of the host’s immune system, often leading
to death of the host. Another important factor for the survival of
Frontiers in Immunology | www.frontiersin.org 2
B. anthracis bacteria in the host is the antiphagocytic capsule,
which allows extracellular, vegetative bacteria to avoid
eradication by the immune system by preventing the bacteria
being phagocytosed and destroyed (14).

In this paper, we propose a stochasticmodel for the intracellular
infection dynamics of inhalational anthrax, which adapts and
extends the deterministic one of Pantha et al. (15). The model by
Pantha et al. is a system of ordinary differential equations (ODEs)
representing the interaction betweenmacrophages andB. anthracis
spores, and considers two intracellular bacterial populations: newly
germinated bacteria, which are susceptible to macrophage killing
but unable to replicate, and vegetative bacteria, which are
susceptible to macrophage killing and capable of replicating.
Spores germinate into newly germinated bacteria, and the newly
germinated bacteria must mature into vegetative bacteria before
they can begin to replicate. Similarly to themodel in (15), ourmodel
considers the germination of spores, replication of bacteria, and
killing of bacteria by the host cell. Still, we make use of a stochastic
approach, instead of a deterministic one, to describe the population
dynamics of spores and bacteria. We follow the methods recently
developed by Carruthers et al. (16) for Francisella tularensis
infection, extended here to include spores and spore germination,
sinceB.anthracis is a spore-formingbacteria andF. tularensis isnot.

An important addition in our stochastic model is the
consideration of macrophage rupture, not explicitly considered
in (15). The rupture of host cells and the release of bacteria into
the extracellular environment is an important mechanism in the
pathogenesis of anthrax. Thus, incorporating this event into the
model allows one to better understand both the timescales of
macrophage rupture, and the rupture size distribution (i.e., the
number of vegetative bacteria released upon rupture). These
summary statistics can then play an important role when
considering within-host infection dynamics, such as in the
model by Day et al. (17), or when linking to dose-response
data (18), as considered in the Discussion section. In the same
way as Carruthers et al. (16), we assume that an infected
macrophage’s rupture probability per unit time is proportional
to its bacterial load. Thus, cells with a high bacterial load at a
given time are more likely to rupture than those with a lower one.
This hypothesis is supported by Ruthel et al. (19), who suggest
that the intracellular bacterial load may be a contributing factor
to whether a macrophage will survive an infection.

A second improvement in our model is the consideration of
spore germination heterogeneity. Motivation for this comes from
the work by Setlow (1, 20, 21), where it is shown that
germination rates are highly heterogeneous for the Bacillus
species spores, with germination times ranging from a few
minutes to longer than 24 hours. It is thought that this spore
germination heterogeneity is primarily due to variation in the
germinant receptor levels between individual spores. Setlow
mentions that spores with very low germinant receptor levels
germinate extremely slowly and are termed superdormant (1, 20, 21).
Hence, in our model we explore two hypotheses for this
heterogeneity. The first hypothesis is that the germination rate is
continuously distributed in a population of spores and follows a
truncated normal distribution. The second hypothesis is that the
August 2021 | Volume 12 | Article 688257
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population of spores can be roughly split into two discrete groups,
with different germination rates, where one group corresponds to the
spores with “average” germinant receptor levels, and the other
corresponds to the superdormant spores.

Our resulting stochasticmodel is a linear birth-and-deathprocess
with catastrophe, extended to account for spore germination
heterogeneity. For this model, we show how to compute the
probability of either rupture or recovery of the infected cell and the
conditional mean times taken to reach these fates. Furthermore, we
adapt some of the results from (16) in order to compute the
probability distribution of rupture times, which is shown to be
proportional to the mean number of vegetative bacteria in the cell
over time.We are also able to compute the probability distribution of
the rupture size, which is the number of bacteria that are eventually
released into the extracellular environment from one single infected
cell. We carry out parameter calibration by means of Approximate
Bayesian Computation Sequential Monte Carlo (ABC-SMC) (22),
and by making use of the spore and bacterial counts experimentally
measured by Kang et al. (23). We then present numerical results to
quantify the implications of the calibratedmodel. Finally, we discuss
the possible application of our intracellular model to explain dose-
response data for anthrax infection and explore the relationship
betweenmechanistic approaches andexistingdose-responsemodels.
MATERIALS AND METHODS

Stochastic Model for the Dynamics of
Spores and Bacteria in a Single Infected Cell
In this section we introduce a stochastic model for the dynamics
of spores and bacteria in a single infected phagocyte, starting at
the time when the cell phagocytoses a spore, and ending either
Frontiers in Immunology | www.frontiersin.org 3
with rupture and death of the cell and the release of bacteria into
the extracellular environment, or with recovery of the cell and the
elimination of any intracellular spores or bacteria. When
considering low dose exposures, for which the multiplicity of
infection (MOI) will be low, it is reasonable to assume that each
phagocyte will only engulf at most one spore. Therefore, in what
follows we only consider infection of a cell that has phagocytosed a
single spore. The model presented here includes germination of the
spore into a newly germinated bacterium, maturation of the newly
germinated bacterium into a vegetative bacterium, replication of
vegetative bacteria, death of bacteria, and rupturing of the host cell
to release the intracellular bacteria (see Figure 1).

Our intracellular infection model, depicted in Figure 1,
corresponds to a continuous-time Markov chain (CTMC), c =
{X(t), t ≥ 0}, taking values in the state-space S = {1S, 1NGB, 0,1,2,
…} ∪ {R}, where:

• 1S corresponds to the state where the host cell contains a spore
and no bacteria,

• 1NGB corresponds to the state where the host cell contains a
single newly germinated bacterium,

• {0,1,2, ... } represent the number of vegetative bacteria inside
the host cell, so that 0 corresponds to the cell’s recovery, and

• R corresponds to the state of the host cell having ruptured.

Time t = 0 is the time at which the spore is phagocytosed, so
the initial state of the process is assumed to be X(0) = 1S.
Experimental work using murine macrophages has indicated
that the ungerminated spore form of anthrax is not easily
eliminated by host cells (23), so we assume that the initial
spore will not die or be killed by the cell. We represent the
germination-maturation time as an Erlang(2, g) distribution, as
depicted in Figure 1, where the rate g has units hours-1. This
FIGURE 1 | Intracellular infection model. State 1S represents a phagocytosed spore and state 1NGB a newly germinated bacterium (NGB). The germination rate from
spore to NGB, and also the maturation rate from NGB to vegetative bacterium for a given spore is denoted by g hours-1, which leads to an Erlang(2, g) distribution
for the germination-maturation time. The rate g is assumed to vary between spores. The death rate of the newly germinated bacterium is given by ~m hours−1. States i
∈ N ∪ {0} represent i intracellular bacteria. State 0 represents recovery and state R the rupture of the cell. 0 and R are absorbing states for the stochastic process.
Transitions between states i ∈ N represent three types of events: transition to state i + 1 (division of a bacterium), to state i - 1 (death of a bacterium), and to state R
(rupture of the host cell with release of i bacteria). The per bacterium division, death, and rupture rates are l > 0, µ > 0 and g > 0, respectively, all with units (bacteria
· hours)-1, leading to a linear birth-and-death process with catastrophe. The infected cell survives for as long as it does not reach state R.
August 2021 | Volume 12 | Article 688257
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Erlang(2, g) representation is the simplest approach to consider a
non-exponential distribution for the time that it takes the spore
to become a vegetative bacterium, while including an
intermediate, susceptible state as done in (15), and keeping the
process Markovian. During the germination process, there is an
increase in the hydration of the spore core and the spore cortex is
broken down (1). These changes mean that the spore loses some
of its resistance against the anti-microbial environment within
the host cell and may be killed by the reactive oxygen and
nitrogen species, and anti-microbial peptides within the
phagolysosome (13). As a result, modelling the germination-
maturation process with two stages allows one to incorporate
this loss of resistance into the intermediate state 1NGB. We refer the
reader to theDiscussion section for some additional considerations
on the Erlang(2, g) choice. The newly germinated bacterium can
be killed by the cell, with rate ~m hours−1, but cannot replicate
unless it matures into a vegetative bacterium, represented by
state 1. If the stochastic process reaches state 1, the subsequent
replication of bacteria, death of bacteria, and rupture of the host
cell is modelled as a birth-and-death process with catastrophe (24),
with state-space {0,1,2, ... } ∪ {R} (see Figure 1). We introduce the
per bacterium division, death and rupture rates l, μ and g,
respectively, all with units (bacteria · hours)-1. The stochastic
process has two absorbing states: the recovery state, 0,
representing elimination of any intracellular spores and bacteria,
and the rupture state, R, representing rupture of the infected cell
and release of its entire content of bacteria.

For a CTMC, c, the transition probability from state i ∈ S to
state j ∈ S in time t is defined by,

pi,j(t) = P(X(t) = jjX(0) = i) : (1)

We are interested in the dynamics of the process when the initial
state is X(0) = 1S, representing an intracellular spore which was
just phagocytosed. Therefore, when the initial state is i = 1S, we
will omit the first index in the notation, so that the probability
that the process is in state j at time t, given that it started with one
spore, is denoted by

pj(t) = P(X(t) = jjX(0) = 1S) : (2)

Spore Germination
To describe the dynamics of the germination-maturation
process, one can consider the transient state probabilities, pj(t),
for each of the states, j ∈ {1S, 1NGB}. These probabilities obey the
following differential equations, with initial conditions p1S (0) = 1 and
p1NGB (0) = 0,

dp1S
dt

= −gp1S , (3)

dp1NGB
dt

= gp1S − (g + ~m)p1NGB : (4)

If a phagocyte engulfs a spore with germination rate g at time
t = 0, then the cell will contain one spore at time t if X(t) = 1S, and
zero spores if X(t) ≠ 1S. Hence, the mean number of intracellular
Frontiers in Immunology | www.frontiersin.org 4
spores at time t is equal to p1S (t). Similarly, the mean number of
intracellular newly germinated bacteria at time t is equal to p1NGB (t).
These are given by the solutions to Eqs. (3) and (4),

p1S (t) = e−gt , (5)

p1NGB(t) =
g
~m

e−gt − e−(g+~m)t
� �

, (6)

for any t ≥ 0. For each spore, we assume that its germination rate is
equal to itsmaturation rate, and denote it by g. However, in order to
reflect the heterogeneity in spore germination times as reported in
the literature (1, 20, 21), we assume that the germination rate varies
between spores.We consider here twodifferent distributions for the
germination rate and will explore and compare these two
hypotheses in the Parameter Calibration section.

