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Recurrent pregnancy loss (RPL) is a common fertility problem that affects 1%-2% of
couples all over the world. Despite exciting discoveries regarding the important roles of the
decidual natural killer cell (dNK) and regulatory T cell in pregnancy, the immune
heterogeneity in patients with unexplained recurrent pregnancy loss (URPL) remains
elusive. Here, we profiled the transcriptomes of 13,953 CD45+ cells from three normal and
three URPL deciduas. Based on our data, the cellular composition revealed three major
populations of immune cells including dNK cell, T cell, and macrophage, and four minor
populations including monocytes, dendritic cell (DC), mast cell, and B cell. Especially, we
identified a subpopulation of CSF1+ CD59+ KIRs-expressing dNK cells in normal
deciduas, while the proportion of this subpopulation was decreased in URPL deciduas.
We also identified a small subpopulation of activated dDCs that were accumulated mainly
in URPL deciduas. Furthermore, our data revealed that in decidua at early pregnancy,
CD8+ T cells exhibited cytotoxic properties. The decidual macrophages expressed high
levels of both M1 and M2 feature genes, which made them unique to the conventional M1/
M2 classification. Our single-cell data revealed the immune heterogeneity in decidua and
the potentially pathogenic immune variations in URPL.
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INTRODUCTION

Recurrent pregnancy loss (RPL) is a common fertility problem
that affects 1%-2% of couples all over the world (1). RPL refers to
at least two consecutive pregnancy losses before reaching
viability according to the European Society for Human
Reproduction and Embryology (2). The etiology of RPL may
be multifactorial and diverse among patients. The most common
causes include genetic abnormalities, uterine anomalies,
antiphospholipid syndrome, hormonal and metabolic
disorders, and increasing maternal age. Other proposed
etiologies such as chronic endometritis, infections, inherited
thrombophilias, luteal phase deficiency, and high sperm DNA
fragmentation levels, however, are still considered controversial
(3). Despite the array of causes listed above, there is still a huge
challenge in identifying the causes of about 40–60% of RPL
patients (4), which are often referred to as unexplained recurrent
pregnancy loss.

The maternal decidua provides the receptive site for the
attachment, invasion, and growth of the placenta, thus forming
a maternal-fetal interface. In addition to decidual cells and
endothelial cells, infiltrating immune cells represent the major
cellular components of the maternal decidua, mainly including
decidual natural killer cells, macrophages, dendritic cells, T cells, B
cells, and granulocytes. A mass of evidence suggests that decidual
immune infiltrates are required to facilitate proper implantation
and promote a successful pregnancy (5). As pregnancy is a
developmental process with consecutive stages including
implantation, placentation, fetal growth, and parturition, each of
these stages requires a unique immune environment.

NK cells represent the main leukocyte population of
immune infiltrates in decidua. The CD56bright CD16- dNK cells
are identified early before implantation in the secretory
endometrium. The primary role of dNK cells is to promote the
remodeling of spiral arteriole in decidua which is essential for
maximizing maternal blood flow through the placenta (6, 7).
Accumulative evidence suggests that dNK cell-induced vascular
smooth muscle cell and endothelial cell apoptosis is a key event
in spiral arteriole remodeling (8). Furthermore, CD49a+ Eomes+

NK cells secrete growth-promoting factors (GPFs), including
pleiotrophin and osteoglycin, which promote fetal growth in
mice (9). dNK cells are also well known to possess large numbers
of granules containing cytotoxic molecules such as perforin and
granzymes (10). dNK cell cytotoxic activity is stringently
controlled by interactions with nonclassical class I molecules
expressed by extravillous human trophoblasts (10, 11). Together,
these studies reveal a vast range of dNK functions in normal
pregnancy, which are involved in the regulation of vascular
remodeling, fetal growth, and immune responses.
Abbreviations: DC, dendritic cell; dNK, decidual natural killer cell; EVT,
extravillous trophoblast cell; GPFs, growth-promoting factors; KIR, killer
immunoglobulin-like receptor; Mø, macrophage; RPL, recurrent pregnancy loss;
scRNA-seq, single-cell RNA-sequencing; Treg, regulatory T cell; UMI, unique
molecular identifiers; URPL, unexplained recurrent pregnancy loss.

Frontiers in Immunology | www.frontiersin.org 2
Pregnancy induces tolerance to the genetically foreign
semiallogeneic fetus, and one of the important regulators
underlying the mechanisms to protect the fetus from the
maternal immune system is Treg. Maternal FOXP3+ Treg cells
expand locally at the maternal-fetal interface during pregnancy
and the sustained expansion of these cells is required for
maintaining fetal tolerance. Treg cells express high levels of
CTLA-4, TGF-b, IL-10, IL-35 to suppress the activation of
effector cells and also to inhibit their proliferation and
production of pro-inflammatory cytokines (12, 13).

Decidual macrophages are the second most abundant
leukocyte population at the maternal-fetal interface in early
pregnancy (14, 15). Human decidual macrophages are
phenotypically defined as CD14+ FOLR2+ and predominantly
express CCL2, CCL3, and CCL4 (16–21). Decidual macrophages
have many functions in blood vessel remodeling, trophoblast
invasion, immunomodulation of maternal decidual lymphocytes,
and parturition initiation (22, 23). Perivascular accumulation of
decidual macrophages expresses elevated levels of vascular
endothelial growth factor, basic fibroblast growth factor, matrix
metalloproteinases, fibronectin, collagen components,
complement component C1q, and the scavenger receptor
CD163, empowering their roles in apiral arteriole remodeling
and the clearance of debris and apoptotic cells (8). Decidual
macrophages are believed to exist as anti-inflammatory cells of
an M2-like phenotype which highly express HAVCR2 (Tim-3)
(24). In addition, leukocyte immunoglobulin-like receptors
LILRB1 and LILRB2, the inhibitory receptors for HLA-G
which are expressed on invading extravillous trophoblast, are
found to be expressed by decidual macrophages (25).
Collectively, the expression of these immune regulators results
in the induction of tolerance to the invasive trophoblast.

