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Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,
3 Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), A Leibniz Institute, Berlin,
Germany, 4 Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany

Mast cells (MCs), strategically localized at mucosal surfaces, provide first-line defense
against pathogens and shape innate and adaptive immune responses. Recent studies
have shown that MCs are involved in pathogenic responses to several viruses including
herpes simplex viruses, dengue virus, vaccinia virus and influenza virus. However, the
underlying mechanisms of MCs in the activation of CD8+ T cells during viral infections are
not fully understood. Therefore, we investigate the role of MCs in the development of virus-
specific CD8+ T cell responses using the well-characterized murine lymphocytic
choriomeningitis virus (LCMV) model and the transgenic MasTRECK mice that contain
the human diphtheria toxin receptor as an inducible MC-deficient model. Here, we report
that MCs are essential for the activation and expansion of virus-specific CD8+ T cells. After
MC depletion and subsequent intradermal LCMV infection, the CD8+ T cell effector
phenotype and antiviral cytokine production were impaired at the peak of infection (day 8
p.i.). Importantly, MC-deficient mice were unable to control the infection and exhibited
significantly higher viral loads in the spleen and in the ear draining lymph nodes compared
to that of wild type control mice. In the absence of MCs, dendritic cell (DC) activation was
impaired upon LCMV infection. In addition, type-I interferon (IFN) levels in the serum and in
the spleen of MC-deficient mice were reduced during the first days of infection.
Interestingly, depletion of MCs after intradermal LCMV infection did not impair virus-
specific CD8+ T cell expansion, activation or antiviral cytokine production. In summary, our
results indicate that MCs play a pivotal role in the activation and antiviral functions of CD8+

T cells through proper DC activation. A better understanding of the impact of MCs on
CD8+ T cell responses is mandatory to improve antiviral immune responses.
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INTRODUCTION

Mast cells (MCs) are long-lived immune cells distributed
throughout nearly all tissues and particularly close to the skin
and mucosa (1). MCs can quickly respond to invading pathogens
and initiate immune responses due to their location and the
expression of a wide spectrum of pattern recognition receptors
(2–4). In addition, MCs sense stress and tissue damage via
receptors of danger-associated molecular patterns (5–7).
Furthermore, MCs can release a plethora of immune mediators
including cytokines, chemokines, proteases, and antimicrobial
peptides, which allow them to activate both immune and non-
immune cells (8, 9). Thus, MCs can be considered a bridge
between innate and adaptive immune responses (10). Several
studies have shown that MCs play a protective role during
bacterial, fungal and parasitic infections (11–16). In addition,
increasing evidence using experimental infection models in
mouse and human cell lines have revealed novel insights into
the role of MCs in viral infections.

MCs can directly sense viruses (2) and can also be activated by
inflammatory mediators produced during viral infections (17).
Depending on the mechanism of viral recognition, MCs release
immune mediators through degranulation or de novo cytokine
and chemokine production (18). MCs have shown to modulate
the course of cytomegalovirus, vaccinia virus, influenza virus,
epstein barr virus and dengue virus infections (19–22).
Moreover, MCs mediate the recruitment of short-lived effector
CD8+ T cells into the lung in a CCL-5 dependent manner after
cytomegalovirus infection (19). Antimicrobial peptides produced
by MCs such as cathelicidin exert antiviral properties against
vaccinia virus infection as shown by increased viral loads in
infected MC-deficient mice compared to infected wild type
animals (23). MCs not only mediate recruitment of cytotoxic
cells such as NK cells, NKT cells, CD8+ T and gd T cells (24, 25)
but also contribute to viral clearance after dengue virus infection
(26). Similarly, MC-deficient mice exhibited increased clinical
severity and mortality with elevated virus titers compared to wild
type mice after a HSV-2 infection (27).

Recent studies show that DC-MC interactions have a strong
impact in the modulation of DC migration, activation and
function (28–30). In addition, molecular transfers of major
histocompatibility complex class II (MHCII) proteins between
MCs and DCs enhanced T cell priming efficiency (31). MCs not
only induce DC migration but also enhance DC maturation
in vitro, antigen uptake, and cross-presentation (28, 32). In
addition to direct MC-DC communication, a recent study
show that MC granules and exosomes are able to promote DC
maturation (33). MCs have been shown to induce the activation
and migration of antigen-presenting cells from the skin. MC-
deficient KitW-sh/W-sh or TNF(-/-) mice showed significantly
reduced migration of airway DCs to local LNs 24 h after
intranasal challenge with FITC-OVA in a model of contact
hypersensitivity to FITC (34). In addition, activated mast cells
were shown to alter the pulmonary micromilieu and induce
antigen uptake, activation and migration of DCs (35).