Continuous Gaussian Distribution
First, we assume that the germination rate varies continuously
among spores, according to a normal distribution on the positive
axis. In this case, the germination rate g for a given spore is a
realisation of the continuous random variable G ∼ N(0,+∞)(mg ,s 2

g ),
which is normally distributed with mean mg hours-1 and standard
deviation sg hours-1, and is truncated to the interval (0,+∞).
Therefore, the germination rate has probability density function
given by

fG(g) =
1
Z

1

sg

ffiffiffiffiffiffi
2p

p e
−1
2

g−mg
sg

� �2

,  for g ∈ 0, +∞ð Þ, (7)

where Z = F (
mg
sg
) is a normalisation factor, and F is the

cumulative distribution function of the standard normal
distribution. Given this truncated normal distribution for the
germination rate, the mean number of spores inside the infected
cell at time t ≥ 0 is given by

S(t) =
Z +∞

0
fG(g)p1S (t)dg

=
Z +∞

0
fG(g)e

−gtdg =
1
Z
exp

s 2
g t

2

2
− mg t

� �
F

mg − s 2
g t

sg

 !
:

(8)

Similarly, the mean number of newly germinated bacteria inside
the infected cell at time t ≥ 0 is given by

BNGB(t) =
Z +∞

0
fG(g)p1NGB(t)dg =

Z +∞

0
fG(g)

g
~m

e−gt − e− g+~mð Þt
� �

dg

1
~mZ

1 − e−~mt
� � sgffiffiffiffiffiffi

2p
p e

−
m2g
2s2g + mg − s 2

g t
� �

exp
s 2
g t

2

2
− mg t

� �
F

mg − s 2
g t

sg

 !" #
:

(9)

Discrete Bernoulli Distribution
Setlow in Refs. (20, 21) explains that some spores can be
described as superdormant because they have very low
germinant receptor levels and germinate extremely slowly,
August 2021 | Volume 12 | Article 688257
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taking many hours or even days. Therefore, we propose a second
choice for the germination rate, which assumes that the
population of spores can be roughly split into two discrete
groups, type A and type B, with type A having a faster
germination rate than type B. Here, type A corresponds to the
spores with “typical” germinant receptor levels, and type B
corresponds to spores with significantly lower levels. We
represent this as a discrete Bernoulli distribution with
probability mass function, as follows

fB(g) =
e if g = gA,

1 − e if g = gB,

(
(10)

for some parameter values gA > gB and e ∈ (0,1). For this
Bernoulli distribution, the mean number of spores and newly
germinated bacteria inside the infected cell at time t ≥ 0 are,
respectively,

S(t) = ee−gAt + 1 − eð Þe−gBt , (11)

BNGB(t) =
egA
~m

e−gAt − e− gA+~mð Þt
h i

+
1 − eð ÞgB

~m
e−gBt − e− gB+~mð Þt
� �

: (12)

Cellular Fate: Rupture or Recovery
The CTMC in Figure 1 has two absorbing states, R and 0, which
denote rupture and recovery of the host cell, respectively. In this
section we show how to compute the probability of either
rupture or recovery of the cell, and the probability density
functions of the recovery and rupture times. We also explain
how to compute the conditional mean times taken to reach each
of the two cellular fates. Finally, we show that the mean number
of vegetative bacteria in the infected cell over time is proportional
to the probability density function of the rupture time.
Probabilities and Times to Reach Absorbing States
The transient probabilities for the states j ∈ N ∪ {0,R}, obey the
following system of differential equations

dp1
dt

= gp1NGB − l + m + gð Þp1 + 2mp2, (13)

dpj
dt

= l(j − 1)pj−1 + m(j + 1)pj+1 − (l + m + g )jpj, j ≥ 2, (14)

dp0
dt

= ~mp1NGB + mp1, (15)

dpR
dt

=o
+∞

j=1
g jpj : (16)

The long-term probabilities of recovery or rupture for an
infected cell, starting from any state i ∈ S can be denoted,
respectively, by
Frontiers in Immunology | www.frontiersin.org 5
r0i = lim
t!+∞

pi,0(t), rRi = lim
t!+∞

pi,R(t) : (17)

These probabilities can also be expressed in terms of the times
it takes the process c to reach states 0 and R, respectively. In
particular, one can denote the times taken for the process to
travel from state i to states 0 or R, respectively, by

T0
i = inf t ≥ 0 :X(t) = 0jX(0) = if g,

 TR
i = inf t ≥ 0 :X(t) = RjX(0) = if g :

(18)

Since there is a choice of two possible absorbing fates
(recovery or rupture), the random variables T0

i  and T
R
i may be

infinite with non-zero probability. That is, the time to recovery,
T0
i , will be infinite if the process ends in the rupture state, and

vice versa. Thus, we can write

pi,0(t) = P(T0
i ≤ t),   pi,R(t) = P(TR

i ≤ t), (19)

and

r0i   =  P(T0
i < +∞) = 1 − P(TR

i < +∞) = 1 − rRi : (20)

Carruthers et al. in (16) studied a very similar process to the
one described here, for the non-sporulating bacteria F. tularensis.
In this section we use some of their results. For instance, survival
analysis allowed Carruthers et al. to show that the probability
density function of the random variable TR

1 (the rupture time
starting from state 1, representing a single fully vegetative
bacterium), is given by

fTR
1
(t) =

g (b − a)2e−l(b−a)t

½b − 1 + (1 − a)e−l(b−a)t �2 ,  t ≥ 0, (21)

with

a =
(l + m + g ) −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(l + m + g )2 − 4ml

p
2l

,

b =
(l + m + g ) +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(l + m + g )2 − 4ml

p
2l

:

(22)

They also showed that the probability that a cell eventually
ruptures, starting in state 1 with one vegetative bacterium, is
rR1 = 1 − a, and the probability that a cell eventually recovers is
r01 = a. One can adapt these results to our model with the help of
first-step analysis, to find the probabilities of rupture and recovery
starting with one initial spore in state 1S. If a phagocyte is
infected with a spore at time t = 0, then at some time point,
the initial spore will germinate, transitioning to the intermediate
state of newly germinated bacterium (NGB). At some later time,
the NGB will either die, with probability ~m=(~m + g), or will
mature into a vegetative bacterium with probability g=(~m + g).
Since it is certain that the first step of the process will be the
transition from spore to newly germinated bacterium, the
probability of eventual recovery or rupture starting from state
1S is the same as the probability of recovery or rupture starting
from state 1NGB. The only way that the process will eventually
reach the rupture state is if the newly germinated bacterium
matures into a vegetative bacterium, and then the cell eventually
ruptures starting from state 1. On the other hand, the cell can
August 2021 | Volume 12 | Article 688257
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recover if either the newly germinated bacterium dies before it
matures into a vegetative bacterium, or the newly germinated
bacterium matures and the cell eventually recovers starting from
state 1. In particular, given a germination rate g for the initial
spore, the probabilities for rupture and recovery, starting from
state 1S, are given by

rR1S (g) = rR1NGB (g) =
g

~m + g
  rR1 =

g(1 − a)
~m + g

,

r01S (g) = r01NGB (g) =
~m

~m + g
+

g
~m + g

  r01 =
~m + ga
~m + g

:

(23)

One can also derive the probability density functions of the
time to rupture and the time to recovery. These shed light on the
distribution of times to rupture and recovery across cells that
have been infected with one spore. In what follows, we denote the
random variable for the time to transition from state i to state j
by Tj

i = infft ≥ 0 :X(t) = jjX(0) = ig, and the probability density
function for this random variable is denoted by fTj

i
(t).

First, we consider the total time for the initial intracellular
spore to germinate and mature into a vegetative bacterium, given
by the random variable T1

1S , with probability density function,
fT1

1S
(t). This function will be needed later to calculate the

probability density function of the times to rupture and
recovery. To find the function fT1

1S
(t), let FT1

1S
(t) = P(T1

1S ≤ t)
be the probability that the cell contains an intracellular vegetative
bacterium by time t, given that the germination rate of the initial
spore is equal to g. Let us consider a small time step Dt, such that
only one transition can occur in the interval (t,t + Dt). If the cell
has not entered state 1, representing a vegetative bacterium,
before time t, then it will only be possible to enter state 1 before
time t + Dt if the cell is in state 1NGB at time t. Furthermore, if the
phagocyte contains a newly germinated bacterium at time t, then
the probability to transition to a vegetative bacterium between
time t and t + Dt is gDt. Hence,

FT1
1S
(t + Dt) = FT1

1S
(t) + p1NGB (t)gDt : (24)

The function FT1
1S
(t) is the cumulative distribution function of

the random variable, T1
1S , for the time that the process takes to

reach a vegetative bacterium, starting from one spore. Therefore,
the probability density function for this random variable is

fT1
1S
(t; g) =

dFT1
1S
(t)

dt
= g p1NGB (t) =

g2

~m
(e−gt − e−(g+~m)t),  t ≥ 0, (25)

where we have written explicitly that fT1
1S

is a function of the
germination rate g. It can be verified that

P(T1
1S < +∞) =

Z +∞

0
fT1

1S
(t; g)dt =

g
g + ~m

, (26)

which is the probability that the processwill eventually reach state 1,
or equivalently, the probability that a spore will mature into a
vegetative bacterium instead of being cleared by the infected cell.