Despite the cell number of decidual DCs is low, they plays
critical roles in decidualization and immuno-modulating
function in pregnancy by interacting with T cells, NK cells,
and macrophages. Direct evidence of dDCs’ roles in pregnancy
came from two studies, in which selective ablation of CD11c+

dDCs in mice inhibited decidualization and increased
embryo resorption rates (26, 27). As the most potent antigen-
presenting cells, dDCs regulate the immune active TH1/TH17
predominance to immune tolerant Th2/Treg predominance (28).
The crosstalk between dDCs and dNK cells in pregnancy has
caused attention long since (29, 30). IL-15, that is produced by
decidual CD83+ DCs, is required for NK cell proliferation (31).
Moreover, IL-10-expressing tolerogenic decidual DCs express
HLA-G that inhibits lytic dNK cell activity (32, 33). Thus, dDCs
affect a wide range of biological events during pregnancy and the
aberrant differentiation and functions of DCs may interrupt the
maternal-fetal tolerance as well as decidualization (34).

Recently, by using single-cell RNA-sequencing (scRNA-seq),
the heterogeneity of cells at the human maternal-fetal interface
was intensively studied (35, 36). The diversity of cell types, the
lineage- and differentiation stage-specific molecular properties,
as well as the functional interaction among cell types, were fully
investigated. Two latest studies using scRNA-seq identified a
subset of CD39+ dNK cells which support that embryo growth
June 2021 | Volume 12 | Article 689019

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chen et al. Immune Atlas of URPL Deciduas
was diminished in proportion in RPL patients (37, 38). However,
the global immune variations at the maternal-fetal interface of
URPL are still largely unknown. Here, we comprehensively
profiled the decidual CD45+ immune cells from normal and
URPL pregnancies by scRNA-seq. Our study identified a handful
of differentially expressed genes and variations of immune cells
between normal and URPL deciduas. Especially, a decrease in the
proportion of CSF1+ CD59+ KIR-expressing dNK subpopulation
and an increase of activated DC subpopulation were observed in
URPL pregnancies. We also revealed that the decidual CD8+ T
cells exhibited the cytotoxic properties, and the macrophages
expressed both M1 and M2 feature genes at early pregnancy.
Collectively, these data revealed the immune heterogeneity in
human decidua and provided novel insights into the immune
alterations during URPL pathogenesis.
MATERIALS AND METHODS

Sample Collection
Decidual tissues used for this study were obtained with written
informed consent from all participants. All human tissues were
obtained from the Shenzhen Second People’s Hospital with
approval from the institutional research ethics committee
(Approval number, 20201203003). The inclusion criteria for
the URPL participants were (1) clinically diagnosed with a
history of at least two failed pregnancies with unknown cause
(2) gestational ages between 6-9 weeks (3) patients who took an
induced abortion within 1 week of the fetal heartbeat ceasing.
The exclusion criteria were (1) patients with endocrine disorder
(2) patients with uterine anatomical disorders (3) patients with
fetal chromosomal or congenital abnormalities. 6 URPL samples
(7.5 weeks of gestational ages on average) and 6 normal decidual
samples (7 weeks of gestational ages on average) were obtained
from elective terminations of apparently normal pregnancies. 3
URPL and 3 normal decidual samples were further used for
scRNA-seq. 6 URPL and 6 normal decidual samples were further
used for flow cytometry assay (CD3, CD56, KIR2DL1, CD59
staining). Since two samples are not enough, 5 URPL and 5
normal decidual samples were further used for CD3, CD56,
CD39 and CD59 staining by flow cytometry analysis. All of the
samples were used for flow cytometry staining. The clinical
characteristics of the enrolled participants were summarized in
Table S1.

Dissociation of Single Decidual Cells
Decidual tissues were washed directly in Ham’s F12 medium
immediately following the surgery. They were macroscopically
separated and then washed for 10 min in Ham’s F12 medium on
ice. Decidual tissues were enzymatically digested with a tumor
dissociation kit (Miltenyi Biotec, 130-095-929) using
GentleMACS Dissociator (Miltenyi Biotec, 130-093-235)
following the manufacturer’s instructions. Briefly, cut 100 mg
of each decidua into approximately 0.5-mm3 cubes, transfer the
tissue pieces into the gentleMACS C tube with 2.5ml enzyme
mix, tightly close C tube and attach it to the gentleMACS
Frontiers in Immunology | www.frontiersin.org 3
Dissociator, run the gentleMACS program h_tumor_01,
incubate the samples for 30 minutes at 37°C, run the
gentleMACS program h_tumor_02, repeat the above two steps,
apply the cell suspensions to 40-mm cell strainer (Corning,
431750), centrifuge and resuspend the cells in 5ml of red blood
cell lysis buffer (ThermoFisher, A1049201) for 5 min, centrifuge
and resuspend the cells with ice-cold PBS containing 0.5% BSA.

Cell Sorting and ScRNA-seq
Decidual cells were incubated at 4 °C with 5ml of FITC conjugated
anti-human CD45 (Biolegend, 304005) in 3% FBS in DPBS
(ThermoFisher, 14190136). DAPI was used for live versus dead
discrimination. Cell viability was determined by trypan blue
staining with TC20 automated cell counter (Bio-rad, Hercules,
CA). The ratio of viable cells in single-cell suspension was required
to be more than 85%. Then the concentration of single-cell
suspension was adjusted to 700–1,200 cells/ml. The cells were
then processed with the Chromium Single Cell 3’ Reagent Kits as
the manufacturer’s instruction (v3 chemistry CG000183). The
input cells were then loaded onto the channel of Single Cell B
Chip (v3 chemistry, PN-1000153). The 10x libraries were
constructed using Chromium Controller and Chromium Single
Cell 3’ Reagent Kits. In brief, single-cell suspensions in each
channel of the chip were loaded onto a Chromium Controller
(10x Genomics, Pleasanton, CA) to generate single-cell GEMs (gel
beads in the emulsion). Then the 10x libraries of each channel
were prepared using the Chromium Single Cell 3’ Gel Bead and
Library Kit v3 (PN-1000153, 1000075, 120262). Libraries were
sequenced, aiming at a minimum coverage of 50,000 raw reads per
cell on an Illumina NovaSeq 6000 by Novogene Bioinformatics
Technology Co., Ltd (Tianjing, China).

