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Natural killer (NK) cells are a main subset of innate lymphocytes that contribute to host
immune protection against viruses and tumors by mediating target cell killing and
secreting a wide array of cytokines. Their functions are finely regulated by a balance
between activating and inhibitory receptors and involve also adhesive interactions.
Mechanotransduction is the process in which physical forces sensed by
mechanosensors are translated into chemical signaling. Herein, we report findings on
the involvement of this mechanism that is mainly mediated by actin cytoskeleton, in the
regulation of NK cell adhesion, migration, tissue infiltration and functions. Actin represents
the structural basis for NK cell immunological synapse (NKIS) and polarization of secretory
apparatus. NK-target cell interaction involves the formation of both uropods and
membrane nanotubes that allow target cell interaction over long distances. Actin
retrograde flow (ARF) regulates NK cell signaling and controls the equilibrium between
activation versus inhibition. Activating NKIS is associated with rapid lamellipodial ARF,
whereas lower centripetal actin flow is present during inhibitory NKIS where b actin can
associate with the tyrosine phosphatase SHP-1. Overall, a better knowledge of
mechanotransduction might represent a future challenge: Realization of nanomaterials
tailored for NK cells, would be important to translate in vitro studies in in vivo new
immunotherapeutic approaches.
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NATURAL KILLER (NK) CELL TARGET RECOGNITION
AND FUNCTIONS

Natural Killer (NK) cells represent the prototype of innate lymphoid cells that act as first line of
defense against microbial infections, and tumor cell transformation, growth and metastatic
spreading (1–3). NK cells prompt the response mainly on their ability to release lytic mediators,
such as perforin and granzymes, or to express ligands triggering death receptors on target cells;
moreover, they can secrete a wide array of cytokines and chemokines to recruit and educate other
immune cell types (4, 5). NK cell activation depends on a delicate balance between activating and
inhibitory signals, being the latter mainly transduced by killer-cell immunoglobulin-like receptors
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(KIRs), cluster of differentiation 94 (CD94)/natural-killer group
2, member A (NKG2A) receptors for class I MHC. Recognition
of abnormal self on tumor or viral infected cells triggers a
number of non MHC I-restricted activating receptors such as
NKG2D, the receptor for the human MHC I-related sequence A
and B (MICA/B) and UL16 binding proteins (ULBPs), DNAX
accessory molecule-1 (DNAM-1) that recognizes nectin-2 (Nec2,
CD112) and nectin-15 (Necl5, PVR, CD155), and the natural
citotoxicity receptors (NCR) receptors (1). In addition, NK cells
express receptors belonging to the b1 and b2 integrin family with
lymphocyte function-associated antigen 1 (LFA-1) playing a
central role in priming NK cells for cytotoxicity. The dialog of
the b1 and b2 integrins with a number of chemokine receptors is
also crucial for the homing and migration of NK cells in
lymphoid and non-lymphoid organs.

Moreover, it is becoming clear that although they act in
cooperative manner, different activating receptors can
independently trigger discrete steps of NK cytolytic process (i.e.
target cell contact and adhesion, granule polarization,
degranulation and target lysis) by initiating diverse signaling
cascades (6). In this regard, signaling components controlling
cytoskeleton rearrangement, are emerging as critical events for NK
cell cytotoxicity and migration.

NK/target cell interaction is regulated by adhesion molecules
such as b1 and b2 integrins that play either a receptor or co-
receptor role (7). High-avidity/affinity of integrins occurs in
response of different activating receptors and depends on the
activation of different signaling pathways including tyrosine
kinases (PTK) belonging to the proto-oncogene tyrosine-
protein kinase (Src) family, phosphoinositide 3-kinase (PI3K),
small G proteins, and cytoskeletal integrity (inside-outside
signaling). b2 integrins have been also shown to be critical in
the interaction between NK and target cells by controlling the
formation of the immunological synapse, which is an assembly of
membrane receptors and signal transduction molecules largely
driven by actin cytoskeleton. Development of NK cell cytotoxic
functions requires the activation of a complex cascade of
signaling pathways, including the activation of spleen tyrosine
kinase (Syk) family PTKs, phospholipase C gamma (PLC-g) and
D (PLD), PI3K, Vav/Rac pathway, ERK, p38 and MAPKs (6).
Some of these events are shared by different activating receptors,
but distinct signals are also transduced depending on the type of
receptor or the sensitive target triggering the cytotoxicity. In this
regard, it has been reported that the activation of focal adhesion
PTK Pyk2, that has been shown to be activated by b1 and b2
integrins, is a discriminating event between natural and
antibody-mediated cytotoxicity. Moreover, ligation of integrins
on human NK cells transduces intracellular signals leading to
tyrosine phosphorylation of paxillin, intracellular calcium
elevation (8), and co-stimulation of NK cell cytotoxic functions.
MECHANOSENSING IN THE NK CELL-
MEDIATED IMMUNE RESPONSES