Time to Recovery
Here we show how to compute the probability density function,
fT0

1S
(t), for the time to recovery of an infected cell starting with
Frontiers in Immunology | www.frontiersin.org 6
one spore. Following the same approach as above, the probability
density function for the random variable T0

1S , given that the spore
has germination rate g, is

fT0
1S
(t; g) =

dFT0
1S
(t)

dt
= ~mp1NGB (t) + mp1(t)

=  g(e−gt − e−(g+~m)t) + m
Z t

0
fT1

1S
(s; g)p1,1(t − s)ds,  t ≥ 0,

(27)

where p1,1(t) is the probability that the process, starting in state 1,
is in state 1 at time t, and can be derived from results in (16) as
follows,

p1,1(t) =
(a − b)2e−l(b−a)t

(ae−l(b−a)t − b)2
, (28)

with a and b defined in Eq. (22). We note that the probability
density function for the time to recovery from state 1 can be
written as

fT0
1
(t) = mp1,1(t) : (29)

When the germination rate follows a continuous Gaussian
distribution (see Eq. (7)), the probability density of the recovery
time starting from state 1S is given by

fT0
1S
(t) =

Z +∞

0
fG(g)fT0

1S
(t; g)dg : (30)

Alternatively, if the germination rate follows a discrete
Bernoulli distribution (see Eq. (10)), the probability density of
recovery times is given by

fT0
1S
(t) = efT0

1S
(t; gA) + (1� e)fT0

1S
(t; gB) : (31)

The probability density of recovery times yields the
distribution of recovery times across cells, since each phagocyte
is assumed to be initially infected by a single spore. To gain
insights into the expected time of recovery, one can also compute
the conditional mean time to recovery of an infected cell, which
is the expected time to recovery, given that the cell eventually
recovers. This is denoted by E½T0

1S jT0
1S < +∞�, given that the

eventual recovery of a cell is equivalent to its recovery time being
finite. For any initial state i ∈ S, one can define the restricted
mean time to recovery as t0i = E½T0

i · dT0
i <+∞

�, where dA is equal
to 1 if A is satisfied and 0 otherwise. Then the conditional mean
time to recovery, starting from state i ∈ S, is defined by

E½T0
i jT0

i < +∞� = t0i
r0i

: (32)

Hence, in order to calculate the conditional expectation, E½T0
1S j

T0
1S < +∞�, onemust restrict the sample space of T0

1S to finite values,
and divide by the probability that the recovery time is finite. The
set of finite recovery times can be partitioned into the set where
T1
1S = +∞ and the set where T1

1S < +∞. In other words, the cell can
either recover without ever containing vegetative bacteria, or the cell
can recover after having contained at least one vegetative bacterium.
Therefore, the restricted mean time to recovery can be written
as follows
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t01S = E½T0
1S · dT1

1S
=+∞� + E½T0

1S · dT1
1S
<+∞ · dT0

1<+∞
� :

Using the fact that T0
1S · dT1

1S
<+∞ · dT0

1<+∞
= (T1

1S + T0
1 ) · dT1

1S
<+∞ ·

dT0
1<+∞

, and that T1
1S  and T

0
1 are independent, one finds that the

restricted mean time to recovery for a cell infected with one spore
with germination rate g, is

t01S (g) =
1
g
+

1
~m + g

� �
~m

~m + g
+ E½T1

1S · dT1
1S
<+∞�P(T0

1 <+∞)

+ E½T0
1 · dT0

1<+∞
�P(T1

1S < +∞)

=
~m(~m + 2g)

g(~m + g)2
+ a
Z +∞

0
tfT1

1S
(t; g)dt

+
g

g + ~m

Z +∞

0
tfT0

1
(t) dt

=
g

~m + g

h (~m + 2g)(ga + ~m)
g2(~m + g)

+
1
l
log
� b
b − a

� i
, (33)

where we have made use of Eqs. (25), (26), and (29). The values a
and b are defined in Eq. (22).

With this restricted mean time at hand, and the probability of
recovery in Eq. (23), one can use Eq. (32) to find the conditional
mean time until recovery for the two different distributions of the
germination rate. In particular, when the germination rate
follows a continuous Gaussian distribution in Eq. (7), the
conditional mean time to recovery for an infected cell starting
with one spore is given by

E½T0
1S jT0

1S < +∞� =

Z +∞

0
fG(g)t

0
1S (g)   dgZ +∞

0
fG(g)r

0
1S (g)   dg

: (34)

Alternatively, if one considers the discrete Bernoulli
distribution for the germination rate, the conditional mean
time to recovery is given by

E½T0
1S jT0

1S < +∞� = et01S (gA) + (1 − e)t01S (gB)
er01S (gA) + (1 − e)r01S (gB)

: (35)

Time to Rupture
The time taken for the initial phagocytosed spore to transition
into a vegetative bacterium is given by the random variable T1

1S
and the time from vegetative bacterium to rupture is denoted
by TR

1 . Thus, the total time between the cell engulfing a spore,
and the time of rupture, is TR

1S = T1
1S + TR

1 . The corresponding
probability density function for T1

1S was given by fT1
1S
(t; g) in

Eq. (25), and the probability density function for the rupture
time starting from one vegetative bacterium was given by fTR

1

(t) in Eq. (21). One can convolve these two functions to find
the probability density function for the total time to rupture,
giving

fTR
1S
(t; g) =

Z t

0
fT1

1S
(s; g)fTR

1
(t − s)   ds : (36)
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When the germination rate across spores follows the continuous
Gaussian distribution, the density of rupture times is given by

fTR
1S
(t) =

Z +∞

0
fG(g)fTR

1S
(t; g)   dg : (37)

Alternatively, in the discrete Bernoulli case, the density of
rupture times is given by

fTR
1S
(t) = efTR

1S
(t; gA) + (1 − e)fTR

1S
(t; gB) : (38)

As done previously for recovery, one can also calculate the
conditional mean time to rupture, denoted E½TR

1S jTR
1S < +∞�

and defined similarly to Eq. (32) with 0 replaced by R. Since
the random variables T1

1S  and T
R
1 are independent, it can be

shown that the restricted mean time to rupture, for a cell
initially infected with a spore with germination rate g, is

tR1S (g) = E½T1
1S · dT1

1s
<+∞�P(TR

1 < +∞)

þE½TR
1 · dTR

1 <+∞
�P(T1

1s < +∞)

= (1 − a)
Z +∞

0
tfT1

1S
(t; g) dt +

g
g + ~m

Z +∞

0
tfTR

1
(t) dt

=
g

~m + g

h (~m + 2g)(1 − a)
g(~m + g)

+
1
l
log
� b − a
b − 1

� i
, (39)

where we have made use of Eqs. (25), (26) and (21). The values a
and b are defined in Eq. (22).

Given this restricted mean time, and the probability of
rupture from Eq. (23), one can use Eq. (32), with 0 replaced by
R, to find the conditional mean time until rupture, for the two
different distributions of the germination rate. In particular,
when the germination rate across spores follows a continuous
Gaussian distribution, the conditional mean time to rupture is of
the same form as Eq. (34), with 0 replaced by R. Similarly, if one
considers the discrete Bernoulli distribution for the germination
rate, the conditional mean time to rupture is of the same form as
Eq. (35), with 0 replaced by R.

Number of Intracellular Vegetative Bacteria
Given a particular germination rate g for the phagocytosed spore,
we denote the mean number of intracellular vegetative bacteria at
time t by Bn(t; g), where

Bv(t; g) =o
+∞

j=1
j pj(t) =

1
g
dpR(t)
dt

, (40)

with the second equality arising from Eq. (16). Since pR(t)
represents the cumulative distribution function of the rupture
time starting with one spore, this means that the average number
of vegetative bacteria is proportional to the probability density
function of the rupture time. That is, the mean number of
vegetative bacteria at time t, given germination rate g, is

Bv(t; g) =
fTR

1S
(t; g)

g
: (41)
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Once this is averaged over the possible values of the germination
rate, g, for either germination rate distributionhypothesis, themean
number of vegetative bacteria inside a cell at time t, is given by

Bv(t) =
fTR

1S
(t)

g
, (42)

where fTR
1S
(t) is defined in Eqs. (37) and (38) for the two

germination rate distributions.

Rupture Size Distribution
For an infected cell described by the CTMC c it is possible to find
the probability distribution of its rupture size, which is the
number of bacteria released into the extracellular environment
from the infected cell. If the time for the process to enter state 0 is
finite, then the rupture size is equal to 0, indicating that the host
cell recovers and does not release any bacteria. On the other
hand, if the time to reach state R, denoted by TR

1S , is finite, and
X(TR

1S − Dt) = n for small and positive Dt, this means that the
process transitions into the rupture state from state n ∈ N. This
corresponds to the death and rupture of the host cell, and the
release of n bacteria into the extracellular environment. Let Rn

i

denote the probability that the cell will release n bacteria in total,
given that the process starts at state i ∈ S. This is defined as

Rn
i =

P(T0
i < +∞), for  n = 0,

P((TR
i < +∞) and (X(TR

i − Dt) = n)), for  n ∈ N :

(
(43)

With this definition, R0
i is the probability that the cell

recovers, so r0i = R0
i . For n ∈ N, Rn

i is the probability that the
cell ruptures and releases n bacteria, so the overall probability of
rupture is rRi = S+∞

n=1R
n
i . For states i ∈ N, the probabilities Rn

i do
not depend on the germination rate, g. However for i ∈ {1S, 1NGB},
these probabilities do depend on the germination rate, and so will
be denoted by Rn

1S (g) and R
n
1NGB(g).

We now follow the method of Karlin and Tavare from (24) to
find the probabilities Rn

1 . If the cell begins with a vegetative
bacterium, so that X(0) = 1, then for a small time interval Dt! 0,
one has,

P((X(t) = n) and (t < TR
1 ≤ t + Dt)) = P(X(t) = n)

� P(t < TR
1 ≤ t + Dt j X(t) = n) = p1,n(t)ngDt,

(44)

since if the cell contains n bacteria at time t, the probability of
rupture between time t and t + Dt is ngDt. An expression for p1,n(t),
which is the probability that a cell contains n bacteria at time t,
given that it contains one bacterium at time 0, was given by
Carruthers et al. in (16),

p1,n(t) =
(b − a)2e−l(b−a)t(e−l(b−a)t − 1)n−1

(ae−l(b−a)t − b)n+1
,    n ≥ 1: (45)

Hence for an infected phagocyte starting with one vegetative
bacterium, the probability that the cell releases n ≥ 1 bacteria, Rn

1 ,
is then

Rn
1 =
Z +∞

0
p1,n(t)ng   dt =

(1 − a)(b − 1)
bn

, (46)
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with a and b defined in Eq. (22). Moreover, a first-step argument
allows one to obtain the probability Rn

1S (g) f rom Rn
1 . For n ≥ 1

and germination rate g, one has

Rn
1S (g) = Rn

1NGB (g) =
g

~m + g
Rn
1 : (47)

When the germination rate across spores follows the
continuous Gaussian distribution, the probability that the
rupture size of a cell initially infected with one spore is equal
to n ∈ N bacteria, is given by

Rn
1S = Rn

1

Z +∞

0
fG(g)

g
~m + g

dg : (48)

Alternatively, if one considers the discrete Bernoulli
distribution for the germination rate, the probability that the
rupture size of a cell initially infected with one spore is equal to
n ∈ N bacteria, is given by

Rn
1S = Rn

1

� egA
~m + gA

+
(1� e)gB
~m + gB

�
: (49)
PARAMETER CALIBRATION

In this section we make use of experimental data from an in vitro
study by Kang et al. (23), which was discussed by Pantha et al. in
(15) and used to calibrate their ODE model. In the experiment 106

murine peritoneal macrophages were incubated with different
numbers of Sterne 34F2 strain spores for 30 minutes, during
which time phagocytosis occurred (23). The ratio of spores to cells
in the solution at the start of the incubation period is called the
multiplicity of infection (MOI) and in this case the four MOIs
considered were spore to macrophage ratios of 1:1, 1:2, 1:10 and
1:20, corresponding to the initial number of spores in the solution
of 106, 5 × 105, 105, and 5 × 104. At the end of 30 minutes, the
solutions were washed, so no extracellular spores remained, and
no more spores were phagocytosed after this time. Then the
solutions were incubated with an antibacterial agent called
gentamicin for 30 minutes to remove any extracellular bacteria.
At various time points after this, samples of parallel replicates of
the experiment were washed and the number of intracellular
spores and bacteria determined. The data from this experiment
is given in (15, Tables 2 and 3). While in reality cells could
phagocytose more than one spore each in this experiment, this is
less likely to happen when the average number of spores per cell in
the solution is low. Therefore we only use the data for MOI 1:2,
1:10 and 1:20 to perform the parameter calibration, since these low
MOIs will be more consistent with our model assumption in the
Materials and Methods section that each macrophage engulfs at
most one spore, leading to the initial condition for our model in
Figure 1. Still, once we have obtained posterior samples of the
parameters, we will compare our model predictions to theMOI 1:1
data, as a qualitative validation.