Despite the increasing evidence for the critical role of MCs in
immune responses and their protective role in viral infections,
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the underlying mechanisms are still not completely understood.
Here, we report that MCs are crucial for the activation,
expansion and function of virus-specific CD8+ T cells.
Accordingly, MC-deficient mice were not able to control the
infection and exhibited high viral loads in the spleen and in the
ear draining lymph nodes (ear-dLNs). In the absence of MCs,
DC activation was impaired and type-I IFN levels were reduced.
Furthermore, MC-deficient mice exhibited diminished
chemokine concentrations that led to decreased recruitment of
DCs to secondary lymphoid organs. Thus, our findings indicate
that MCs are essential for the development of antigen-specific
CD8+ T cells responses during viral infections.
MATERIALS AND METHODS

Mice
C57BL/6 (WT) and MasTRECK mice on C57BL/6 background
(36) were bred in the animal facility at Charité, Berlin under
specific pathogen-free conditions. C57BL/6 (WT) were used for
peritoneal mast cell and DC isolation. For mast cell depletion,
C57BL/6 (WT) and MasTRECK mice received 250 ng of
diphtheria toxin intraperitoneally during five consecutive days.
All animal experiments were performed at the Charité, Berlin in
accordance with the German law for animal protection and
approved by the Landesamt für Gesundheit und Soziales of
Berlin (LaGeSO approval number G0078/17).

Virus, Measurement of Viral Titers and
Inoculation of Mice
LCMV-WE strain was propagated on L-929 cells. LCMV stocks
and viral titers in the spleen and the ear-dLNs were titrated by
standard immunofocus assays on MC57G cells as described
previously (37). In brief, MC57G cells were plated with organ
homogenates or virus stock dilutions and subsequently overlaid
with 2% methylcellulose. After 48 h of incubation at 37°C, the
confluent monolayer of cells was fixed with 4 % formaldehyde,
permeabilized with 1 % Triton X-100 (v/v) and stained with
antibodies against LCMV nucleoprotein (VL-4). After a
secondary staining step with peroxidase-conjugated anti-rat IgG
antibody (Jackson), foci were developed by 20 min incubation
with OPD substrate (0.1 mol/L Na2HPO4, 0.5 mol/L citric acid,
0.03 % H2O2, and 20 mg o-phenylenediamine dihydrochloride).
Mice were intradermally infected on the ventral side of the ear
pinna with 9*104 PFU of LCMV-WE in 10 µL PBS.

Preparation of Ear Cell Suspensions
Ears were splitted in two layers, cut into small pieces and
subsequently placed into fleshly prepared digestion medium
(915 µL RPMI, 40 µL FCS (4 %), 0.5 µL DNase (40 µg/mL)
(Roche), 35 µL Liberase™ (10 mg/mL) (Roche) and 10 µL
hyaluronidase (50 mg/mL). After incubation (60 min, 37°C,
1400 rpm) undigested tissue was removed using a 30 µm cell
strainer and the cells were washed (10 min, 4°C, 300 g) in PBS/
BSA (0.5 % w/v). Afterwards the single cell suspension was used
for flow cytometry staining.
June 2021 | Volume 12 | Article 688347
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Flow Cytometry Analysis
Surface receptor staining and intracellular cytokine staining
procedures have been described previously (38). The LCMV-
specific CD8+ T cell response to the dominant glycoprotein-
derived epitope GP33 and the nucleoprotein-derived epitope
NP396 were assessed by MHC class I tetramer staining as
described previously (39).

Surface receptor staining was performed in single cell
suspensions of ears, ear-dLNs and the spleen after
homogenization using mechanical disruption through a 70 mm
cell strainer. FACS analysis included surface marker stainings for
anti-CD4 (GK1.5), anti-CD45 (30-F11), anti-KLRG1, anti-
CD127 (IL-7R), anti-CD62L, anti-CXCR3 (CXCR3-173), anti-
CCR2 (SA203G11), anti-MHCII (M5/114.15.2), anti-CD11c
(N418), anti-CD11b (M1/70), anti-CD8 (53-6.7), anti-CD80
(16-10A1), anti-CD86 (GL1), anti-Ly6C (HK1.4), anti-Ly6G
(1A8) anti-B220 (RA3-6B2), anti-F4/80 (BM8) and anti-Siglec
H (551) (BioLegend). Zombie-Aqua (BioLegend) was used as a
live/dead discrimination marker. Rat IgG1 (R3-34) and rat IgG2a
(R35-95) isotype control antibodies (BD Biosciences) were used
at the same concentrations as the respective cytokine antibodies.