ScRNA-seq Data Analysis
Gene expression matrices were generated using the CellRanger
software version 3.1.1 and raw data were processed further in R
(version 3.5.2). The following quality control steps were
performed: (i) a gene expressed in more than three single cells
was kept, and each cell was required to have at least 200
expressed genes; (ii) cells that expressed fewer than 500 genes
(low quality), and cells that expressed over 20,000 genes
(potential doublets) were excluded from further analysis; (iii)
cells in which over 20% of unique molecular identifiers (UMIs)
were derived from the mitochondrial genome were removed. The
data were normalized using the NormalizeData function as
implemented in the Seurat package. Graph-based clustering
was performed to cluster cells according to their gene
expression profile using the FindClusters function in Seurat
(clustering resolution = 0.5, k-nearest neighbors = 10).
The normalized data were scaled in Seurat, 2 individual
samples were merged into one dataset and included 13,953
single cells (5,581 cells from normal deciduas and 8,372 from
URPL deciduas).

Pseudotime Trajectory Analysis
In order to study the development trajectory of the decidual
natural killer cell (dNK) in pregnancy, monocle (version 2.18.0,
June 2021 | Volume 12 | Article 689019
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for pseudotime analysis) was used to analyze the gene expression
matrix with Seurat annotation (39). We screened the
differentially expressed genes between normal and URPL
deciduas, arranged the cells in pseudotime along the trajectory.

Comparison of dNK, Macrophage,
and DC Subsets to Previously
Reported Populations
To relate dNK, macrophage, and DC subsets with previously
reported gene expression signatures regarding dNK1/2/3 (36),
M1-, M2-macrophage (40–42), cDC1, and cDC2 (43), we applied
the Bayesian classifier as previously described (42, 44).

Flow Cytometry Staining
Flow cytometry assay was carried out using BD FACSAria II. The
following antibodies: PerCP/Cyanine5.5 anti-human CD3
(981008), PE anti-human CD56 (NCAM) (362508), APC
anti-human CD59 (304711), FITC anti-human CD39 (328205),
PE/Cyanine7 anti-human CD158 (KIR2DL1/S1/S3/S5) (339512)
were purchased from BioLegend (San Diego, CA, USA). Staining
was performed at 4°C for 1 hour using 5 ml of each antibody for
10^6 cells according to BioLegend antibody instructions.

Statistical Analysis
For the statistical analysis of flow cytometry data, all data with at
least three independent replicates were analyzed using GraphPad
Prism 5.0 software. Experimental data were presented as mean
with SEM. The significance of the difference was determined by
two-tailed Student’s t test. A p value less than 0.05 was
considered statistically significant.

For the analysis of gene expression in scRNA-seq data, all
single-cell sequencing data statistical analysis was performed in R
(version 3.5.2) using Seurat. Wilcoxon Rank Sum test was
applied for comparisons in two groups. Statistical significance
was accepted for p < 0.05.
RESULTS

Single-Cell Transcriptome Resolved the
Major Immune Cell Types in the Decidua
of Normal and URPL Pregnancies
We use the 10x Genomics Chromium system to perform single-
cell transcriptomic profiling of CD45+ immune cells from 6
deciduas (3 normal deciduas and 3 URPL deciduas) (Figure
S1A). After computational quality filtering using Seurat package
(45), ∼6,500 median UMI (unique molecular identifiers) counts
per cell, and 1,800 median genes per cell could be detected in the
transcriptomes of 13,953 single cells, which were included in
further analysis (Figures S1B, A left panel). Of those, 5,581 cells
originated from normal pregnancies and 8,372 from URPL
pregnancies (Figure 1A middle panel). Considerable difference
in transcriptional activity, as illustrated by on average 10,000
UMI counts per cell in Cluster 8, 9, and 16 and 3,000 UMI counts
Frontiers in Immunology | www.frontiersin.org 4
per cell in Cluster 2, 4, 5, 6, 7, 12, 15 (Figure 1A right panel), was
identified across distinct clusters.

Unsupervised graph-based clustering of the combined dataset
revealed 18 distinct clusters (Figure 1A left panel). dNK cells
(markers: KLRC1, KLRD1), T cells (markers: CD3D, CD8A),
macrophages (markers: CD14, FOLR2), monocytes (markers:
FCN1, VCAN), DCs (markers: XCR1, CLEC9A), B cells
(markers: CD20, CD79A), and mast cells (markers: TPSAB1,
MS4A2) were readily recognized and annotated by the
expression of their feature genes and literature evidence
(Figures 1B, C and S1C, Table S2) (42, 46–48). All 6
superclusters consisted of cells from both normal and URPL
samples. dNK cells and macrophages showed a slightly increased
ratio (55%) in URPL compared with that (45%) in normal
tissues, while T cells were more frequently enriched (60%) in
normal tissues (Figure 1D). We also identified a small fraction of
mast cells that were highly enriched (75%) in URPL, while B cells
were more enriched in normal tissues (Figure 1D).

To find out the molecular signatures that differ between
URPL and normal deciduas, differentially expressed genes were
analyzed in major cell populations. Based on our data, URPL
dNK cells upregulated the expression of ZNF683 (a
transcription factor that mediates transcriptional program in
tissue-resident lymphocyte), AREG (a ligand of the EGF
receptor), KRT81, XCL2 (chemokine for lymphocytes), and
IGFBP2 (Figure 1E and Table S3). URPL dNK cells
downregulated expression of KIR2DL3 (an inhibitory KIRs
family member that can bind to HLA-C molecules), CD59 (an
inhibitory regulator of complement), ENTPD1 (CD39), CSF1 (a
ligand for CSF1R expressed on trophoblast), and SPINK2
(Figure 1F and Table S3). Decidual T cells either from
normal or URPL pregnancies all highly expressed chemokines
such as CCL4, CCL5, and IL32, and the cytolytic T lymphocytes
maker GZMA, but did not express the inhibitory receptor
PDCD1 (Figure 1G and Table S4). URPL macrophages
exhibited high expression of cell surface proteins HLA-DQA2,
CD16, and LY6E, and slightly upregulated expression of PLTP,
SPP1 (Figure 1H and Table S5). It was worth noting that URPL
macrophages upregulated chemokines such as CCL2, CCL3,
CCL4, CXCL2, and CXCL8 gene expression, indicating a pro-
inflammatory state (Figure 1I and Table S5).