The experiment described above was also performed using a
germination-deficient strain of B. anthracis spores, in which spore
germination is inhibited. The average spore counts at one hour from
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two duplicate samples that used the germination-deficient strain are
provided in Table 1. The number of spores of the germination-
deficient strain would have remained unchanged between 0.5 hours
and 1 hour, because they will not have germinated, and all
extracellular spores were removed by washing at 0.5 hours, so
there would have been nomore phagocytosis after this time. Thus, if
one assumes that there is no difference in spore phagocytosis rates
between the germination-deficient and Sterne strains, one concludes
that the spore counts for the germination-deficient strain are a good
representation of the total number of Sterne strain spores that
would have been phagocytosed during the first 0.5 hours of the
experiment for each MOI. In the parameter calibration for their
Phase II subsystem model, Pantha et al. used these numbers of
intracellular spores from the germination-deficient experiment as
the initial condition for the intracellular dynamics. The justification
given is that germination does not seem to be a dominating process
at 0.5 hours, so the number of spores of the Sterne strain at 0.5 hours
will be similar to the number of germination-deficient spores at the
same time point. Therefore, wemake here the same assumption that
no germination of the Sterne strain spores has occurred before 0.5
hours. Because of this, our estimates for gA and gB in the discrete
Bernoulli model should be interpreted with this 30-min delay in
mind, and in particular our estimated germination rates might be
slightly overestimated as a result. However, this delay could possibly
be interpreted as a time-lag after phagocytosis for the activation of
germination to occur. Furthermore, after learning about the
parameters with ABC-SMC inference, we will see that even the
spores with a quicker germination rate (type A) take on average
longer than an hour to germinate, so it seems (a posteriori)
Frontiers in Immunology | www.frontiersin.org 9
reasonable to assume that germination does not happen in the
first 30 minutes of the experiment.

In the data from the experiment, time t = 0 corresponds to the
start of the incubation period of cells and spores (23). On the other
hand, our model considers a single host cell that begins with one
intracellular spore, and t = 0 is assumed to be the start of the
germination process of this spore. Since phagocytosis only occurs
during the first 0.5 hours of the experiment, and we assume that
germination does not occur until after the first 0.5 hours of the
experiment, we do not explicitly include phagocytosis in our
mathematical model. Instead, we modify the time points so that
t = 0.5 in the experiment corresponds to t = 0 in our model. That is,
we take the number of intracellular spores from the germination-
deficient experiment, given in Table 1, to be our initial conditions
for t = 0, and use the data as it is shown in Table 2.

We have performed Approximate Bayesian Computation
Sequential Monte Carlo (ABC-SMC) (22) to estimate our
intracellular model parameters. This method involves choosing
prior distributions for the model parameters and then carrying
out multiple iterations of the ABC algorithm. At each iteration,
parameter values are sampled from the posterior distribution of
the previous iteration and are perturbed with a kernel function.
Here we use a component-wise uniform perturbation kernel, so
that each component of the parameter set is perturbed
independently in a uniform interval. The perturbed parameter
set is then used to obtain a model prediction and is accepted if
the distance between the model and the data falls below the
distance threshold for that iteration. We have used a sequence of
decreasing distance thresholds, such that the distance threshold
at each iteration is the median of the distances from the accepted
parameter sets in the previous iteration. In this manner, one
obtains a set of distributions for the parameters that converge to
the posterior distribution. In the parameter calibration results
that follow, we are considering a posterior sample of size 103

from the final iteration of the ABC algorithm.
In this section we present the results obtained from using the

MOI 1:2, 1:10 and 1:20 data sets to obtain posterior parameter
distributions, first for the continuous model of germination rate,
and then for the discrete Bernoulli model. The authors of (15) used
these data to estimate different parameter sets for each MOI,
mentioning that for lower MOIs the smaller average intracellular
burden could give a better environment for spores to germinate
and bacteria to replicate, leading to larger values of the parameters.
However, since we are assuming that every infected cell begins
with only a single intracellular spore, this means that the cellular
TABLE 1 | Data taken from (15, Table 2), giving the average number of
intracellular spores of two replicates of the experiment counted at 1 hour when
using spores of a germination-deficient strain of anthrax.

Intracellular germination-deficient spore count at one hour

MOI 1:1 377500
MOI 1:2 139000
MOI 1:10 30500
MOI 1:20 13925
The number of spores of the germination-deficient strain should have remained
unchanged between 0.5 hours and 1 hour, because they cannot germinate, and all
extracellular spores were removed by washing at 0.5 hours, so there would have been no
more phagocytosis after this time. We note that the value for MOI 1:10 reported in (15,
Table 2) was inconsistent with that observed in (15, Figure 2), so the second one is used
here, since it is more consistent with the trajectory over time for the spore counts in (15,
Figure 2) for MOI 1:10, and also so that our predictions are comparable with those in (15).
TABLE 2 | Data for the number of intracellular spores and bacteria present at different time points, which have been used to perform ABC-SMC.

Time (hours) 0 0.5 2.5 4.5 23.5

MOI 1:2 Number of intracellular spores 139000 105000 11400 10250 29500
Number of intracellular bacteria 0 23000 67100 52250 20000

MOI 1:10 Number of intracellular spores 30500 27000 12000 9100 2750
Number of intracellular bacteria 0 9500 14000 7650 2500

MOI 1:20 Number of intracellular spores 13925 7900 6450 3100 300
Number of intracellular bacteria 0 6000 2250 1750 1000
August 2021 |
 Volume 12 | Article 6
These data have been taken from (15, Tables 2 and 3), although time points are shifted by 30 min to account for the first phase of the experiment where phagocytosis occurs. The initial
conditions (t = 0) correspond to the values reported in Table 1 from the germination-deficient experiment. The counts at each time point are averages of two experimental replicates.
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MOI is assumed to be identical across all data sets, and in this way
the MOI is simply a measure of the system size. Hence we believe
that the parameters considered in our stochastic model may not
depend on the initial conditions given by the MOI. Thus, we use
the three data sets together to obtain a single set of estimates for
the parameters, aiming to give a reasonable fit to the data sets with
a significantly smaller number of parameters in our model.

In the experiment, the samples were washed each time before
counting the number of intracellular spores and bacteria.
Therefore, any bacteria released from a ruptured macrophage
would be removed during the washing process and would not
contribute to the number of bacteria observed in the data. Thus,
to compare our model with the data, we use our model to
calculate the per cell mean number of intracellular spores and
bacteria over time. For the model with continuous distribution
for the germination rate, Eqs. (8), (9), and (42) define the
expected number of spores and bacteria in a cell at time t,
given that it contained a spore at time t = 0. Since each infected
cell is assumed to be independent, we can multiply these by the
number of initial spores, to obtain the mean number of spores
and bacteria present inside the population of cells at time t. Let S0
be the total number of initial intracellular spores for the
population of cells at time t = 0. Then for the hypothesis of
continuous heterogeneity in the germination rate, the total
expected number of spores in all cells at time t is given by

S∗(t) =
S0
Z
exp

� s 2
g t

2

2
− mg t

�
F
� mg − s 2

g t

sg

�
: (50)

The total (in all cells) expected number of intracellular
bacteria at time t hours, including newly germinated bacteria
and vegetative bacteria, is given by

∗(t) = S0
h 1
~mZ

(1 − e−~mt)
� sgffiffiffiffiffiffi

2p
p e

−
m2g
2s2g + (mg

− s 2
g t) exp  

� s2
g t

2

2
− mg t

�
F
� mg − s 2

g t

sg

��
+Bv(t)

i
(51)
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where Bn(t) is the expected number of vegetative bacteria in one
cell at time t, defined in Eq. (42). Similarly, for the model with
two discrete germination rates, the model predictions for
number of spores and bacteria are given by

S∗(t) = S0
	
ee−gAt + (1 − e)e−gBt



, (52)

and

B∗(t) = S0
egA
~m

e−gAt − e−(gA+~m)t
� �

+
(1 − e)gB

~m
e−gBt − e−(gB+~m)t
� �

+ Bv(t)

� �
,

(53)

where Bn(t) is the expected number of vegetative bacteria in one
cell at time t. In the ABC-SMC, we compare the data to the
model outputs given by S∗(t) and B∗(t), with the initial number of
spores equal to S0 = 139000 for MOI 1:2, S0 = 30500 for MOI 1:10
and S0 = 13925 for MOI 1:20.

In the model with continuous germination rate distribution,
where the germination rate follows a truncated normal
distribution, G ∼ N(0,+∞)(mg,s 2

g ), the parameters characterising
germination that we aim to estimate are the mean germination rate
μg, and its standard deviation sg. In the discrete Bernoulli model, the
parameters characterising germination that we aim to estimate are
the probability e that a given spore is of type A, and the two
germination rates, gA and gB. The rest of the parameters that we
wish to estimate are common toboth versions of themodel: the death
rate of newly germinated bacteria, ~m, the replication rate of vegetative
bacteria, l, the death rate of vegetative bacteria, μ, and the rupture
rate, g. To calibrate these parameters, we performed ABC-SMC, and
compared our model with the numbers of intracellular spores and
bacteria over time from the experiment by Kang et al. (23). Similarly
to (25),wemakeuse of theEuclideandistance for the logarithmof the
predicted values and observed data, given by

d(model prediction,  Data)

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o

i∈ 2,10,20f g
o
t∈T

�
log
� S∗i (t)
si(t)

��2
+
�
log
� B∗

i (t)
bi(t)

��2
,

s
(54)
TABLE 3 | Prior distributions used in the ABC-SMC for the model with continuous heterogeneity of germination rate (top) and the model with two types of
spores (bottom).