For the analysis of intracellular cytokines, cells were
restimulated with GP33 (10-6 mol/L) and NP396 (10-6 mol/L)
(Neosystem) for infected animals or with PMA (5 ng/ml) and
ionomycin (500 ng/ml; Sigma) for uninfected mice. 5 mg/mL
brefeldin A (Sigma-Aldrich) was added after 30 minutes. After
3 h, surface marker stainings were performed and cells were
subsequently fixed with 2 % formaldehyde (Merck). Later on,
cells were stained with the following rat anti-mouse cytokine
antibodies or isotype control antibodies in permeabilization
buffer containing 0.05% saponin (Sigma-Aldrich): anti-IFN-g
(XMG1.2), anti-TNF-a (MP6-XT22) and anti-IL-10 (JES5-
16E3) in permeabilization buffer containing 0.05 % saponin
(Sigma-Aldrich). Rat IgG1 (R3-34) and rat IgG2a (R35-95)
isotype control antibodies (BD Biosciences) were used at the
same concentrations as the respective cytokine antibodies. Flow
cytometry analysis was performed in BD FACS Canto II. The
gating strategy for flow cytometry analysis of immune subsets in
the spleen, ear-dLNs and ears is shown in Figure S1. After gating
on live cells and subsequently on CD45+ cell, neutrophils (Ly6G+

CD11b+), macrophages (F4/80+ CD11b+) DC, (MCHII+

CD11c+) and inflammatory monocyte (LyC6+ CD11b+) were
gated. For CD8+ T cells subsets, cells were gated on CD8+ T cells
and subsequently, on KLRG-1+ IL-7R- or CD44+ CD62L- or
CXCL3+ for activated CD8+ T cells, GP33-Tetramer+ and
NP396-Tetramer+ for LCMV-specific CD8+ T cells and IFN-g+

and IL-10+ for cytokine production (Figure S2). For lymphocytic
DCs, analysis gates were set on CD8+CD11b- cells (Figure S3A)
and for pDC, after excluding CD3+ CD19+ and CD11b+ cells
were gated on B220+ and lastly on Siglec-H+ (Figure S3B).

LCMV Infection Model In Vitro
For peritoneal MC isolation, the abdominal skin of mice was
washed with 70 % ethanol. The peritoneum was exposed by a 1‐
cm midline abdominal incision, and 4.0 mL of sterile, pyrogen‐
free, 0.9 % NaCl and 4.0 mL of air were injected into the
peritoneal cavity via a 22‐gauge needle. The abdomen was
Frontiers in Immunology | www.frontiersin.org 3
massaged gently for ∼3 min and the peritoneal fluid was
recovered via a 22‐gauge needle. Peritoneal MCs show a purity
≥ 95% (depicted by FcϵRI+ c-Kit+) after isolation in the flow
cytometry analysis (Figure S4A). Subsequently, peritoneal MCs
were then wash with PBS, infected with LCMV-WE at MOI 5
and cultured in RPMI 1640 plus GlutaMax-I supplemented with
10 % (vol/vol) FCS (Gibco; Life Technologies), penicillin (100 U/
mL; Gibco; Life Technologies), streptomycin (100 mg/mL; Gibco;
Life Technologies), and b-mercaptoethanol (50 ng/mL; Sigma-
Aldrich) for 24h. Cells were harvested and stained for flow
cytometry analysis. Supernatants were collected for cytokine
and chemokine detection.

Cytokine and Chemokine Analysis
in Supernatants
The concentrations of cytokines and chemokines were
determined in supernatants of 2x10e5 splenocytes and cells
from ear draining lymph nodes cultured in a 96 U-bottom well
plate in 200 µL RPMI complete medium for 24 h and using a
magnetic bead based multiplex ELISA (LEGENDplex™-
BioLegend) and the chemokine 26-Plex Mouse ProcartaPlex™

Panel 1 (Invitrogen) according manufacturer’s instructions.

Immunohistochemistry
Paraffin sections (5 µm) were deparaffinized as follows:
2 x 10 min in xylol, 2 x 3 min in absolute ethanol, 2 x 3 min
in 96 % ethanol, 1 x 3 min in 70 % ethanol, 3 x 5 min in deionized
water and 3 x 5 s in TBS buffer (Tris-Base (7,4 mmol/L), Tris-
HCl (43,5 mmol/L), NaCl (150 mmol/L), pH = 7.5). For MC
staining, the sections were incubated with Avidin-FITC
(BioLegend) for 15 min in the dark. After washing (3 x 3 min
with TBS) the sections were embedded with Fluoromount-G™

containing DAPI (Thermo Fisher Scientific) and dried for 24 h.

Statistical Analysis
GraphPad Prism (v8.0) software was used for data analysis.
Statistical significance was determined by Student’s t-test
(unpaired two-tailed) for all figures when not indicated
different. More than two groups were compared via one-way
ANOVA with Bonferroni’s post test for multiple comparisons.
P = 0.01 to 0.05 was considered statistically significant (*), p =
0.001 to 0.01 as very significant (**), and p < 0.001 (***) as
extremely significant, ns, not significant.
RESULTS