Mechanotransduction is the process in which physical forces
sensed by mechanosensors are translated into chemical signaling
Frontiers in Immunology | www.frontiersin.org 2
pathways. This mechanism mediated by the cytoskeleton that
serves as a global mechanosensor apparatus, permits cells to
sense their extracellular environment and rapidly respond to
different stimuli. NK cell mechanosensors include a large range
of activating receptors as well as b1 and b2 integrins and CD62L
selectin (9, 10).The actomyosin network plays an important role
in mechanotransduction, in that actin polymerization generates
a “pushing” force, whereas the myosin produces a “pulling”
force, and together are translated into several signaling cascades
(11, 12). Thus, the actin cytoskeleton provides the mechanical
forces necessary for adhesion, migration and tissue infiltration of
NK cells as well as for their cytotoxic function. The actin
interactome represents the structural basis for the formation of
a stable NKIS, integration of molecular complexes and signaling
components, and the secretion of cytolytic granules and
mediators (e.g., perforin) leading to target cell killing. The
mature activating NKIS contains a central and peripheral
supramolecular activation cluster (SMAC). The b2 integrins,
namely aLb2 (LFA-1) and aMb2 (Mac-1) and F-actin
accumulate in the peripheral SMAC (pSMAC), whereas
perforin is present in the central SMAC. The accumulation of
F-actin and b2 integrins is rapid, it depends on Wiskott–Aldrich
syndrome protein (WASp)-driven actin polymerization, and is
not affected by microtubule depolymerization. Conversely, the
polarization of perforin is slower and requires intact actin, WASp
protein, and microtubule function (13–15).
UROPODS AND NANOTUBES MEDIATE
MECHANOTAXIS IN NK CELLS

Cell guiding is involved in a number of biological processes, but
however, its mechanisms remain still partially elucidated.
Immune cells are able to migrate directionally thanks to
chemical guiding or chemotaxis in response to chemo-
attractants, to haptotaxis in response to surface-bound
chemicals, and to mechanical guiding or mechanotaxis in
response to mechanical stimuli such as substrate stiffness, cell
deformation or osmotic stress (16).

A large body of evidences mainly regard chemotaxis, whereas
mechanotaxis has been considered only recently. Although a role
in the activation of leukocytes has been reported (17), the basic
remain largely elusive. Immune cell trafficking is not only
supported by chemical signals, but also involves mechanical
signals like hydrodynamic shear stress (18–21). The external
forces are perceived by leukocytes mainly through the integrin
receptors, which undergo conformational changes by inside-out
(22) and outside-in (23) signaling, and initiate an intracellular
signaling cascade in response to mechanical forces. Thus,
integrins are key players both in the tissue recruitment of
leukocytes from blood flow, and in leukocyte mechanotaxis
under flow.

Two types of orientation mechanisms by flow have been
suggested to mediate leukocyte integrin-mediated adhesion.
Shear stress involves integrin-mediated outside-in signaling at
anchoring sites (24–26). Such mechanisms are considered
“active”, in that a specific intracellular signaling pathway is
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initiated in response to flow, and relies on mechanotransduction.
Alternatively, a “passive” model that does not require signaling by
the external cue, has been also proposed for upstream crawling
lymphocytes (27). In this model, flow direction is detected by the
passive orientation uropod, which is not adherent and freely
rotates. Reorientation of the whole cell against flow, follows tail
orientation via the cell realignment by front-rear polarization. At
molecular level, the cross-talk between LFA-1 and integrin very
late antigen-4 (VLA-4, a4b1) and the opposite polarization of
LFA-1 and VLA-4 integrins sustain a differential adhesion of
leukocytes either by their leading or trailing edge.

NK cells circulate in the blood against fluid flow, as shown by
the orientation of the non-adherent cell rear, the uropod.
Uropods sense and transmit flow directions into cell steering
through the polarity maintenance (27). In addition, NK cell
migration involves the convergence of signaling events triggered
by engagement of both b2 and b1 integrins, and a number of
chemokine receptors including C–X–C motif chemokine
receptor (CXCR) 4, C–C chemokine receptor type (CCR) 2,
CCR5 and CXCR3 (28, 29).