Parameter Units Description Prior distribution

Model with continuous germination rate distribution
mg h-1 Mean of the normal distribution for G log10 mg ∼ U(-2, 1)
sg h-1 Standard deviation of the normal distribution for G log10 sg ∼ U(-2, 0.15)
~m h-1 Death rate of newly germinated bacteria log10 ~m ∼ U(-4, 1)
l (bacteria·h)-1 Replication rate of vegetative bacteria See Figure 2 (top)
m (bacteria·h)-1 Death rate of vegetative bacteria log10 m ∼ U(-4, 1)
g (bacteria·h)-1 Rupture rate See Figure 2 (top)
Model with discrete Bernoulli germination rate distribution
e – Probability that a given spore is of type A e ~ U(0, 1)
gA h-1 Germination and maturation rate of spores of type A log10gA ~ U(-4, 1)
gB h-1 Germination and maturation rate of spores of type B log10gB ~ U(-4, 1)
~m h-1 Death rate of newly germinated bacteria log10 ~m ∼ U(-4, 1)
l (bacteria·h)-1 Replication rate of vegetative bacteria See Figure 2 (bottom)
m (bacteria·h)-1 Death rate of vegetative bacteria log10 m ∼ U(-4, 1)
g (bacteria·h)-1 Rupture rate See Figure 2 (bottom)
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where T = {0.5,2.5,4.5,23.5}, S∗i (t) and B
∗
i (t) are the respective

model predictions for the number of spores and bacteria at time t
for MOI 1:i, and si(t), bi(t) are the respective observed number of
spores and bacteria at time t, given by the data for MOI 1:i.

To perform ABC-SMC, one needs to choose prior
distributions from which to sample the parameter values at the
first iteration. To inform the selection of some of these prior
distributions, we leverage data from Akoachere et al. (26), who
observed that after infecting murine macrophages with
B. anthracis Sterne strain spores at a spore to macrophage ratio
(MOI) of 20:1, 20% of cells had ruptured by 3.5 hours, and 90%
had ruptured by 7 hours. We preliminarily fit our model to these
data and use the results to estimate a potential prior distribution
for the replication and rupture rates, l and g. We are unable to
learn much about the other model parameters in this way, since
only two data points based on a single experiment are available.
However, this small amount of data regarding the rupture time of
cells does allow us to gain preliminary knowledge of l and g,
since in our model the rupture rate is proportional to the size of
the bacterial population, which in turn depends on
the replication rate of the bacteria. Therefore, we use the
distributions obtained for l and g as prior distributions in the
subsequent fitting to the Kang et al. data. These distributions
seem to agree well for the two different germination hypotheses
and are shown in Figure 2. We also show that these preliminary
estimates lead to a good representation of the rupture dynamics.
Furthermore, the median of the distribution for l is around 0.9
(bacteria·h)-1, which is consistent with the doubling time of 0.78
hours, measured by Kalns et al. (27) and used as an estimate in
the within-host model by Day et al. (17). For more details on how
the prior distributions in Figure 2 were obtained, see the
Supplementary Material. Uniform prior distributions are
considered for the remaining parameters, as reported in
Table 3. We note that these parameters are log-transformed
because the prior range spans multiple orders of magnitude. For
the model with two types of spores, we fixed gA > gB to represent
that, without any loss of generality, type A spores are the ones
with a faster germination rate. In order to sample parameter
values gA and gB with priors reported in Table 3, and under the
constraint gA > gB, we follow the ideas from (28).

Figure 3 shows the posterior histograms obtained by
performing ABC-SMC for the two hypotheses considered,
using the Kang et al. data, while summary statistics for these
posteriors are reported in Table 4. By comparing the posterior
histograms in blue with the prior distributions in red, we can see
that it has been possible to learn significantly about most of the
parameters for both hypotheses. For the model with continuous
germination rate distribution, the value of μg, corresponding to
the most likely value for the germination rate of a given spore, is
likely to be between 10-2 and 10-1 h-1. For the model with two
germination rates, the value of e is likely to be between 0.5 and 1,
so that the majority of the spores will germinate with rate gA,
which is likely to be of the order of 10-1 h-1, and the rest will
germinate with rate gB, which is likely to be of the order of 10-2 h-1.
For both hypotheses we learn that the death rate of newly
germinated bacteria, ~m, is likely to be very small. For the model
Frontiers in Immunology | www.frontiersin.org 11
with continuous heterogeneity in the germination rate, the posterior
histograms for l and g show that the value of these parameters that
produce a good match between this model and the Kang et al. data,
are similar to the values that gave a good fit to the data from
Akoachere et al. that we used to inform our priors for these
parameters. For the model with two types of spores, the posterior
histogram for l is shifted slightly to the left from the prior
distribution. For both hypotheses we have been able to learn
significantly about the death rate of bacteria, μ and these accepted
values are usually larger than the corresponding values for the
replication rate, l. This is shown in the posterior histograms for the
ratio between the birth and death rate of bacteria, l/μ, which mostly
contain values less than 1, indicating that the bacteria are likely to
die more quickly than they replicate.

Model predictions were obtained for each accepted parameter
set from the ABC-SMC. Figure 4 shows the pointwise 95%
credible intervals of these time-courses, which indicate the
uncertainty in the mean number of intracellular spores and
bacteria from the model, due to the range of accepted
parameter sets. The solid lines show the model output for the
parameter sets with the smallest distance to the data, referred to
as the best model predictions. For the model with continuous
germination rate distribution, the predictions are close to the
data at some time points, but overall do not seem to explain
the data very well, since the peak of intracellular bacteria in the
model predictions seems to be lower than the peak indicated by
the data. On the other hand, the predictions of the model with
two types of spores show a fairly good agreement with all data
sets. It seems that this latter model, with two discrete
germination rates, is better able to describe the pattern of
biphasic decay in the number of spores seen in the data. This
model also explains the bacterial data significantly better than the
hypothesis of continuous germination rate distribution.

Only the data for MOI 1:2, 1:10 and 1:20 were used in the
ABC-SMC analysis to calibrate model parameters. Still, we
compare our calibrated model predictions with the MOI 1:1
data, by making use of the corresponding initial condition for
this MOI, S0 = 377500. For the model with two types of spores,
the best prediction is very close to the MOI 1:1 data at some time
points, which demonstrates a possibility that the model could be
used to extrapolate between MOIs. However, the assumption
that each cell will only phagocytose a single spore is less viable at
MOI 1:1, so the model may need to be adapted slightly in order
to explain the dynamics at higher MOIs. We note that the long-
term behaviour of spores for MOI 1:1, where a significant
unexpected increase in the number of spores over time is
observed, was not explained by Kang et al. (23) or Pantha et al.
(15), and cannot be mechanistically explained by our
intracellular infection model either, regardless of the choice
of parameters.

Figure 4 also shows, as dashed lines, the predictions of the
model by Pantha et al. using their parameter estimates. When we
compare these to our predictions, it seems that with the
consideration of heterogeneity in the germination rate, our
model provides a better explanation for the number of
intracellular spores seen in the data, especially for MOI 1:10
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and MOI 1:20. However, the fit of our model to the bacterial data
does not look quite as good as the predictions by Pantha et al.
This is not surprising, since Pantha et al. allow different
parameter values for each data set, meaning that their model
has more parameters and higher complexity, giving it more
freedom to fit the data. To compare the goodness-of-fit of the
models, we use the Corrected Akaike’s Information Criterion
(AICC), which penalises models with a higher number of
parameters if there is not enough improvement in the
goodness-of-fit to warrant the additional complexity. Roughly
speaking, lower values of the AICC indicate a better fit to the
observed data. We have calculated the value of AICC for the
model by Pantha et al. and the two versions of our model with
different distributions for the germination rate. For details about
how the AICC was calculated see the Supplementary Material.
For our models the value of AICC was calculated using the
parameter set that gave the smallest distance in the ABC-SMC,
obtaining a value of AICC = 1.42 for the model in which the
germination rate is a continuous random variable, and a value of
AICC = -3.8 for the one with two types of spores. For the model by
Pantha et al., the value of AICC was calculated using the parameter
Frontiers in Immunology | www.frontiersin.org 12
estimates reported in (15, Table 7), giving a value ofAICC= 176.73.
Our models have a lower AICC than the model by Pantha et al.,
mainly because we used the same parameter estimates for each
MOI, whereas Pantha et al. obtained separate estimates for each
MOI, meaning that they have many more free parameters. Even
with the inclusion of heterogeneity in the germination rate, the
version of our model with continuously distributed germination
rates is not able to properly capture all the data. Instead, a bi-modal
model of heterogeneity in the germination rate is needed to explain
both the spore and the bacterial data. This is supported by the fact
that the AICC value is lower for the discrete Bernoulli hypothesis,
even though it has one more parameter. This indicates that this
model may explain the data better than the model with
continuously distributed germination rates.
RESULTS

The results of the parameter calibration suggest that the
hypothesis of germination rate heterogeneity with two discrete
types of spores is better supported by the data than the model
FIGURE 2 | Prior distributions for the replication rate, l, and the rupture rate g, in the model with continuous heterogeneity of germination rate (top row), and the
model with two types of spores (bottom row), obtained by using observations from Akoachere et al. (26) of the proportion of dead macrophages at two different time
points. The plots on the right show the best predictions (solid line) of the fraction of cells that would be expected to rupture before time t in an experiment with MOI
20:1, compared to the data from Akoachere et al. (26). The pointwise 95% credible intervals (shaded region) are shown to represent the uncertainty in the parameter values.
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with continuous heterogeneity. The model with two types of
spores is able to describe the biphasic decay seen in the spore
data, especially for MOIs 1:10 and 1:20, as well as the behaviour
of the bacterial data. Therefore, in this section we will only focus
on the model with two types of spores. The set of parameter
values that gave the smallest distance to the data in the ABC-
SMC is provided in Table 5. We have used these parameter
values to calculate the various descriptors of the model discussed
in the Materials and Methods section, and have also investigated
Frontiers in Immunology | www.frontiersin.org 13
the effect of the uncertainty in the parameter values indicated by
the posterior distributions obtained from ABC-SMC.