Mast Cells Are Crucial for Immune Cell
Recruitment to the Site of LCMV Infection
In order to investigate the role of MCs in the development of
virus-specific CD8+ T cell responses, we used transgenic
MasTRECK mice that contain the human diphtheria toxin
(DT) receptor under the control of an intronic enhancer that is
essential for Il4 gene transcription in MCs but not in other cell
types (36). After five days of DT i.p. application into both
wildtype (WT) and MasTRECK mice, MCs were depleted in
June 2021 | Volume 12 | Article 688347
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the skin of MasTRECK mice but not in that of WT mice
(Figure 1A). The frequencies of different immune cell subsets
in the spleen, ear draining lymph nodes (ear-dLNs) and ears
were comparable between uninfected WT and MasTRECK mice
after MC depletion (Figures S1 and S5A–E). Basophils are
concomitantly depleted with MC after DT administration and
are therefore absent in MasTRECK mice during the course of
LCMV infection including the last time point of analysis (day 8
p.i.) (36). One day after the last DT treatment, WT and
MasTRECK mice were intradermally infected with LCMV on
the ventral side of the ear pinna (Figure 1B). WT mice displayed
Frontiers in Immunology | www.frontiersin.org 4
a significant increase in ear thickness from day 6 to day 8 post
infection compared to infected MasTRECK mice (Figure 1C).
Furthermore, frequencies of haematopoietic CD45+ cells in the
ear of WT mice were markedly increased compared to that of
infected MasTRECK mice at the peak of infection (day 8 p.i.)
(Figure 1D). In addition, infected MasTRECK mice displayed
significantly reduced frequencies and absolute numbers of
neutrophils, macrophages, DCs, and inflammatory monocytes
compared to that of infected WT mice, suggesting that MCs are
crucial for the recruitment of immune cells to the site of LCMV
infection (Figures 1E–H).
A B

C D E

F G H

FIGURE 1 | Mast cells are crucial for immune cell recruitment to the site of LCMV infection. (A) Immunohistochemistry analysis of paraffin ear sections using Avidin-
FITC and DAPI to assess MCs and cell nuclei, respectively after DT treatment. (B) Schematic experimental layout to analyze immune responses in intraperitoneally
treated WT and MasTRECK mice for 5 consecutive days with 250 ng DT followed one day after by an intradermal LCMV infection into the ventral side of the ear
pinna. (C) Ear thickness daily measured using a caliper during 8 days after LCMV infection. (D) Frequencies of CD45+ cells in the ear of WT and MasTRECK mice on
day 1, 3 and 8 post LCMV infection analyzed by flow cytometry. Frequencies and absolute numbers of (E) neutrophils (Ly6G+CD11b+), (F) macrophages (F4/
80+CD11b+), (G) DCs (MHCII+CD11c+) and (H) inflammatory monocytes (Ly6C+CD11b+) in the ear of WT and MasTRECK mice assessed by flow cytometry on day
8 post LCMV. All experiments were performed at least twice, and each experimental group included n ≥ 4. Data are representative and expressed as mean ± SEM.
Statistically significant differences are analyzed by t- test and indicated as follows: **p < 0.01, ***p < 0.001.
June 2021 | Volume 12 | Article 688347
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Mast Cells Are Key Players in the
Expansion and Recruitment of Virus-
Specific CD8+ T Cells
We then examined LCMV-specific CD8+ T cell responses in WT
and MasTRECK mice treated with DT for 5 days followed by
intradermal infection with LCMV on the ventral side of the ear
pinna (Figure 1B). Frequencies of total CD8+ T cells (Figure 2A)
and CD8+ T cells specific for the dominant LCMV glycoprotein
epitope GP33 and nucleoprotein epitope NP396 were markedly
reduced in the ear-dLNs of MasTRECKmice compared to that of
WT animals at day 5 post infection (Figures 2B, C). At this early
time point, virtually no virus-specific CD8+ T cells were observed
Frontiers in Immunology | www.frontiersin.org 5
in the spleen of both groups of infected animals (Figure S6). At
the peak of infection, on day 8, frequencies and absolute cell
numbers of CD8+ T cells (Figure 2D) as well as of GP33- and
NP396-tetramer+ CD8+ T cells were markedly reduced in the
spleen of MasTRECK mice compared to that of WT animals
(Figures 2E, F). Accordingly, GP33- and NP396-tetramer+ CD8+

T cell frequencies and absolute numbers were also diminished in
the infected ear of MasTRECK mice compared to that of WT
animals at day 8 post infection (Figures 2G–I). Taken together,
these data indicate that the expansion of virus-specific CD8+ T
cells in the secondary lymph organs and their recruitment to the
site of the infection are impaired in the absence of MCs.
A B C