Decreased Proportion of CSF1+ CD59+

KIRs-Expressing dNK Cells in URPL
Pregnancies
We further clustered the dNK cells into 4 subsets by their gene
expression signatures, of which clusters 1 and 2 represented the
main subpopulations, cluster 3 composed of cells that originated
mainly from normal pregnancies and cluster 4 showed higher
transcriptional activities (Figures 2A and S2A). All dNK cells co-
expressed the NK cell markers KLRB1, KLRC1, and KLRD1
(Figure S2B, upper panel). Cluster 1 dNK cells preferentially
expressed KLRB1 and cytokines CCL5, and Cluster 2 highly
expressed cytolytic enzyme GZMB and cytokeratin cell surface
proteins KRT81, KRT86 (Figures 2B and S2B lower panel).
Cluster 3 preferentially expressed SPINK2, CSF1, SYNGR1,
June 2021 | Volume 12 | Article 689019
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FIGURE 1 | Overview of the 13,953 CD45+ cells from URPL and normal deciduas. (A) tSNE of the total cells profiled here, with each cell colorcoded for. (B) tSNE
visualization showed the expression of marker genes for the cell types above. (C) Heatmap of enriched genes expression within defined populations. Expression is
measured in units of log2. Heatmap of total significant expressed genes for each cell type was shown in supplementary Figure S1C. (D) The fraction of cells
originating from URPL and normal control samples for the 6 defined populations. (E–I) Violin plots showing the smoothened expression distribution of selected genes
in (E, F) dNK cell, (G) T cell, (H, I) Mø stratified by normal or URPL origins. Red and blue bar for normal (n=3) and URPL (n=3), respectively. Mø, macrophage.
Analysis of gene expression in scRNA-seq data was performed in R (version 3.5.2) using Seurat.
Frontiers in Immunology | www.frontiersin.org June 2021 | Volume 12 | Article 6890195
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FIGURE 2 | Single-cell data revealed molecular details and subclusters of dNK cells. (A) tSNE of the dNK cells from Figure 1A (cluster 3,5,6), with each cell
colorcoded for (left to right): the associated cell type, its sample type of origin (normal or URPL) and the number of transcripts (UMIs) detected in each cell (log scale
as defined in the inset). K, thousand. (B) Expression of marker genes for each subcluster above. (C) The fraction (left panel) and number (right panel) of cells
originating from URPL and normal control samples for the 4 defined subclusters. (D) Classification by dNK1, dNK2 and dNK3 gene signatures revealed the identity
of the 4 subclusters above. (E) Violin plots showing the smoothened expression distribution of dNK1, dNK2 and dNK3 gene signatures in each dNK cell subclusters.
(F) Heatmap of mean expression levels of KIR receptors within each subcluster. (G) Heatmap of mean expression levels of cytoplasmic granule proteins within each
subcluster. Red and blue bar for normal (n=3) and URPL (n=3), respectively. Analysis of gene expression in scRNA-seq data was performed in R (version 3.5.2)
using Seurat.
Frontiers in Immunology | www.frontiersin.org June 2021 | Volume 12 | Article 6890196

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chen et al. Immune Atlas of URPL Deciduas
CD59, KIR2DL3, KIR2DL1, ID3, CD39, and STAT3, most of
which are potential regulators of immune responses (Figures 2B
and S2C). Especially, KIR2DL3 and KIR2DL1 encode inhibitory
killer cell immunoglobulin-like receptors for HLA-C molecules
in placental trophoblast cells (49), indicating the potential
interaction of Cluster 3 dNKs with trophoblasts. Cluster 4
expressed STMN1, CDK1, indicating the proliferating
properties of these cells (Figures 2B and S2A). Furthermore,
cytokine expression profiling analysis identified unique
expression of cytokines in cluster 1 and cluster 2 (XCL1,
XCL2), cluster 3 (CSF1, LGALS1, and IL32), and cluster 4
(CCL4, CCL5, CCL3L3, CXCL8, LTB, and TGFB1) (Figure
S2D). Analysis of hallmark pathway gene signatures
highlighted MAPK signaling and NF-кB signaling as the top
enriched signatures in clusters 1 and 2, while regulation of cell
cycle was revealed in cluster 4 dNK cells (Figure S2E).

Cluster 2 dNK cells were URPL-specific while cluster 3 dNK
cells mostly consisted of cells from normal pregnancies
(Figure 2C). To assess the signatures of these dNK cell
clusters, we compared their gene expression profiles with that
in the normal human maternal-fetal interface (36). Roser Vento-
Tormo and colleagues identified three main dNK subsets by their
gene expression signatures: dNK1, dNK2, and dNK3. The dNK1
cells highly expressed killer immunoglobulin-like receptor (KIR)
genes that can bind to HLA-C molecules, and LILRB1 the
receptor for HLA-G molecules, showing functional interaction
with extravillous trophoblast cells (EVT), whereas dNK2 and
dNK3 cells expressed high levels of chemokines which may play
an important role in the recruitment of immune cells (36). The
NK subsets in our analysis expressed gene signatures that
mapped well to dNK1, dNK2, and dNK3 populations (Figures
2D, E). Accordingly, cluster 2 and 4 dNK cells expressed the
dNK2 markers CD2, XCL1, ITGB2, and XCL2 (Figure S2F),
however, cluster 4 cells also preferentially expressed the dNK3
markers CXCR4, CCL5, ITM2C, and CYBA (Figure S2G).
Specifically, cluster 3 cells uniquely expressed the dNK1
markers including KIR2DL1, KIR2DL3, LILRB1, KIR3DL1,
KIR3DL2, KIR3DL3, and cytoplasmic granule proteins GNLY,
PRF1, GZMA, and GZMK (Figures 2F, G). We further analyzed
the developmental trajectory of dNK cells using pseudotime
analysis based on our data. Cluster 4 dNKs that highly
expressed cell cycle associated genes were ordered at the root
of the pseudotime trajectory, and sequentially followed by
Cluster 2/3 and 1 (Figure 3A).