In the Spore Germination section, we found expressions for
the probabilities, p1S (t) and p1NGB (t), that an infected macrophage
will contain a spore or newly germinated bacterium, respectively,
at time t ≥ 0, given that the macrophage contained a spore with
germination rate g at time 0. Note that since in our model the
macrophage is assumed to only contain at most one spore or
newly germinated bacterium at any one time, these probabilities
FIGURE 3 | Prior distributions (red) and posterior histograms (blue) when performing ABC-SMC for the model with continuous heterogeneity of germination rate
(top), and the model with two types of spores (bottom), using data from (23) of the number of intracellular spores and bacteria at different time points for MOIs 1:2,
1:10 and 1:20.
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are equal to the mean number of spores and newly germinated
bacteria inside the macrophage at time t ≥ 0. In the Cellular Fate:
Rupture or Recovery section we also explained how to calculate
the mean number of vegetative bacteria, Bn(t; g), in an infected
macrophage at time t ≥ 0, given that the macrophage contained a
spore with germination rate g at time 0. One can then consider
a population of S0 independent infected cells, each containing a
single spore at time 0. Assuming that each initial spore can have
one of two possible germination rates (either rate gA with
probability e, or rate gB with rate 1 - e), one can calculate a
time course for the total mean number of intracellular spores,
newly germinated bacteria, and vegetative bacteria, for a
population of infected cells, split into the populations arising
from each of the two types of spores. This is depicted in Figure 5,
where the first column corresponds to the populations arising
from spores of type A, the second column corresponds to the
populations arising from spores of type B, and the third column
shows the sum of the populations from both types of spores. The
solid lines indicate the means for the estimated parameter values
in Table 5, while the shaded regions indicate the pointwise 95%
credible intervals for these means, when the uncertainty in the
parameter values from the posterior is considered. The first two
plots show two very different timescales for the dynamics of each
kind of spore, and when these populations are added together in
the third plot, one can observe the biphasic behaviour in the
number of spores that is observed in the data from (23). The blue
curve here indicates the prediction from the model for the total
mean number of intracellular spores over time. The other two
curves indicate the predictions for the mean number of
intracellular newly germinated bacteria (orange), and
vegetative bacteria (green), so that when these are added
together, one obtains the prediction for the total number of
intracellular bacteria, as shown in the predictions from the
parameter calibration in Figure 4. The top row of plots in
Figure 5 corresponds to an initial condition of S0 = 30500
spores, equal to the initial condition from the MOI 1:10 data
used in the ABC-SMC. On the other hand, the bottom row
corresponds to an initial condition of S0 = 100. In both cases, the
coloured dots indicate the sizes of the different populations over
Frontiers in Immunology | www.frontiersin.org 14
time, from a stochastic simulation of the model starting with S0
spores. The results from the simulations show that when there
are many initial spores (top row), the behaviour is very
deterministic, but when the number of initial spores is
relatively small (bottom row), there is much more stochasticity.
This stochasticity could be relevant in in vivo settings, where
infection might depend on a small group of spores germinating
and producing a relatively small number of bacteria, as discussed
in the Discussion section.

In the Cellular Fate: Rupture or Recovery section we explained
how to calculate the probability density functions for the times to
recovery and rupture of a macrophage initially infected with one
spore. The probability density functions for the time to rupture
are plotted along the top row of Figure 6, for the inferred
parameter values in Table 5. From left to right, the first two
plots show the density functions for the time to rupture of an
infected cell containing a spore of type A and type B, respectively.
We observe very different rupture timescales for each kind of
spore. The third plot shows these densities on the same plot,
when they are scaled by the relative frequencies of each
germination rate, so that the sum of these two densities gives
the overall probability density function for the rupture time of a
cell infected with a single spore. Note that this probability density
function does not integrate to 1, but instead the probability of
rupture. Nevertheless, one can divide the density by the
probability of rupture, giving the conditional density function
of rupture time, shown as a solid line in the fourth plot. Also
shown on the fourth plot is a histogram of the finite rupture
times from 106 stochastic simulations of the model in Figure 1.
On the bottom row of Figure 6 are the analogous functions for
the recovery time. Interestingly, the conditional probability
density functions for the rupture and recovery times are almost
identical. This is likely due to the fact that these timescales are
heavily dominated by the germination time of the spore, and
once the spore has germinated, rupture or recovery of the
phagocyte happens relatively quickly. One can also compute
the conditional mean times to rupture or recovery of a
macrophage infected with a single spore, which are the means
of the rightmost histograms in Figure 6. For the parameter
TABLE 4 | Summary statistics for the posterior sample of each parameter, shown in blue in Figure 3, for the model with continuous heterogeneity of germination rate
(top) and two types of spores (bottom).

Parameter Units Min Median Mean Max 95% Credible Interval

Model with continuous germination rate distribution
µg h-1 1.00 × 10-2 3.30 × 10-2 3.60 × 10-2 2.38 × 10-1 (1.16 × 10-2, 1.60 × 10-1)
sg h-1 4.36 × 10-1 6.27 × 10-1 6.23 × 10-1 8.43 × 10-1 (5.01 × 10-1, 7.65 × 10-1)
~m h-1 1.01 × 10-4 1.18 × 10-3 1.20 × 10-3 1.73 × 10-2 (1.50 × 10-4, 9.58 × 10-3)
l (bacteria·h)-1 1.35 × 10-1 6.93 × 10-1 7.28 × 10-1 4.96 × 100 (2.76 × 10-1, 2.43 × 100)
µ (bacteria·h)-1 9.70 × 10-1 2.55 × 100 2.81 × 100 9.66 × 100 (1.31 × 100, 7.49 × 100)
g (bacteria·h)-1 3.60 × 10-3 3.94 × 10-2 4.15 × 10-2 1.75 × 10-1 (1.07 × 10-2, 1.33 × 10-1)
Model with discrete Bernoulli germination rate distribution
e – 5.29 × 10-1 7.54 × 10-1 7.45 × 10-1 9.06 × 10-1 (5.93 × 10-1, 8.48 × 10-1)
gA h-1 4.86 × 10-1 8.16 × 10-1 8.50 × 10-1 2.74 × 100 (5.37 × 10-1, 1.74 × 100)
gB h-1 1.18 × 10-3 4.90 × 10-2 4.70 × 10-2 1.04 × 10-1 (2.21 × 10-2, 8.76 × 10-2)
~m h-1 1.02 × 10-4 2.16 × 10-3 2.27 × 10-3 5.03 × 100 (1.27 × 10-4, 4.25 × 10-2)
l (bacteria·h)-1 2.01 × 10-1 4.94 × 10-1 5.34 × 10-1 4.28 × 100 (2.14 × 10-1, 1.95 × 100)
µ (bacteria·h)-1 4.97 × 10-4 1.93 × 100 2.00 × 100 9.98 × 100 (5.82 × 10-1, 8.16 × 100)
g (bacteria·h)-1 4.13 × 10-4 2.97 × 10-2 2.34 × 10-2 2.24 × 10-1 (9.63 × 10-4, 1.89 × 10-1)
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values in Table 5, the conditional mean rupture and recovery
times are approximately 11.3 hours and 11.6 hours, respectively.
However, the uncertainty in the parameter values, shown in the
posterior distributions, leads to uncertainty in these timescales.
For instance, this is indicated by the range of conditional mean
times until rupture shown in the plot on the right of Figure 7.

The probability distribution for the number of bacteria
released by an infected macrophage, for the parameter values
in Table 5, is provided in Figure 7 (left). The probability that no
bacteria are released by the macrophage is predicted to be 0.96,
which suggests that most macrophages will be able to recover
and eliminate the intracellular infection, and that we would
Frontiers in Immunology | www.frontiersin.org 15
expect only 4% of infected macrophages to eventually rupture
and release bacteria. The results also indicate that when
macrophages do rupture, they will only release a few bacteria,
with an average of 1.6 bacteria released from a macrophage that
ruptures. This is consistent with the fact that a high dose of
spores is required for infection, reported to be between 8 × 103

and 5 × 104 spores (29). Cote et al. (30) explain that although
macrophages kill most of the germinated bacteria that they
encounter, a low percentage of bacteria survive the antimicrobial
environment in the macrophage and escape to begin the
extracellular infection. This is further supported by findings
from Jones et al. (31), who observed that after infection of a
FIGURE 4 | Plots showing the best predictions (solid lines) and pointwise 95% credible intervals (shaded regions) of the time-courses for the mean number of
intracellular spores and bacteria, for the model with continuous heterogeneity of germination rate (top), and the model with two types of spores (bottom). The best
predictions are the model outputs obtained by using the accepted parameter set with the smallest distance to the data, and the pointwise 95% credible intervals
show the uncertainty in those predictions, given the range of parameter values in the 103 accepted parameter sets from the final iteration of ABC-SMC. The
predictions from the model by Pantha et al., using separate sets of parameter estimates for each MOI, are shown as dashed lines. For our model, only the data for
MOI 1:2, 1:10 and 1:20 were used in the ABC-SMC to calibrate model parameters. The comparison of the model predictions with the MOI 1:1 data is shown here
as a qualitative model validation.
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guinea pig with 107 spores, 99% of the germinated spores were
killed within an hour, but the 1% that survived managed to
replicate extracellularly and ultimately reached a concentration
of 108 bacteria/ml in the blood at the time of death.

Table 5 reports our best prediction for the parameter
values according to the distance in the ABC-SMC. Yet, the
advantage of a Bayesian approach in the parameter calibration
is that it quantifies the uncertainty in the parameter values,
which translates into the uncertainty in the descriptors of
the model. The scatter plot on the right of Figure 7 shows the
probability of rupture plotted against the average of the
conditional rupture size distribution, for each parameter set
in the posterior sample shown in Figure 3 (bottom), with the
lines indicating the corresponding values for the parameter set
in Table 5. There is a positive correlation between these two
descriptors, indicating that if macrophages are more likely to
Frontiers in Immunology | www.frontiersin.org 16
rupture, they are also likely to release more bacteria when they
do rupture. Parameter sets leading to a very small probability
of rupture will likely correspond to death rates much larger
than the replication rate. Conversely, parameter sets leading
to a larger probability of rupture correspond to bacterial death
rates closer to the replication rate. This would allow for
greater bacterial replication on average before rupture, and
in turn a larger average rupture size. The colour of the points
on this scatter plot indicates the conditional mean time until
rupture for each parameter set. This illustrates the uncertainty
of the timescale for rupture, with the possible mean rupture
times from the posterior distributions ranging from around
7.5 to 25 hours. Furthermore, it is possible to find pairs of
parameter sets that give differing average rupture times, but
with similar probabilities of rupture and conditional average
rupture sizes.
FIGURE 5 | The top row of plots corresponds to a population of S0 = 30500 infected cells, each containing a single spore at time 0, whereas the bottom row
corresponds to an initial condition of S0 = 100. Left: The mean number of type A spores, eS0p1S

(t; g = gA) , type A newly germinated bacteria, eS0p1NGB
(t; g = gA),

and vegetative bacteria, eS0BV(t; gA) = eS0o∞
i=1 i pi(t; g = gA), arising from the type A spores in the infected macrophages. Centre: The analogous functions for the

populations arising from the initial spores with germination rate gB. Right: The overall mean number of spores, S0S(t), newly germinated bacteria, S0BNGB(t), and
vegetative bacteria, S0Bn(t), obtained by adding together the populations for each type of spore. The solid lines indicate the means for the estimated parameter
values in Table 5, while the shaded regions indicate the pointwise 95% credible intervals for these means, when the uncertainty in the parameter values from the
posterior distributions is taken into account. The equations used to compute these curves were Eqs. (5), (6), (11), (12), (41), and (42). The dots show values for the
size of the different populations over time from a single stochastic simulation beginning with S0 spores.
TABLE 5 | Parameter values that gave the smallest distance between the two types of spores model and the data from (23) in the ABC-SMC analysis.