D E F

G H I

FIGURE 2 | Mast cells are key players in the expansion and recruitment of virus-specific CD8+ T cells. (A) Frequencies of CD8+ T cells, (B) GP33-Tetramer+ and
NP396-Tetramer+ CD8+ T cells in the ear-dLN as well as (C) representative FACS plots from WT and MasTRECK mice at day 5 post intradermal LCMV infection.
Frequencies and absolute numbers of (D) CD8+ T cells, (E) GP33-Tet+ and (F) NP396-Tet+ CD8+ T cells in the spleen of WT and MasTRECK mice at day 8 post LCMV
infection. Frequencies and absolute numbers of (G) GP33-Tet+ and (H) NP396-Tet+ cells in the ear of WT and MasTRECK mice as well as (I) representative FACS plots
at day 8 post LCMV infection analyzed by flow cytometry. All experiments were performed at least twice, and each experimental group included n ≥ 4. Data are
representative and expressed as mean ± SEM. Statistically significant differences are analyzed by t- test and indicated as follows: *p < 0.05, **p < 0.01, ***p < 0.001.
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Mast Cell Deficient Mice Show Impaired
CD8+ T Cell Effector Phenotype and
Antiviral Cytokine Production
After Infection
We then characterized the phenotype and function of CD8+ T
cells of WT and MasTRECK mice in the ear-dLN at day 5 post
infection and in the spleen at the peak of LCMV infection
(Figure S2). Uninfected WT and MasTRECK mice displayed
similar frequencies of naïve (CD44- CD62L+) as well as activated
CD8+ T cells (CD44+ CD62L-) (Figure S7A) as well as
comparable frequencies of IFN-g–producing CD8+ T cells in
the spleen (Figure S7B). However, infected MasTRECK mice
Frontiers in Immunology | www.frontiersin.org 6
displayed markedly reduced frequencies and absolute numbers
of short-lived effector CD8+ T cells, depicted by KLRG-1+ IL-7R-

expression, compared to that of infected WT animals in the ear-
dLNs (Figure S8A) and in the spleen (Figure 3A and Figure
S9A). Furthermore, we observed that not only total CD8+ T cells
showed an impaired effector phenotype, but also the few GP33-
tetramer+ CD8+ T cells found in the spleen of infected
MasTRECK mice displayed markedly reduced KLRG-1
expression compared to that of GP33-tetramer+ CD8+ T cells
of WT infected mice (Figure 3B). In addition, CD8+ T cells that
expressed CXCR3, shown to be up-regulated on the surface of
activated CD8+ T cells and important for their recruitment to
A B

C D

E F

FIGURE 3 | Mast cell deficient mice show impaired CD8+ T cell effector phenotype and antiviral cytokine production after infection. Frequencies and absolute
numbers of (A) KLRG1+ IL-7R-, (B) KLRG1+ gated on GP33-Tet+ CD8+ T cells and (C) CXCR3+ CD8+ T cells in the spleen of WT and MasTRECK mice at day 8
post intradermal LCMV infection. Frequency and absolute number of (D) IFN-g– and (E) IL-10–producing CD8+ T cells in the spleen after ex vivo restimulation with
GP33 and NP396 peptides of WT and MasTRECK mice at day 8 post LCMV infection analyzed by flow cytometry. (F) Virus titers in ear-dLNs and spleen of WT and
MasTRECK mice assessed by plaque assay at day 8 post intradermal LCMV infection. All experiments were performed at least twice, and each experimental group
included n ≥ 4. Data are representative and expressed as mean ± SEM. Statistically significant differences are analyzed by t- test and indicated as follows: *p < 0.05,
**p < 0.01, ***p < 0.001.
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antigen-rich areas of the spleen (40) were diminished in the ear-
dLNs (Figure S8B) and in the spleen (Figure 3C) of infected
MasTRECK mice compared to that of infected WT animals.
Furthermore, infected MastTRECK mice had markedly reduced
frequencies and absolute numbers of IFN-g–producing CD8+ T
cells after GP33 and NP396 peptide restimulation ex vivo in ear-
dLN (Figure S8C) and in the spleen (Figure 3D and Figure S9B)
compared to that of WT animals. In contrast, the frequency and
the absolute cell number of CD8+ T cells producing the anti-
inflammatory cytokine, IL-10 were increased in ear-dLNs
(Figure S8D) and in the spleen (Figure 3E) of infected
MasTRECK mice compared to that of WT mice.

In line with the impaired effector phenotype and defective
cytokine production displayed by their virus-specific CD8+ T
cells, MasTRECK mice were unable to control LCMV infection
and exhibited significantly higher viral loads in the spleen and
ear-dLNs at the peak of infection compared to that of infected
WT mice (Figure 3F). These findings collectively suggest that
after intradermal LCMV infection, MCs are essential for antigen-
specific CD8+ T cell effector differentiation, antiviral cytokine
production and viral clearance at the peak of infection.