In our scRNA-seq analysis, we identified a cluster of
CSF1+ CD59+ KIRs-expressing dNK cells (cluster 3) that are
predominantly found in normal deciduas. This subpopulation
of dNK cells express CD39, an ectonucleoside triphosphate
diphosphohydrolase that is regarded as an immunological
switch shifting the ATP-mediated pro-inflammatory
environment to the adenosine-mediated anti-inflammatory
status (50). CD59 is the main inhibitor of the membrane
attack complex, and is involved in the regulation of the
function, infiltration, and phenotypes of a variety of
immune cells (51). To verify the features of these dNK
subsets, we analyzed the dNK cells isolated from normal and
Frontiers in Immunology | www.frontiersin.org 7
URPL deciduas by flow cytometry. As shown, although the
percentage of total dNKs (CD3- CD56+) were similar between
normal and URPL deciduas, a decreased proportion of CD3-

CD56+ CD39+ CD59+ dNK cells was detected in patients
(Figures 3B, C). This was remarkably consistent with the
scRNA-seq data that Cluster 3 dNK cells were mostly enriched
from normal deciduas (Figure 2A). As inhibitory KIRs family
members functionally mediate dNK activity, a population of
the CD3- CD56+ KIR2DL1+ dNK cells were further analyzed.
Interestingly, the proportion of KIR2DL1+ CD59+ dNK
subpopulation was significantly higher in normal compared
to URPL patients (40% vs 20%), while the KIR2DL1-CD59-

dNK subpopulation were accumulated in patients (20% vs
35%) (Figures 3D, E).

Collectively, the high expression of CSF1 and immune
modulation genes in cluster 3 dNK cells (Figures 2B and S2C),
combined with the evidence of dramatic decrease of these cells in
URPL pregnancies (Figures 3B–E), highlighted the possibility that
this CSF1+ CD59+ KIRs-expressing dNK subpopulation in
decidua may play vital roles in normal pregnancy. The
dysfunction of these cells may contribute to the pathogenesis
of URPL.

Enrichment of Cytotoxic CD8+ T Cells in
Both Normal and URPL Pregnancy
To reveal the potential functional subtypes of T cells overall, we
performed unsupervised clustering of all T cells defined in our
initial analyses (Figure 1A). A total of 4 subclusters were
identified, including 2 clusters of CD4+ and 2 clusters of CD8+

cells, each with its unique signature genes (Figures 4A and S3A).
Cells from normal and URPL pregnancies were equally distributed
over all subclusters (Figure 4B). CD4+ T cells consisted of clusters
2 and 3 which specifically expressedmarker genes CD4 and CD127
(Figure 4C). Among these, cluster 2 CD4+ T cells expressed naïve
and memory markers CCR7, SELL, and IL7R (Figure 4D). Cluster
3 cells were Tregs, which uniquely expressed IL2RA and FOXP3
with other well-defined Treg genes such as TNFRSF9, TIGIT, and
CTLA4 (Figures 4C, D), but did not express inhibitory co-
receptors such as TIGIT, CTLA4, LAG3, HAVCR2 (TIM-3),
PDCD1 (Figure S3B). Especially, inhibitory molecules TIGIT,
CTLA4, and co-stimulatory molecules ICOS, CD28 whose
expression was higher in tumor-associated Treg cells compared
to that from normal tissues (52), were highly expressed in decidual
Tregs (Figure 4D).

CD8+ T cells represented the main component of the CD3+ T
cells, including clusters 1 and 4 (Figure 4A). Cluster 1 CD8+ T
cells were characterized by the high expression of the GZMK,
GZMA, GZMM, XCL1, XCL2, and CCL4 genes (Figure 4E),
commonly associated with cytotoxic T cells. Cluster 4 T cells
showed some common gene expression signatures in cluster 1,
and highly expressed FGFBP2, FCGR3A, PRF1, and GNLY which
indicated effector CD8+ T cell properties (Figures 4C, E).
Together, our data revealed the decidual CD4+ T cells with a
naïve/memory or regulatory property, and CD8+ T cells with
cytotoxic signatures at the first trimester of pregnancy in both
normal and URPL pregnancy.
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Decidual Macrophages Do Not Fit the
Conventional M1/M2 Classification
We defined 10 transcriptional states of cells classified as
macrophages and monocytes with lineage specific expression of
CD14, CD16 (Figures 5A, B). One cluster (cluster 3) showed the
gene signature of monocytes, and the other nine clusters of
macrophages (Mø) (Figures 5B, C and Table S6). Cluster 3
Frontiers in Immunology | www.frontiersin.org 8
monocytes were then characterized by specific expression of
classical monocyte-associated gene FCN1 and pro-inflammatory
IL1B, TIMP1, TREM1 genes (Figure 5D and Table S7), indicating
the pro-inflammatory function of decidual monocytes. In
addition, these monocytes also expressed a set of neutrophil-
associated genes S100A8, S100A9, VCAN, and EREG (Figure 5E
and Table S7), consistent with previous reports (48).
A

B D

E

C

FIGURE 3 | Developmental trajectory and alterations of dNK subsets in URPL deciduas. (A) Developmental trajectories of dNK subsets (left) with the expression on
indicated feature genes (right). (B) Representative flow cytometry plots showing the proportion of CD39+ CD59+ dNK cells among gated dNK (CD3− CD56+) cells from
normal control (left) and URPL patient (right). (C) Quantification of CD3− CD56+ total dNK (left panel) and CD3− CD56+ CD39+ CD59+ (right panel) population in decidual
tissues from normal (n=5) and URPL patients (n=5). (D) Representative flow cytometry plots showing the proportion of dNK subpopulations (CD59+KIR2DL1−, CD59+