Parameter Units Description Value

e – Probability that a given spore is of type A 0.778846
gA h-1 Germination and maturation rate of spores of type A 0.894274
gB h-1 Germination and maturation rate of spores of type B 0.046794
~m h-1 Death rate of newly germinated bacteria 0.003502
l (bacteria·h)-1 Replication rate of vegetative bacteria 0.643111
m (bacteria·h)-1 Death rate of vegetative bacteria 1.637989
g (bacteria·h)-1 Rupture rate 0.043792
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DISCUSSION

We propose a stochastic model for the dynamics of B. anthracis
spores and bacteria inside an infected phagocyte. One of the main
features of our model is the consideration of heterogeneity in the
germination rate of spores. Two hypotheses were considered to
characterise this heterogeneity. The first hypothesis was that the
germination rate is continuously distributed in a population of
spores and follows a truncated normal distribution. The second
hypothesis was that the spore population can be split into two kinds
that germinate at different rates. We carried out parameter
calibration, for each hypothesis, by means of Approximate
Bayesian Computation Sequential Monte Carlo (ABC-SMC) (22).
Our results suggest that the discrete germination hypothesis is better
supported by the data, since the model with this distribution of
germination rates allows us to account for the biphasic decline seen
in the spore counts, as well as the observed behaviour of the
bacterial counts. This assumption of two types of spores also
agrees with experimental evidence showing that in some Bacillus
spore populations, a subset of the spores germinate much more
slowly than the average spore, and are termed superdormant (20).
This leads to qualitatively different predictions for the mean number
of spores over time in a population of in vitro cells, compared to
previous theoretical predictions made in (15), as shown in Figure 4.
Although our posterior estimated values of the germination rate of
spores of type A are similar to the germination rates predicted in
(15), our model predicts that a subset of spores will germinate much
more slowly than this. We note that the “toy” discrete distribution
with two rates, gA and gB, considered here, is a first step and more
complex descriptions of the germination rate heterogeneity will be
considered in future work. Experimental quantification of
germination times would allow us to explore and potentially
Frontiers in Immunology | www.frontiersin.org 17
validate these more complex models. A limitation of our model is
that the same rate is considered for each step of the germination-
maturation process, compared to the model by Pantha et al., where
a separate rate,m, was considered for the maturation step. However,
Pantha et al. did not calibrate this rate m, and instead performed a
sensitivity analysis. Since we are limited in the available
experimental data, it would be difficult to calibrate different rates
for each germination-maturation step. However, if further data were
to become available which allowed one to distinguish between
newly germinated and vegetative bacteria, then a separate rate
could be incorporated for the maturation step of the germination
process. This would also allow for more complicated distributions to
account for heterogeneity in the germination and maturation rates.

Another important feature of our model is the consideration of
rupture of infected phagocytes. This means that different
behaviours can be described by our model compared to the
model by Pantha et al., since in our model there is a chance that
some intracellular bacteria will survive the microbicidal
environment of the phagocyte and cause the cell to rupture. In
the experiment by Kang et al., if bacteria were released into the
extracellular medium then they would have been washed away
before intracellular numbers of spores and bacteria were
measured, and hence the decrease of intracellular bacteria seen
in the data may not have been purely due to macrophage-induced
killing of bacteria but may have been due to the release of
intracellular bacteria from dying cells. Further data including
information about macrophage rupture versus survival would be
needed in order to disentangle these processes. Our stochastic
model (see Figure 1) has allowed us to compute the probability
that an infected cell will eliminate the infection and recover, and
the probability that an infected cell will rupture and release its
bacterial content. We have also computed the mean time for an
FIGURE 6 | Top row, from left to right, the first two plots show the probability density functions for the rupture time of a macrophage infected with a spore of type A
and type B, respectively, given by fTR

1S
(t; gA) and fTR

1S
(t; gB). The third plot shows these densities on the same plot, when they are scaled by the relative frequencies

of each germination rate: efTR
1S
(t; gA) and (1 − e)fTR

1S
(t; gB). The fourth plot shows as a solid line the probability density function for the rupture time of a macrophage

infected with a single spore, conditioned on rupture occurring, which is given by fTR
1S
(t)/rR1S . Also shown on the fourth plot is a histogram of the finite rupture times

from 106 stochastic simulations of the model in Figure 1. Plots on the bottom row correspond to the analogous densities for the time to recovery of an infected
macrophage. The estimated parameter values in Table 5 were used to compute these functions.
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infected cell to reach one of these two fates, conditioned on the
event occurring. The probability distribution for the number of
bacteria released by an infected macrophage has also been
calculated. By calibrating the parameters using in vitro
experimental data, the rupture size distribution shown in
Figure 7 is able to capture the fact that the majority of spores
taken up by macrophages are likely to be eliminated by the host
cell, releasing no bacteria, but a few germinated spores may survive
phagocytosis, leading to death of the host cell and release of a small
number of bacteria. This is in agreement with recent experimental
work (13). Although we have parametrised our model with data
from a study that used macrophages, there is also evidence to
suggest that dendritic cells play a role in the early infection stages
of anthrax (10). Therefore, it will be important to also consider this
cell type in future. If in vitro infection data for dendritic cells
becomes available, it would be relevant to re-parametrise the
model with such data to investigate the differences between the
roles of the two host cell types in anthrax disease. For example (32)
indicates that dendritic cells may not be as capable as macrophages
in their abilities to reduce bacterial numbers.

The intracellular model presented here could be used in
mechanistic within-host models of anthrax infection to describe
the dynamics ofB. anthraciswithin the lung and lymphnodes of an
individual, following inhalation of some initial dose of spores, such
as the one by Day et al. in (17). The stochastic nature of the
intracellular model presented here could allow such within-host
models to consider inter-phagocyte variability in rupture size by
incorporating the rupture size distribution into the within-host
infection dynamics. Heterogeneity of the rupture size has been
shown to be important in a similar model for the pathogen
F. tularensis (25). Furthermore, a within-host model could be
linked to dose-response data and used to investigate the individual
infection risk given an initial inhalational dose.A standard approach
in dose-response assessment is the use of single-hit models. These
models assume that when an individual is infected with a pathogen,
the organisms act independently in the host so that the probability
that any one organism in the initial dose produces an eventual
Frontiers in Immunology | www.frontiersin.org 18
infection is independent of the size of the dose, and the probability of
infection is equivalent to the probability that at least one of the
organisms in the initial dosewill lead to an infection. For example, in
the simple exponential model, for an average initial dose D, the
probability of infection is given by, I(D; r) = 1 – e-rD, where r is the
probability that a single organism will produce a response. This
exponential model can be fitted to data in order to estimate r.
Figure 8 shows the exponential dose-response curve compared to
the Altboum et al. guinea-pig Vollum strain dose-response data set
(33). For this data set the value of r that gives the bestfit is around r=
3.31 × 10-5. However, the specific value of r obtained varies greatly,
depending on the data set used to calibrate the dose-response curve.
In particular, different anthrax dose-response data sets lead to a
range for the ID50 (the dose of spores such that the probability of
infection is equal to 0.5) of about 103 to 105. These differences could
be due to changes in susceptibility for each animal species used or in
virulence for each anthrax strain used (34).

Dose-response models for anthrax already exist, such as the
competing risks model developed by Brookmeyer et al. (35). This is
an example of a single-hit model in which r is taken to be, r = l

l+q ,
where l is the germination rate of spores and q the rate at which
spores are cleared from the lungs. The hypothesis of the competing
risks model for anthrax is that if a single spore survives ingestion by
a macrophage and successfully germinates without getting cleared,
then the resulting bacterium will be certain to cause an infection.
However, there is evidence that neutrophils can kill vegetative
anthrax bacteria (36), which means that once a spore in an
infected cell has germinated and a bacterium is released, there is
no guarantee that the bacterium will survive and cause infection.
Another simplification used in the competing risks model is that
germination and clearance of spores are both assumed to be
exponential processes. However, this might not be the case. For
instance, in our intracellular model, as well as the one by Pantha et
al., the consideration of the newly germinated bacteriummeans that
the total germination-maturation time is non-exponential.

The competing risks model involves parameters for the two
competing processes of spore germination and spore clearance
FIGURE 7 | Left: The best predicted rupture size distribution for the model with two types of spores, computed using Eq. (49), with the estimated parameter values
from Table 5. Inset is the conditional rupture size distribution, for the number of bacteria released by a macrophage infected with a single spore, given that it
ruptures rather than recovers. Right: Scatter plot of the probability of rupture against the expected rupture size (conditioned on rupture occurring), for each
parameter set in the posterior distribution. Lines indicate the values that correspond to the parameter set from Table 5. The colour of the points indicates the
conditional mean time to rupture for each parameter set considered.
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but does not explicitly consider macrophage rupture or
intracellular bacterial dynamics. Hence, a fully mechanistic
model, such as the intracellular model proposed here, could
allow one to construct more detailed dose-response approaches
which go beyond the simple competing risks assumptions, and
explore the stochasticity of the rupture events, and the possibility
that even if a few bacteria are generated, infection might not
occur if these few bacteria are killed. Figure 9 shows a “toy”
representation of the possible fates of each spore in the early
stages of inhalational anthrax infection in the lungs and lymph
nodes. After inhalation, these spores must be transported
through the respiratory system in order to reach the alveoli of
the lungs, where they have the chance to cause an infection.
Hence the initial dose of spores that is delivered to this area of the
lungs may be much smaller than the original inhaled dose (37).
Since the delivered dose may be very small compared to the
exposed dose, the stochastic nature of the intracellular dynamics
illustrated in Figure 5 can become important. For the model by
Brookmeyer et al. (35), the transport dynamics of spores through
the respiratory system would be included in the clearance rate, q.
Alternatively, to explicitly account for the fact that some of the
inhaled spores will not be delivered to the alveolated region of the
lung, and to differentiate this from the clearance of spores by
macrophages, one can assume that each inhaled spore has some
probability, f, of being deposited in the alveoli (18).