Dendritic Cell Activation Is Impaired in
Mast Cell Deficient Mice After
LCMV Infection
The initiation of antigen-specific CD8+ T cell responses requires
the interaction of naive CD8+ T cells with mature DCs (41).
Particularly, CD8+ DCs have been shown to be crucial in the
initiation of CD8+ T cell responses after LCMV infection (42, 43)
and also appeared to dominate cytotoxic T cell priming after skin
infection (44). Since the virus-specific CD8+ T cell immune
response was strongly impaired in infected MasTRECK mice at
the peak of the infection, we hypothesize that the absence of MCs
hindered the proper activation of CD8+ DCs at early time points
after LCMV infection. Therefore, we examined the frequency of
CD8+ DCs (CD8+MHCII+CD11c+) cells and their costimulatory
molecule expression on in the spleen at day 1 and 3 post infection
(Figure S3A). Infected MasTRECK mice exhibited reduced
frequencies and absolute cell numbers of CD8+ DCs compared
to that of infected WT mice (Figure 4A). In addition, the mean
fluorescent intensity of the costimulatory molecules CD80 and
CD86 expressed on CD8+DCs was significantly lower in infected
MasTRECKmice compared to that ofWTmice at day 3 p.i.in the
spleen (Figure 4B). Similarly, infected MasTRECK mice
exhibited reduced frequencies and absolute cell numbers of
CD8+ DCs as well as reduced mean fluorescent intensity of
CD86 in the ear-dLNs compared to that of infected WT mice
(Figures S10A, B).

Splenic macrophages also play an important role in the
activation of CD8+ T cells as well as in the control of viral load
upon LCMV infection (45). Interestingly, infected MasTRECK
mice exhibited reduced frequencies of F4/80+ CD11b+ cells
(Figure 4C) and the mean fluorescent intensity of their
costimulatory molecules CD80 but not CD86 was also
significantly lower compared to that of WT mice at day 3 p.i.
in the spleen (Figure 4D).
Frontiers in Immunology | www.frontiersin.org 7
CD8+ T cell activation is not only driven by properly activated
DCs but also by the presence of pro-inflammatory cytokines
such as type-I IFNs (46). Therefore, we assessed the frequency
and activation of plasmacytoid DCs (pDCs) (Figure S3B) known
to be the major producers of type-I IFNs (47). pDCs frequencies
and absolute numbers were similar in the spleen of infected
MasTRECK mice compared to that of WT animals at day 1 post
infection but increased at day 3 p.i. (Figure 4E). Furthermore,
the mean fluorescent intensity of CD86 on pDCs was
significantly lower in infected MasTRECK mice compared to
that of WT mice (Figure 4F). Interestingly, levels of IFN-a were
also significantly reduced in the serum and in spleen
homogenates of infected MasTRECK mice at day 3-post
infection (Figure 4G). Taken together, these data indicate that
the maturation of both classical and plasmacytoid DCs as well as
the production of IFN-a after intradermal LCMV infection are
impaired in the absence of MCs.

Mast Cell Deficient Mice Display
Decreased Chemokine Levels at the Peak
of the Infection
MCs produce several cytokines and chemokines upon activation
and during viral infections (48, 49). Chemokines such as CCL3
and CCL4 are produced by human cord blood-derived mast
cells (CBMCs) infected with mammalian reovirus (50) and
play a key role in T cell-DC interactions involved in the
generation of immune responses (51). We hypothesized that
MC deficiency induces a modified chemokine milieu that alters
CD8+ T cell and DC recruitment and activation. Indeed, CCL3,
CCL4 and CXCL10 concentrations were decreased in ear-dLNs
(Figure 5A) and spleen homogenates (Figure 5B) from infected
MasTRECK mice compared to that of WT mice at day 8 p.i. Few
frequencies of isolated peritoneal MCs (Figure S4A) were
directly infected in vitro with LCMV at MOI 5 (Figure S4B).
However, high levels of CXCL1 and CCL2 were detected in the
supernatant of infected peritoneal MCs compared to uninfected
counterparts after 24 hours p.i. (Figures S4C, D). Interestingly,
infected MasTRECK mice displayed significantly lower
concentrations of CCL2 in the spleen compared to that of
infected WT mice at day 3 post LCMV infection (Figure 5C).
CCR2, the receptor of CCL2 has been reported to play a critical
role in the recruitment of DCs (52) and CD8+ T cells during viral
infections (53). Accordingly, infected MasTRECKmice exhibited
lower frequencies of CCR2+ DCs and CCR2+ CD8+ T cells in the
spleen compared to that of WT mice at day 3 post LCMV
infection (Figures 5D, E). These results show that the chemokine
milieu in the secondary lymphoid organs is altered in the absence
of MCs.