KIR2DL1+, CD59− KIR2DL1+, CD59− KIR2DL1−). (E) Quantification of dNK subpopulations showing in (D). Normal (n=6) and URPL patients (n=6). Significance was
evaluated with Student’s t-test. All points were shown, and bars represent means with SEM. Statistical analysis of flow cytometry data was performed using GraphPad
Prism 5.0 software.
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Macrophage was further defined by its expression of CD68,
CD163, CD206, and C1QC genes (Figure 5F and Table S7). The
gene expression signatures related to that of canonical M1 and
M2 macrophage states were analyzed. Decidual macrophages
highly expressed a set of M2 feature genes IL1b, IL6, IL10, and
MS4A7 (Figures 5G, S4A, Table S7). Notably, decidual
macrophages also highly expressed CCL2, CCL3, and CCL4,
Frontiers in Immunology | www.frontiersin.org 9
which were routinely expressed in M1 macrophages (Figures
5G, H and Table S7) (21). Cluster 6 macrophages consisted of
cells mainly from URPL pregnancies (Figure S4B). This
subpopulation of macrophages highly expressed the M1 feature
genes FABP5, EIF5A, and M2 feature genes APOE and MS4A7
(Figure 5I and Table S7). Thus, these data showed that the
decidual macrophage maintained the combined M1 andM2 gene
A B

D E

C

FIGURE 4 | Single-cell data revealed molecular details and subclusters of decidual T cells. (A) tSNE of the T cells as defined in Figure 1A, with each cell
colorcoded for (left to right): the associated cell type and its sample type of origin (normal or URPL). (B) The fraction of cells originating from URPL and normal
control samples for the 4 subclusters above. (C) Expression of marker genes for the cell types above. (D, E) Heatmap depicted the gene expression of (D) naïve/
memory markers, Treg markers, immune inhibitory molecules and co-stimulatory molecules, (E) effector T cell molecules in 4 subclusters above. Gene expression
was is measured in units of log2. Analysis of gene expression in scRNA-seq data was performed in R (version 3.5.2) using Seurat.
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FIGURE 5 | Single-cell data revealed molecular details and subclusters of macrophages in decidua. (A) tSNE plot colorcoded for expression (gray to red) of CD14
and CD16. (B) tSNE of the monocyte, Mø as defined in Figure 1A, with each cell colorcoded for (left to right): the associated cell type and its sample type of origin
(normal or URPL). (C) Heatmap of enriched genes expression within defined subclusters above. Expression is measured in units of log2. (D–F) Violin plots showing
the smoothened expression distribution of differentially expressed genes specific for monocyte, Mø subpopulations. (G) Heatmap of gene expression of M1 and M2
feature genes within defined subpopulations. Gene expression was measured in units of log2. (H) tSNE visualization showed the expression of indicated genes.
(I) Violin plots showing the smoothened expression distribution of differentially expressed genes specific in cluster 6 macrophages. Analysis of gene expression in
scRNA-seq data was performed in R (version 3.5.2) using Seurat.
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expression signatures and did not fit the conventional M1/
M2 classification.

Major Decidual DC Subsets Remained in a
Resting State
Spectral clustering of the DCs (Figure 1A, cluster 9) identified 5
subsets which showed distinct gene expression (Figures 6A, B
Frontiers in Immunology | www.frontiersin.org 11
and Table S8). Cells originated from normal pregnancies
dominated cluster 2 and 4, while cluster 1 and 5 included
more cells from URPL pregnancies (Figure 6C). To assess the
cellular features of these subsets, we compared their gene
expression profiles with those of bulk-sorted classical DCs,
which comprise cDC1 and cDC2 (43, 53). cDC1s expressing
cell surface markers XCR1 and CADM1 were efficient antigen
A

B D

E F

G

H

C

FIGURE 6 | Single-cell data revealed molecular details and subclusters of DCs in decidua. (A) tSNE of the DC as defined in Figure 1A, with each cell colorcoded for
(left to right): the associated cell type and its sample type of origin (normal or URPL). (B) Heatmap of enriched genes expression within defined subclusters above. Gene
expression was measured in units of log2. (C) The fraction of cells originating from URPL and normal control samples for the 5 subclusters. (D) Classification of DC
subsets by cDC1- and cDC2-like gene signatures. (E) Violin plots showing the smoothened expression distribution of cDC1 and cDC2 marker genes in the 5 DC
subclusters. (F) Violin plots showing the smoothened expression distribution of differentially expressed genes in cluster 3 DCs. (G) Classification of DC subsets by
‘activated’ and ‘resting’ state gene signatures. (H) Violin plots showing the smoothened expression distribution of differentially expressed genes in cluster 5 DCs. Analysis
of gene expression in scRNA-seq data was performed in R (version 3.5.2) using Seurat.
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cross-presenters to CD8+ T cells, while cDC2s expressing CD1A
and CD172A preferentially interacted with CD4+ T cells (27).
Clusters 1-4 DCs expressed gene signatures that mapped to
cDC1 and cDC2 (Figure 6D). Clusters 1-3 expressed the cDC1
markers XCR1, CLEC9A, SERPINF2, CADM1, and CPVL,
whereas cluster 4 expressed cDC2 markers CD1A, CLEC4A,
PLAC8, PLD4, GPR183 (Figure 6E and Table S8). Besides the
gene expression signature to cDC1, cluster 3 DCs expressed a set
of cell cycle associated genes such as BIRC5, MKI67, STMN1,
CKS1B, and CENPM, indicating a proliferating feature of this cell
population (Figure 6F and Table S8). Cluster 5, a rare cell subset,
however, failed to associate with either cDC1 or cDC2
(Figure 6D).

Mapping the gene expression signatures of DC clusters to the
previously published datasets defining activated DCs and resting
DCs (20) revealed that clusters 1-4 DCs exhibited a ‘resting’ state
while cluster 5 DCs an ‘activated’ state (Figure 6G). Clusters 1-4
DCs typically expressed CLEC7A, C1ORF54, ACP5, RNASE6,
MS4A6A, AIF1, LY86 (Figure S5A). In contrast, cluster 5 DCs
expressed pro-inflammatory genes such as CCL19, CCL22, and
cell migration associated factors FSCN1, LAMP3, RAB9A
(Figures 6H, S5A, Table S8). Especially, cluster 5 DCs are
composed of cells that were mainly from URPL deciduas, thus
the excessively activated state of DCs may potentially affect the
outcome of pregnancy.