We assume that a spore deposited in the alveoli will be ingested
by a host phagocyte, which will then migrate to the lymph nodes
and either recover or rupture, releasing n ∈ N bacteria with
Frontiers in Immunology | www.frontiersin.org 19
probability Rn
1S calculated from the intracellular model. When

bacteria are released, each extracellular bacterium can be killed by
host immune cells with probability p < 1, or proliferate
extracellularly with probability 1 - p. Each inhaled spore has two
possible fates: the response state and the clearance state. We
assume that a spore will reach the response state if it manages
to lead to a population of M ∈ N bacteria in the lymph node. On
the other hand, the infection from an inhaled spore can be cleared
in one of three ways: if the spore is not deposited in the alveolated
region of the lungs, if the spore is phagocytosed but the infected
cell recovers rather than ruptures, or if the infected cell ruptures
but the population of bacteria released from the cell becomes
extinct before reaching the thresholdM. From these assumptions,
r is the probability that the fate of a single inhaled spore is the
response state rather than the clearance state, and we can construct
a formula for r that takes into account all of the mechanisms in the
intracellular model, and the possibility that the few bacteria
released from a rupturing cell may be killed by the host immune
defences before they are able to proliferate to a sufficient number
to cause a response. In this case, the probability that infection is
established by a single inhaled organism can be given by

r =

f
�
o
M−1

n=1
Rn
1S

1 − p
1−p

� �n
1 − p

1−p

� �M + o
+∞

n=M
Rn
1S

�
, if p  ≠  0:5,

f o
M−1

n=1
Rn
1S

n
M

+ o
+∞

n=M
Rn
1S

� �
, if p  ¼  0:5:

8>>>>>><
>>>>>>:
FIGURE 8 | Exponential dose-response curve fit to the Altboum et al. guinea-pig Vollum strain dose-response data set (33). Here the probability that one inhaled
spore will cause a response is set to r = 3.31 × 10-5.
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The competing risks hypothesis is equivalent to takingM = 1.
A value of M greater than one allows some bacteria to die
extracellularly in the early stages of infection. We note that the
parameter calibration in our intracellular model incorporates
parameter uncertainty, encoded in the posterior distributions
(see Figure 3). Thus, different parameter sets will lead to different
predicted rupture size distributions. Furthermore, the deposition
probability, f, depends on a number of different factors, such as
breathing rate, which will vary between individuals and depends
on the level of physical exertion at the time of exposure to the
spores. In a dose response model for Q fever (a bacterial infection
caused by Coxiella burnetii), Heppell et al. in (38) approximate a
distribution for the probability of deposition, f, using the
Multiple-Path Particle Dosimetry Model (MPPD) software
package. Here, we have considered a wide range of values for
the deposition probability, between f = 10-4 and f = 0.5. In
Figure 10 we show a wide range of parameter sets involving the
value p, the deposition probability f, the threshold valueM, and the
average rupture size derived from the intracellular model, which all
lead to the same value of r = 3.31 × 10-5. This is the value of r
obtained by fitting the exponential dose-response curve to the data
in Figure 8. In this exploration, we are not concerned with exact
parameter values, since these will strongly depend on the dose-
Frontiers in Immunology | www.frontiersin.org 20
response data set used to calibrate them. Our aim is to illustrate
that, depending on the rupture size distribution used, we can fit the
dose-response data with a large number of combinations of the
parameters M, f and p. In general, as the threshold value M
increases, and the average rupture size and deposition probability f
decrease, the required value of p decreases, since more replication
will be required to reach the desired threshold M.

Our results show the potential to make use of mechanistic
intracellular models and dose-response data sets to nest with
within-host infection dynamics. If additional experimental data
sets were available, a stochastic within-host model could be
developed, similar to recent models for F. tularensis infection
proposed in Refs (16, 25). This approach would not only allow
one to compute the probability of a host response to infection, but
also the timescale of symptom onset. In order to characterise the
timescale of the response, Brookmeyer et al. consider an
exponentially distributed delay between the first spore
germination and symptom onset, to account for bacterial growth.
However, a limitation of this approach is that in considering this
delay to have the same distribution for every dose, their model does
not incorporate the fact that a higher number of germinating spores
would be expected to replicate and produce toxins faster, causing
the time to response to be shorter. Wilkening modified the model
FIGURE 9 | Toy model for the possible fates of a single spore in the early stages of inhalational anthrax infection. Within the lung, an inhaled spore (yellow ball)
becomes deposited with probability f and is ingested by a host phagocyte. The intracellular spore germinates and the phagocyte might kill the germinated bacterium
or the bacterium may survive the antimicrobial environment, replicate and cause the phagocyte to rupture, as described in the intracellular model. The infected
phagocyte migrates to the lymph nodes and either recovers or ruptures and releases some bacteria, according to the probabilities calculated with the intracellular
model, Rn

1S . The population of bacteria released follows a birth and death process, where an extracellular bacterium may be killed by host immune cells with

probability p or a bacterium will replicate extracellularly with probability 1 - p, until either there are no extracellular bacteria remaining, or the population of extracellular
bacteria reaches a threshold M.
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developed by Brookmeyer et al. to address this issue by including a
dose-dependent log-normal distribution to represent the bacterial
growth phase (39). Since the data in Figure 8 only provides the
probability of infection from exposure to different doses of spores,
we have considered a discrete-time process for the replication and
death of extracellular bacteria, where the value of p represents how
likely bacteria are to die in the early stages of infection (36).
However, until more data sets are available, it is not possible to
estimate specific within-host parameter values, since different
combinations of parameter values can provide the same value of r
and hence the same dose-response curve. Further experimental
work, such as in vivo data of the number of spores and bacteria in
the lungs and lymph nodes over time, would be needed to calibrate
the parameters in a within-host model (or mechanistic dose-
response model) of inhalational anthrax infection. Data on
anthrax toxin production and stability would also be required in a
within-host model of anthrax infection, since the toxins are a key
component of pathogenesis. Future work will focus on including the
role of toxins in a mathematical model of inhalational
anthrax infection.

A restrictive assumption of the intracellular model introduced
here is that it only considers a macrophage infection by a single
phagocytosed spore. However at higher exposures, it is possible
that some macrophages may phagocytose more than one spore.
Thus, it would be necessary to include this consideration in the
intracellular model. Furthermore, we proposed a linear death
rate of intracellular bacteria to keep the model analytically
tractable. There is evidence that macrophages with a low
intracellular bacterial burden are much more efficient at killing
bacteria than those with a higher burden (2, 23, 30). We could
generalise our model to include a non-linear, density-dependent
death rate of intracellular bacteria, similar to the burden-
dependent killing function used in (15). Our model predicts
that the intracellular burden of a cell initially infected with a
single spore will remain very low, so the inclusion of a density-
dependent death rate may be more appropriate when
considering higher multiplicities of infection, when each
macrophage will phagocytose more than one spore.
Frontiers in Immunology | www.frontiersin.org 21
To calibrate the parameters of our model, we made use of
experimental measurements from a study by Kang et al. (23), of
mouse peritoneal macrophage infection with the attenuated non-
capsule-producing Sterne strain of B. anthracis. This enabled us
to mathematically describe a system which can be characterised
easily in the laboratory. In fact, one of the more commonly used
animal models of anthrax is the AJ mouse model infected with
Sterne strain (40). Ideally, for modelling human inhalational
anthrax, spores from a fully virulent strain and cells more similar
to a human alveolar macrophage would be used. However, this
type of data for anthrax is extremely limited. The more clinically
relevant alveolar macrophage is complex to isolate and culture,
so in the same way that mice are used as a surrogate for primates,
peritoneal macrophages are used as a surrogate for the lung’s
resident phagocytes. Moreover, the Sterne strain is often used in
laboratory settings since it poses a reduced infection risk to
laboratory workers, and research with virulent strains of
B. anthracis, such as the Ames strain, requires enhanced biosafety
laboratories (40). However, it can be generally agreed that its
value has limitations when modelling disease (40). The capsule is
known to protect extracellular bacteria from phagocytosis (14,
41), and thus should be considered when modelling the
extracellular dynamics of anthrax infection, which has not
been explicitly modelled here. It is possible that the capsule
also plays a role in protecting emerging intracellular bacteria
from the antimicrobial environment of the host cell, since
germinating spores are able to quickly produce and coat
themselves in the capsule (42, 43). However, it has been shown
that macrophages are still able to kill intracellular bacteria even
when they are from a strain that is coated in an antiphagocytic
capsule, like the Ames strain (44), and the capsule does not seem
to be fully protective against the bactericidal activity of
macrophages (45). Therefore, re-parametrising the intracellular
model using data from a fully virulent strain would be extremely
useful in determining whether the capsule has a significant effect
on the intracellular dynamics and fate of a phagocytosed spore.

In conclusion, we have developed and analysed a novel
stochastic mathematical model of the intracellular bacterial
FIGURE 10 | Combination of parameter values for p and f that give r = 3.31 × 10-5, for three different values of the threshold number of bacteria, M = 10, 15, 50.
The combinations are shown for different rupture size distributions, sampled from the posterior distribution of the intracellular model. The average of each rupture size
distribution is indicated by the colour of the points.
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dynamics of a macrophage infected with a single anthrax spore.
By calibrating the model with experimental data, we have found
support for a discrete Bernoulli distribution of the spore
germination rate, which provides independent evidence for the
role of superdormant spores (20, 21). This is both of clinical and
biological interest. From a clinical perspective, it indicates the
importance to maintain antibiotic dosing for long periods, given
the potential for the slow germinating spores to contribute to the
characteristic persistence of spores in the lungs after inhalational
exposure (46). From a biological perspective, it demonstrates
that there might be selective pressure for spores to distribute
their germination rates in a heterogeneous manner. This might
protect spore populations by ensuring that a reservoir of spores is
maintained in case of accidental germination in environments
not suitable for growth (47). The results of our calibrated model
also predict, in agreement with experimental findings, that many
macrophages may be able to recover and resolve the bacterial
infection, provided their initial intracellular burden is low. Yet,
our results predict a non-zero but low risk of cellular rupture,
leading to the release of bacteria from the cell. We believe the
intracellular stochastic model proposed here will pave the way to
an extension to in vivo infection settings and thus, to improve
within-host dynamics models.
SUPPLEMENTAL DATA

The Supplementary Material contains a detailed explanation of
how the data in Table 1 can be used to find an estimate for the
phagocytosis rate of spores. It also contains additional details of
the preliminary parameter fitting to the Akoachere et al. data in
(26), which allowed us to estimate a prior distribution for the
bacteria replication and infected macrophage rupture rates.
Finally, the derivation for the likelihood that we have used in
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the formula for Akaike’s Information Criterion (AIC) has been
provided, since it was used to compare the goodness-of-fit
between the different germination rate hypotheses considered.
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