Mast Cell Depletion After LCMV Infection
Does Not Impair Virus-Specific CD8+

T Cell Responses
Our data suggested that the presence of MCs is important for
proper DC maturation and recruitment at early time points after
intradermal LCMV infection, which in turn is essential for
proper effector differentiation, and antiviral cytokine
June 2021 | Volume 12 | Article 688347
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production of antigen-specific CD8+ T cells as well as viral
clearance. Therefore, we investigated the impact of MC
depletion on the phenotype and the function of virus-specific
CD8+ T cells at a later time point after LCMV infection. For this,
WT and MasTRECK mice were initially infected with LCMV on
the ventral side of the ear pinna, and DT treatment followed
between day 4 and day 8 post infection (Figure 6A).
Interestingly, the conditional depletion of mast cells at a later
time point after infection completely reverted the suppression of
LCMV-specific CD8+ T cell responses observed when MCs were
Frontiers in Immunology | www.frontiersin.org 8
depleted before the infection. No difference in the ear thickness
was observed between infected WT and MasTRECK mice
(Figure 6B). In addition, absolute cell numbers of CD8+ T
cells as well as GP33- and NP396-tetramer+ CD8+ T cells in
the spleen of WT and MasTRECK mice were comparable at the
peak of infection (Figures 6C, D). Furthermore, similar
frequencies of KLRG1+ CD8+ T cells were observed in the
spleen of both groups of infected animals (Figure 6E).
Moreover, absolute cell numbers of IFN-g– and IL-
10–producing CD8+ T cells in the spleen of infected
A B

C D

E F G

FIGURE 4 | Dendritic cell activation is impaired in mast cell deficient mice after LCMV infection. (A) Frequency and absolute number of CD8+ DCs in the spleen of
WT and MasTRECK mice on day 1 and 3 post intradermal LCMV infection. (B) Expression levels of CD80 and CD86 (geometric mean of fluorescence intensity)
gated on CD8+ DCs in the spleen of WT and MasTRECK mice at day 1 and 3 post infection. (C) Frequency of splenic macrophages (F4/80+ CD11b+) and (D)
expression levels of CD80 and CD86 (geometric mean of fluorescence intensity) gated on macrophages as well as representative histograms in the spleen of WT
and MasTRECK mice at day 3 post infection. (E) Frequency and absolute number of pDCs in the spleen of WT and MasTRECK mice at day 1 and 3 post infection.
(F) Expression levels of CD86 (geometric mean of fluorescence intensity) gated on pDCs in the spleen of WT and MasTRECK mice at day 1 and 3 post infection.
(G) IFN-a concentration in the spleen and serum of WT and MasTRECK mice at day 3 post LCMV infection assessed by magnetic beads multiplex ELISA. All
experiments were performed at least twice, and each experimental group included n ≥ 3. Data are representative and expressed as mean ± SEM. Statistically
significant differences are analyzed by t- test and indicated as follows: ns = not significant, *p < 0.05, **p < 0.01, ***p < 0.001.
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MasTRECK mice after GP33 and NP396 peptide restimulation
ex vivo were similar to that of infected WT mice (Figures 6F, G).
As expected, both infected WT and MasTRECK mice were able
to control LCMV infection and no viral loads were detected in
the spleen and ear-dLNs at day 9 p.i. (Figure 6H). In summary,
our data demonstrate that the presence of MCs at the beginning
Frontiers in Immunology | www.frontiersin.org 9
of the intradermal infection is crucial for the expansion,
activation and antiviral cytokine production of virus-specific
CD8+ T cells.
DISCUSSION

In recent years, there is increasing evidence that MCs are key
players of both innate and adaptive immune responses (1). MCs
have been particularly known for their pivotal role in allergic
type-I reactions (54). However, several studies have demonstrated
that MC orchestrate the development of immune responses due
to their strategic location, their ability to sense pathogens and
danger as well as their capacity to directly and indirectly modify
the activation and function of other immune cells (55).
Furthermore, studies show MC influence on the cellular
immune response to viruses (17). In a mouse model of
Newcastle virus infection, recruitment of CD8+ T cells to the
site of infection was dependent on the presence of MCs (56). MCs
are equipped with a plethora of immune mediators that influence
the migration, activation and function of granulocytes, DCs,
macrophages, NK, NKT and T cells (24, 26, 48). We used
transgenic MasTRECK mice that do not harbor any additional
alterations of other immune cell subsets and it is an inducible
model that allows us to deplete MCs with the administration of
DT at different time points before and after LCMV infection.
Although, basophils are also depleted after DT treatment, we do
not envision any direct effects of basophils on antigen-specific
CD8+ T cell responses upon LCMV infection known to induce a
strong Th-1 immune response. Here, we report that MCs are
crucial for the proper activation of DCs, splenic macrophages and
pDCs during the first days of intradermal LCMV infection. The
absence of MCs at the beginning of the intradermal LCMV
infection led to an impaired activation, expansion and function
of CD8+ T cells in infected mice.