A small population of mast cells was identified in the decidua
(Figure 1A, cluster 17). Further clustering of these cells identified
2 subsets with distinct gene expression signatures (Figure S5B).
Cluster 1 is predominantly composed of cells from URPL tissues,
expressing high levels of TPSB2, GATA2, MITF, HDC, and
MS4A2. Transcription factors GATA2 and MITF were reported
to transactivate the expression of HDC and MS4A2 (54, 55),
which were potentially involved in mast cells mediated
anaphylaxis. The cluster 2 cells expressed a set of cytokines
and receptors such as LTB, XCL1, XCL2, IL17R, and CXCR4
(Figure S5C). However, the effect of mast cells in early
pregnancy was largely unknown possibly due to the rarity of
these cells.
DISCUSSION

Reproductive success depends upon the coordinated
interaction between the placenta and the uterus. The
placenta, forming the maternal-fetal interface, composes of
the maternal decidua and the fetal trophoblast, mediates all
nutrient and oxygen supply to the concepts and thereby
sustaining its normal growth (8). ScRNA-seq studies of
placental and uterine tissue have revealed the heterogeneity of
fetal trophoblast cells and decidual immune cells (35, 36, 56,
57). Other findings studied the cellular interaction of fetal
placental trophoblast cells and maternal endometrial stromal
cells (58), and the lineage differentiation of BLIMP1+

trophoblast giant cells (59). To our knowledge, the immune
heterogeneity and variations in the decidua of patients with
URPL still largely remain unknown (60).
Frontiers in Immunology | www.frontiersin.org 12
To resolve this problem, we performed scRNA-seq of sorted
CD45+ cells from URPL and normal deciduas. Comprehensive
analyses of the single-cell data provided higher resolution of
decidual immune cells. For example, we identified four subsets of
dNK cells as well as unique subpopulations such as CSF1+

CD59+ KIRs-expressing dNK cells. We also identified three
minor populations of monocyte, DCs, mast cells, and B cells
due to the low frequencies of these cell types.

The CSF1+ CD59+ KIRs-expressing dNK cells (Figure 2A)
exhibited extremely similar gene expression signatures to that of
the previously described dNK1 cluster (36). These dNK cells
were characterized by high expression of KIR family members,
cytoplasmic granule proteins (GZMA, GZMK, GNLY, PRF1),
immune modulators (SPINK2, CD59, CD39), and CSF1. Ligation
of CSF1 with the CSF1R on EVT was previously shown to
promote human extravillous trophoblast growth and invasion
(61). It has been well documented that the decreased expression
of CSF1 or LILRB1 affects the outcome of pregnancy (61–63). In
our analysis, the decreased CSF1+ CD59+ KIRs-expressing dNK
cells in URPL again corroborated the vital role of this dNK cell
subpopulation at early pregnancy (Figures 2A, 3C, E).

In the first-trimester human decidua, approximately 10-20%
of leukocytes are CD3+ T cells, 45–75% are CD8+ T cells (64). In
the CD4+ T cell population, the most are CD25dim activated/
memory T cells, 5-30% Th1 cells, 5% CD25+ FOXP3+ Tregs, 5%
Th2 cells and 2% Th17 cells (8). The function of decidual T cells
in RPL is largely unknown and some previous results seem to be
controversial as reviewed by Erlebacher, A (8). The T cell
population in our data revealed 31.5% of CD4+ T cells, 6% of
Tregs, and 68.5% of CD8+ T cells. However, the expression of
IL2, IL4/IL5/IL13, IL17A indicating Th1, Th2, Th17 signatures
respectively, was undetectable. This may be due to the effects of
sequencing depth and the low frequencies of these cells in the
decidua. More importantly, we identified most of CD4+ T cells
exhibiting naïve/memory phenotype with expression of IL7R,
CCR7, LEF1 (Figure 4C). A cluster of Tregs was also identified
by their specific expression of IL2RA, FOXP3, inhibitory
molecules TIGIT, CTLA4, and co-stimulatory molecules ICOS
and CD28, which was consistent with the previous report (65).
However, the gene expression of FOXP3 and ICOS between
normal and URPL within the Treg subpopulation was
unchanged (data not shown). In contrast to CD4+ T cells,
nearly all the CD8+ T cells exhibited a cytotoxic phenotype
characterized by high expression of granule proteins GZMA,
GZMM, GZMH, and chemokines CCL4, XCL1, XCL2. Our
results indicated that the regulatory roles of CD4+ T cells
coordinated with the cytotoxic effector CD8+ T cells thus
contributing to an immune balance in the decidua.

Macrophages are the second most abundant leukocyte
population within the human decidua characterized by the
expression of CD14, CD16, and CD68. Classically activated
(M1) and alternatively activated (M2) directly influence the
outcome in pregnancy. M1 macrophages are functionally pro-
inflammatory and antimicrobial, while M2 macrophages are
anti-inflammatory (21, 66). In this study, although decidual
macrophages expressed a set of M2 associated genes, they also
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highly expressed CCL2, CCL3, CCL4 which were M1 marker
genes. In addition, we found that cluster 6 macrophages which
were enriched in URPL decidual tissues had combined M1 and
M2 gene expression signatures. Cluster 6 macrophages highly
express the pro-inflammatory genes (FABP5 and EIF5A), and
anti-inflammatory genes (APOE andMS4A7). FABP5, one of the
intracellular lipid transporters, is a major regulator of the pro-
inflammatory response. FABP5 maintained the lipid balance in
macrophages through lipid-sensitive targets linked to
inflammatory signalings such as NFkB, PPARg, and LXR-a. A
previous study proved that Fabp5−/− mice increased levels of
anti-inflammatory (M2) cytokines in macrophages (67). EIF5A,
one of the translation factors, has a proinflammatory role in the
release of cytokines and the production of NO (68). APOE and
MS4A7, which are M2 markers (69), were highly expressed in
cluster 6. Based on our observations, we hypothesize that lipid
metabolism and EIF5A related transcriptional regulation are
involved in regulation of macrophage function, which should
be examined by future work.