Cell polarization is also a crucial event for the formation of
NK/target cell conjugates. NK cells contact target cells exploiting
the region with high concentration of CCR2 and CCR5, whereas
the ligands of b2 integrin intercellular adhesion molecule
(ICAM)-1 and ICAM-3, are concentrated at the distal pole in
the uropods. Blocking cell polarization and adhesion receptor
redistribution, inhibits NK cell cytotoxic activity as result of
impaired effector–target cell conjugate formation. Thus, cell
polarization regulates different steps of NK cell functions: the
leading edge where the CCR are concentrated, is involved in the
adhesion to target cells, polarization of the secretory apparatus
and release of lytic granules during the NK cell killing (30, 31);
remarkably, different types of lytic granules undergo polarized
secretion to the site of membrane contact between NK and target
cells (32). The uropods by accumulating ICAM molecules, are
involved in the recruitment of NK cells.

Cell polarization and cytotoxic activity, can be blocked by
adenosine diphosphate (ADP) ribosylation of the guanosine-5’-
triphosphate (GTP) binding protein Ras homolog family
member A (RhoA), indicating the important role of this
signaling pathway triggered by LFA-1 as well as by CCR in
these events (33, 34).

Notably, formation of NK/target cell conjugates also
stimulates chemokine release, which can further promote NK
cell binding to target cells by inducing integrin inside-outside
signaling and support NK cell migration.

Beside the involvement of uropods in the regulation of the
intimate NK cell contact with target cells, NK cells can also
generate membrane nanotubes that allow these cells to
functionally interact with targets over long distances. Target
cells that relocate along the nanotube path, are polarized with
their uropods facing the direction of movement, are then lysed.
Removing the nanotubes by a micromanipulator reduces target
cell lysis (35). The frequency of nanotube formation depends on
the number of interactions between activating receptor and the
respective ligand(s), and increases upon the NK cell activation.
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Imaging studies have demonstrated that proteins, such as the
signaling adaptor that associates with NKG2D, DAP10, the G
protein exchange factor Vav-1, and the NKG2D ligand MICA
accumulate at nanotube synapses in a such high concentration to
stimulate cell activation (35).
NK IMMUNOLOGICAL SYNAPSE (NKIS):
ROLE OF THE ACTIN CYTOSKELETON
AND RETROGRADE FLOW IN
CONTROLLING NK CELL RESPONSES

As above mentioned, NK cell cytotoxicity is a tightly regulated
multistep process. It moves through the initial contact between
NK cells with target cells which is mediated by tethering
receptors such as CD2 and the selectin CD62L, adhesive
integrin receptors (LFA1 and Mac1) that interact with ICAM1,
and activating receptors such as NCRs, NKG2D and DNAM1
(36). Both activating and integrin signaling initiate the formation
of NKIS. In particular, engagement of b2 integrins, but not of
CD-16 activating receptor on CD16.NK-92 cells, was found to
affect the size and the dynamics of signaling microclusters in a
Pyk2-dependent manner (37).