The role of MCs in T cell expansion has been mostly
associated with the ability of MCs to modulate DC migration
to the dLNs (57, 58). In recent years, studies have revealed strong
interactions between MCs and DCs that subsequently modulate
their activation and their functionality. MC activation not only
promotes DC migration (59) but also induces DC activation that
in turn is critical for optimal CD8+ T cell activation (28).
Accordingly, we show that in the absence of MCs, the
frequency and absolute number of CD8+ DCs as well as their
costimulatory molecules CD80 and CD86 were decreased during
the first three days after intradermal LCMV infection.
Subsequently, impaired DC activation led to the generation of
defective virus-specific CD8+ T cells that displayed a
dysfunctional effector phenotype characterized by low KLRG-1,
low CXCR3 expression, reduced IFN-g and high IL-10
production at the peak of infection that hindered the control
of the viral clearance at the peak of the infection. In addition, the
presence of MCs were also important for the proper activation of
splenic macrophages. The presence of MCs at the beginning
of the intradermal infection was crucial for the generation of
optimal antigen-specific CD8+ T cells since MC depletion at day
A

B

C D E

FIGURE 5 | Mast cell deficient mice display decreased chemokine levels at
the peak of the infection. Concentrations of CCL3, CCL4 and CXCL10 in the
supernatants of cultured cells from (A) ear-dLNs and from the (B) spleen of
WT and MasTRECK mice at day 8 post infection. (C) Concentrations of
CCL2 in supernatants of cultured splenocytes of WT and MasTRECK mice at

day 3 post infection assessed by the chemokine 26-Plex Mouse ProcartaPlex™

Panel 1. (D) Frequencies of CCR2+ CD8+ T cells and (E) CCR2+ DCs in the
spleen of WT and MasTRECK mice at day 3 post infection analyzed by
flow cytometry. All experiments were performed at least twice, and each
experimental group included n ≥ 3. Data are representative and expressed as
mean ± SEM. Statistically significant differences are analyzed by t- test and
indicated as follows: *p < 0.05, **p < 0.01, ***p < 0.001.
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4 post infection did not impair the phenotype or antiviral
cytokine production of virus-specific CD8+ T cells and infected
mice were able to control the infection.

One of the most challenging aspects for the role of MCs in the
development of virus-specific T cell responses is the spatial
separation between peripheral MCs and the CD8+ T cells in
the spleen. However, MCs are not only located in the connective
and mucosal tissue, they are also distributed around blood vessels
and in close proximity to perivascular DCs (33). In addition,
MCs can modulate CD8+ T cell responses over a distance, and
signals from MCs can reach the spleen via the bloodstream, e.g.
Frontiers in Immunology | www.frontiersin.org 10
in the context of degranulation or via the release of the exosomes
(60). Recent studies indicate that MCs can exert long distance
effects through MC granule trafficking via lymphatic vessels and
active shuttling of MC granules by DCs (61). Moreover, MCs can
modulate T cell activation through exosomes that harbor
inflammatory mediators (62, 63). CCL3 and CCL4 have been
shown to facilitate T cell-DC interactions (51). In our study, the
levels of CCL2, CCL3, CCL4 and CXCL10 were reduced in
infected MC-deficient mice. We used peritoneal MCs as a
surrogate for skin-MCs. Although very few frequencies of
LCMV infected peritoneal MC were observed in vitro after
A B

C D E

F G H 

FIGURE 6 | Mast cell depletion after LCMV infection does not impair virus-specific CD8+ T cell responses. (A) Schematic experimental layout to analyze virus-
specific CD8+ T cell responses in WT and MasTRECK mice that were first infected with LCMV into the ventral side of the ear pinna and subsequently treated with
250 ng DT i.p. for 5 consecutive days between days 4-8 p.i. (B) Ear thickness daily measured using a caliper during 9 days after LCMV infection. (C) Absolute
numbers of CD8+ T cells, (D) GP33-Tet+ and NP396-Tet+ CD8+ T cells as well as (E) KLRG1+ CD8+ T cells in the spleen of WT and MasTRECK mice at day 9 post
infection. (F) Absolute numbers of IFN-g– and (G) IL-10–producing CD8+ T cells in the spleen of WT and MasTRECK mice after ex vivo restimulation with GP33 and
NP396 peptides at day 9 post infection assessed by flow cytometry. (H) Virus titers in ear-dLN and spleen of WT and MasTRECK mice assessed by plaque assay at
day 9 post intradermal LCMV infection. All experiments were performed at least twice, and each experimental group included n ≥ 4. Data are representative and
expressed as mean ± SD. Statistically significant differences are analyzed by t-test and indicated as follows: ns = not significant.
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24 h p.i., high production of CCL2 and CXCL1 was detected.
MCs could sense LCMV particles and produce chemokines such
as CCL2 as previously reported (26). Furthermore, frequencies of
CD8+ T cells–expressing CXCR3, the receptor for CXCL10, and
of CD8+ T cells–expressing CCR2, the receptor for CCL2, were
reduced in MC-deficient mice.

Collectively, our results indicate that after intradermal LCMV
infection, MCs promote optimal CD8+ DC and pDC activation
leading to the generation of a proper proinflammatory cytokine
and chemokine milieu essential for the activation of antigen-
specific CD8+ T cells that are crucial to achieve the control of the
viral infection.
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