There are few cell numbers of decidual DCs detected in
human first-trimester decidua (70). They are locked in a
tolerogenic state, with an altered capacity for antigen
presentation and reduced expression of co-stimulatory
molecules (71). The functions of dDCs from the previous
study (20) are reflected by the direct and indirect cross-talk
with dNK cells in modulating immune response and tolerance.
Our analysis then identified that the majority of dDCs (> 90%,
cluster 1, 2, 3) belong to the cDC1 lineage, while only a small
Frontiers in Immunology | www.frontiersin.org 13
subset of cells (cluster 4) belongs to cDC2 lineage, indicating the
specific antigen cross-presentation to CD8+ T cells. Furthermore,
nearly all dDCs showed a resting state gene expression signature,
while a small subpopulation of ‘activated’ dDCs (cluster 5)
mainly originated from URPL decidua. Previous studies have
demonstrated that resting dDCs induce antigen-specific CD8+ T
cell tolerance in a mouse model (72, 73). Thus, our results
collectively indicated the possibility of these resting dDCs in
the induction of CD8+ T cell tolerance in decidual
microenvironment, thus representing one mechanism of
tolerance to the genetically foreign semiallogeneic fetus.

There are some apparent weaknesses in this study that may
affect the accurate interpretation of the data. Firstly, we
compared the immune heterogeneity and variations in
deciduas collected from normal and URPL pregnancies. The
samples we used did not represent the same physiological
conditions, because the fetal death and cease of blood
circulation may induce the immune variations. Thus, future
study of pregnancy loss patients who had no history of
miscarriage and cannot be classified as recurrent pregnancy
loss, which will help us to verify if these immune variations we
discovered are actually associated with RPL or URPL. Secondly,
the samples are limited since there were only 3 samples for each
group (URPL and normal pregnancies) for scRNA-seq. In order
to confirm the robustness of the data, we compared our results
with previously published data. We successfully captured all the
immune cell populations consistent with previously report (36,
38). We also confirmed the variations of immune cells revealed
FIGURE 7 | The immune heterogeneity in decidua and the proposed model for the disruption of immune balance in URPL patients.
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by scRNA-seq data using FACS analysis. Furthermore, the
decreased proportion of CSF1+ CD59+ KIRs-expressing dNK
subpopulation (Cluster 3 dNK cells) in URPL consistent with the
CD39+ dNK1 subpopulation reported by Wang, F. et al. (37).

In summary, the current study revealed the immune atlas in
human decidua including three major cell populations (dNK, T
cells, and macrophages) and four minor cell populations
(monocytes, DCs, mast cells, and B cells). More importantly,
we identified previously unknown immune variations in URPL
deciduas: (1) the decreased proportion of CSF1+ CD59+ KIRs-
expressing dNK subpopulation; (2) the decidual macrophages
exhibiting the combined M1 and M2 gene expression signatures
did not fit the conventional M1/M2 classification; (3) a small
population of ‘activated’ dDCs mainly originated from URPL
decidua was found. Collectively, these immune variations in
URPL patients provide the possibility that dysfunction of these
cells may contribute to the pathogenesis of URPL (Figure 7).
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Supplementary Figure 1 | Overview of the single-cell RNA seq of CD45+ cells
from URPL and normal decidua. (A) Schematic of procedures extraction,
sequencing, and single-cell analysis. (B) Basic information for the number of genes,
number of UMI, percent of mitochondrial gene and percent of haemoglobin genes
for each pooled sample. (C) Heatmap of total significant expressed genes for each
cell type. Analysis of gene expression in scRNA-seq data was performed in
R (version 3.5.2) using Seurat.

Supplementary Figure 2 | Single-cell data revealed molecular details and
subclusters of dNK cells. (A) Heatmap of enriched genes expression within 4
defined dNK subclusters. Expression is measured in units of log2. (B) Violin plots
showing the smoothened expression distribution of selected marker genes in the 4
NK subclusters. (C) Violin plots showing the smoothened expression distribution of
differentially expressed genes specifically in cluster 3 dNK cells. (D) Heatmap of
selected cytokines expression in 4 defined NK subclusters. Expression is measured
in units of log2. (E) KEGG enrichment analysis illustrating the functional signature of
the 4 NK subclusters. (F, G) Violin plots showing the smoothened expression
distribution of dNK2 (F) and dNK3. (G)Marker genes of NK cell cluster 4. Analysis of
gene expression in scRNA-seq data was performed in R (version 3.5.2)
using Seurat.

Supplementary Figure 3 | The gene expression signatures of decidual T cells.
(A) Heatmap of enriched genes expression within 4 subpopulations above.
Expression is measured in units of log2. (B) Violin plots showing the smoothened
expression distribution of inhibitory molecules TIGIT, CTLA4, LAG3, HAVCR2,
PDCD1 in the 4 T cell subpopulations. Analysis of gene expression in scRNA-seq
data was performed in R (version 3.5.2) using Seurat.

Supplementary Figure 4 | The analysis of gene expression and subclusters of
monocyte and Mø subclusters. (A) Violin plots showing the smoothened expression
distribution of M1 and M2 gene signatures. (B) The fraction (left panel) and number
(right panel) of cells originating from URPL and normal control samples for each
defined subcluster. Analysis of gene expression in scRNA-seq data was performed
in R (version 3.5.2) using Seurat.
Supplementary Figure 5 | (A) Heatmap of ‘activated DC’ and ‘resting DC’
signature genes expression in the indidcated DC subclusters. (B) tSNE visualization
of the mast cells as defined in Figure 1A, with each cell colorcoded for (left to right):
the associated cell type and its sample type of origin (normal or URPL). (C) Violin
plots showing the smoothened expression distribution of differentially expressed
genes in the indicated mast cell subclusters. Analysis of gene expression in scRNA-
seq data was performed in R (version 3.5.2) using Seurat.
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