Signaling is required for cytoskeleton remodeling, formation
of activating microclusters and adhesion ring junction,
polarization of effector cells and cytolytic granule releases (34).
Accumulation of F-actin at the NKIS is the pre-requisite for the
clustering of activating receptors which stimulate the
polarization of cytolytic granules to the immunological synapse
(IS). Lytic granules navigate to actin meshwork at the IS and
reach the plasma membrane through gaps sized to accommodate
lytic granule movements. The movement of lytic granules is
dependent to myosin IIa that generates force and movements
along actin filaments. In NK cells, myosin IIa mediates the
interaction between lytic granules and F-actin UNC45-
dependent manner at the NKIS, and facilitates the movement
of lytic cargo along actin filaments (38). The movement of lytic
granules toward the IS, initially depends on dynein that mediates
the movement of secretory vesicles to the MTOC (39), and then
on the granule-associated small GTPase Rab27a that recruits the
Slp3–kinesin-1 complex, thus enabling the polarized cytotoxic
granules to reach the membrane and release their contents at the
IS (9, 40, 41). Activating receptor-triggered secretion of lytic
granules requires binding of Rab27a to Munc13-4, with
formation of a complex that co-localizes with lytic granules
(42). Lytic granules docked and tethered to NKIS, are primed
through interaction between Munc 13-4 and STX11 to form a
trans-soluble NSF attachment protein receptor (SNARE)
complex comprising the syntaxin STX11 and synaptosomal
SNAP23 protein together with the SNARE proteins vesicle
associated membrane protein (VAMP) 4 and VAMP7, likely
mediated by syntaxin-binding protein 2 (STXBP2) (43). After
the fusion of lytic granules at the synaptic cleft, the lytic granule
membrane proteins are endocytosed to replenish lytic granules
for further killing.
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F-actin is a major driver of the IS formation between NK and
target cells, and the polarization of the secretory apparatus (44–46).
Actin retrograde flow (ARF) regulates NK cell signaling and
controls the equilibrium between NK cell activation versus
inhibition. The actomyosin dynamics is responsible for the
“mechanotransduction” (11, 12, 47). The F-actin turnover and
myosin IIa force at the NKIS are the most important forces
involved in the guide of the F-actin centripetal flow, with actin
polymerization pushing at the external part of the spreading cell,
and the contractile myosin force pulling the F-actin away from the
cell membrane (48). It has been well accepted that the actin flow
plays a pivotal role in the centralization of receptors and signaling
proteins. Activating NKIS is associated with a rapid lamellipodial
ARF, whereas a lower centripetal actin flow is present during
inhibitory NKIS (49). It has been recently demonstrated that
tyrosine protein phosphatase (SHP)-1 and b-actin specifically
associate at the inhibitory NKIS where ARF is slower. In addition,
SHP-1 is maintained in a closed status and catalytically inactive
form, if actin flow is inhibited by using jasplakinolide or
cytochalasin D pharmacological inhibitors, or by growing cells on
rigid surfaces. Thus, SHP-1 inhibition is the result of actin flow
reduction that leads to increased Vav-1 and PLCg-1/2 tyrosine
phosphorylation and toNK cell activation. SHP-1 does not interact
with the actinmachinery whenARF velocity is rapid and activating
NK cell interactions occur; in this case it has a closed catalytically
inactive conformation, allowing Vav-1 and PLC-g1/2 tyrosine
phosphorylation (Figure 1) (47, 50). Thus, stimulation of NK cell
activating receptors induces a fast actin flow that inhibits the
binding of SHP-1 with the actin network. This NK activating
status favors SHP-1 closed inactive conformation promoting
target cell killing. Engagement of KIR inhibitory receptors results
Frontiers in Immunology | www.frontiersin.org 4
in slow actin flow, enabling the formation of the SHP-1/b-actin
complex. SHP-1 inhibits NK cell activation by dephosphorylating
important signaling molecules. Given that the actin flow dynamics
rapidly change, it may enable a rapid switching from an inhibitory
to activating NK cell response (47).

NK cell inhibition is also mediated by SHP-2 recruitment to
KIR receptors (51, 52), and in non-immune cells SHP-2 is
associated with the actin cytoskeleton (53). Given that SHP-1
and SHP-2 display a high level of structural homology, it can be
suggested that a similar regulation of SHP-2 occurs also in NK
cells via dynamic actin movement.

Overall, these data indicate that actin mechanotransduction is
essential to increase theNKcell capability to rapidly respondto local
environmental changes. While NKIS formation requires minutes/
hours and is a slow process, alterations of the actin flow dynamics
and the following SHP-1 status are fast events (seconds/minutes)
that permit a rapid on/off control of inhibitory signaling (47). Thus,
ARF, by controlling actin dynamics, represents a novel mechanism
to regulate the functional outcome of NK cells.
MECHANICAL PROPERTIES OF
SURROUNDING MATRIX AND TARGETS
DRIVE NK CELL RESPONSIVENESS

During their lifetime, NK cells infiltrate a variety of normal,
inflamed, or neoplastic tissues with different mechanical
properties, exposing the NK cells to big fluctuations in matrix
stiffness with potential impact on their responsiveness (54).
Moreover, during the development, bone-marrow NK cells are
FIGURE 1 | NK cell cytotoxicity is regulated by changes in SHP-1 conformational state.
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exposed to substrate stiffness ranging from25 to 100 kPa (55). Both
NK cell degranulation and cytokine production aremodified by the
rigidity of the target substrate. In the study by Malaton and
colleagues, the effect of substrate stiffness on efficiency of NK cell
degranulationwas evaluated by using a cell-sized beads coated with
sodium alginate at defined soft (9 kPa), medium (34 kPa) or stiff
(254 kPa) alone, or in the presence of antibodies directed against
LFA-1 or the NCR receptor NKp30. Increased substrate stiffness
stimulated NK cell degranulation, that was further enhanced by
NKp30 and LFA1 triggering. The lower degranulating capacity of
NK cells contacting soft targets was suggested to depend on an
impaired recruitment of phosphorylated zinc-finger antiviral
protein (Zap) 70 PTK to the NKIS (47). Similarly, a recent report
demonstrated that target rigidity impacts on perforin granule
polarization and degranulation, being secretion of granzymes A
and B, granulysin and FAS ligand improved with increased
substrate stiffness (56). Soft target stiffness was found to reduce F-
actin accumulation and talin polarization and recruitment at the
NKIS, leading to the formation of an instable asymmetrical synapse
and decreased proportion ofNKcells in the conjugates with targets.
In addition, interaction with softer targets resulted in impaired
microtubule organizing center (MTOC) and lytic granule
polarization (Figure 2) (56).

Stiffness of the activating substrates not only impacts onNK cell
cytotoxic function, but secretion of cytokines, namely interferon-
gamma (IFN-g), is also modulated, with increased release observed
upon NK cell interaction with the stiffer substrates.

The stiffness properties of a cell undergoes changes during the
neoplastic process, with primary tumor cells being stiffer than
healthy cells, and conversely metastatic cells showing profound
reduction in stiffness (58); in addition, also viral infection increases
stiffness by inducing cortical actin rearrangement (59). Thus, we
would like to envisage that stiffening or softening would be able to
profoundly affect the responsiveness of NK cells infiltrating
neoplastic or infected tissues. Because no evidences are presently
addressing this issue, we would like to suggest that investigation of
Frontiers in Immunology | www.frontiersin.org 5
mechanotransduction mechanisms in tissue resident NK cells
would represent a research area of increasing interest.
NANOMATERIALS IN THE REGULATION
OF NK CELL FUNCTIONS

The use of nanowires or nanodots functionalized or notwith ligands,
permits now to explore more in depth the mechanosensitivity of
NK cells, and in particular the mechanical features of NKIS. Shaping
NK cell activity by nanomaterials to functionally upregulate their
activating receptors, may represent an emerging strategy for NK-cell
based adaptive immunotherapy. Enhanced NK cell activation on
antigen-functionalized andmechanically stimulating nanowires and
nanodots, and the isolation of activated NK cell subpopulations,
foreruns novel nanoengineered platforms for cell expansion toward
therapeutic purposes, with improved efficiency and control of
cytotoxic activity (60).

Finally, in the recent years with the development of chimeric
antigen receptor (CARs) of T and NK lineages, researchers are
closer to achieving high specificity and low off-side effects, with
clinical trials achieving remission rates. In this regard, a role of
mechanosensing in the antigen/target discrimination is a key to
engineered high specific CARs. Further work would be required
to completely address the mechanosensing properties of NK cells
in vivo. These studies can provide important fundamental
insights on cytotoxic functions of NK cells and allow rational
design of future immunotherapies.
CONCLUDING REMARKS

Cells sense their environment by transducing mechanical stimuli
into biochemical signals. Conventional tools for study cell
mechanosensing provide limited spatial and force resolution.
Recent advances in biomaterials and device engineering have
FIGURE 2 | Immunological synapse (IS) of Natural Killer (NK) cell and target cell. (A) NK cells engage other cells to create an immunological synapse (IS); (B) First,
filamentous actin (F-actin) is recruited to the IS; (C) NK lytic granules move along microtubules by dynein–dynactin motor proteins toward the microtubule-organizing
center (MTOC); (D) the polarized lytic granules and MTOC dock at the IS, and degranulate (57).
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facilitated the generation of numerous artificial cellular
microenvironments, which produce synthetic signals
mimicking those delivered by the physiological environment.
Several advanced materials and devices have been recently
produced for the study of mechanical activity in NK cells. NK
cells exposed to nanowires functionalized with MICA ligands
exhibit higher expression of CD107 degranulation marker,
suggesting that the combination of a physical stimulus with the
chemical stimulus of MICA, enhances NK cell activation (60,
61). This model may mimic the in vivo NK cell/dendritic cell
interaction, where the branched projections of DC are similar in
size and shape to nanowires (62).
Frontiers in Immunology | www.frontiersin.org 6
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