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The complex tumor microenvironment (TME) plays a vital role in cancer development and
dramatically determines the efficacy of immunotherapy. Tertiary lymphoid structures
(TLSs) within the TME are well recognized and consist of T cell-rich areas containing
dendritic cells (DCs) and B cell-rich areas containing germinal centers (GCs).
Accumulating research has indicated that there is a close association between tumor-
associated TLSs and favorable clinical outcomes in most types of cancers, though a
minority of studies have reported an association between TLSs and a poor prognosis.
Overall, the double-edged sword role of TLSs in the TME and potential mechanisms need
to be further investigated, which will provide novel therapeutic perspectives for antitumor
immunoregulation. In this review, we focus on discussing the main functions of TLSs in the
TME and recent advances in the therapeutic manipulation of TLSs through multiple
strategies to enhance local antitumor immunity.

Keywords: tertiary lymphoid structures, tumor immunity, lymphoid neogenesis, bioengineering,
immunotherapy, LIGHT
INTRODUCTION

Tumors originate and develop in a complicated and dynamic microenvironment, and there are
endothelial cells, immune cells, and stromal cells existing around or within the tumor
microenvironment (TME) and interacting with tumor cells (1, 2). Effective antitumor immunity is
recognized to require the existence and activation of a variety of immune cells, including B cells,
org July 2021 | Volume 12 | Article 6892701
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CD8+ T cells, and CD4+ T cells, etc. This concept is confirmed by
the presence of intratumoral tertiary lymphoid structures (TLSs),
which are well-organized tumor-infiltrating lymphocyte (TIL)
clusters and may generate an advanced immune response (3). As
is known to us, immunotherapy can utilize positive feedback to
activate the immune system and boost the infiltration of
endogenous T cells into tumors and subsequent destruction of
tumor cells (4–6). However, only 5%-30% of patients with
malignancies exhibit activated intratumoral T cell immunity after
anti-programmed cell death protein-1 (PD-1)/programmed death-
ligand 1 (PD-L1) immunotherapy (7, 8). This failure is mainly due
to the extensive immunosuppressive mechanisms in the TME that
lead to the decreased number and dysfunction of infiltrating T cells
(9–11).

TLSs are ectopic lymphoid organs that can develop at sites of
chronic inflammation, such as those associated with infection
and autoimmunity, but also form within the TME (12, 13). TLSs
share similar structural and functional characteristics with
secondary lymphoid organs (SLOs) (14). However, TLSs lack a
capsule and can form in various nonlymphoid tissues, such as
stroma and epithelium (15). The prognostic impact of TLSs has
been widely explored and most reports have indicated that TLSs
are associated with positive immunoreactivity and favorable
clinical outcomes in most types of cancers (12, 16–20). For
example, TLSs are shown to be associated with relapse-free
survival in patients with oral carcinoma or early-stage
hepatocellular carcinoma (21, 22). Moreover, germinal centers
(GCs) in TLSs may determine the prognostic value of TLSs (23,
24). Even though, TLSs show an association with poor prognosis
in a minority of studies (25–27). It is urgent to comprehensively
illustrate the function of TLSs in the TME.

SLOs, such as lymph nodes (LNs), provide three-dimensional
structures for immune cells to optimize cell-cell interactions and
produce an effective immune response (28, 29). Effector T (Teff)
cells are activated after being instructed by DCs, and migrate
from external draining LNs into the tumor to exert their function
(30, 31). Increasing studies have shown that the antitumor
immune response originates not only in LNs but also directly
in TLSs (32). In general, the cells and molecules that regulate the
signaling underlying TLS formation and promote immune
responses within TLS remain to be further studied. In this
Abbreviations: TLSs, tertiary lymphoid structures; TILs, tumor-infiltrating
lymphocytes; TME, tumor microenvironment; PD-1, programmed cell death
protein-1; PD-L1, programmed death-ligand 1; SLOs, secondary lymphoid
organs; GCs, germinal centers; HEVs, high endothelial venules; LN, lymph
node; DCs, dendritic cells; Teff, effector T cell; FDCs, follicular DCs; PCs,
plasma cells; PNAd, peripheral node addressing; TFH cells, T follicular helper
cells; Treg cells, regulatory T cells; LTi, lymphoid tissue inducer; LT, lymphotoxin;
LTbR, lymphotoxin-b receptor; IL, interleukin; ICB, immune checkpoint
blockade; APCs, antigen-presenting cells; TGF-b, transforming growth factor-b;
TNFR, tumor necrosis factor receptor; TNF-a, tumor necrosis factor-a; ACT,
adoptive cell transfer; VEGF, vascular endothelial growth factor; VTP, vascular
targeting peptide; TLRs, Toll-like receptors; IFN-g, interferon-gamma; ILC3s,
group 3 innate lymphoid cells; CTL, cytotoxic T lymphocyte; PLG, poly (lactide-
coglycolide); TRAIL, TNF-related apoptosis-inducing ligand; MDSCs, myeloid-
derived suppressor cells; GM-CSF, granulocyte-macrophage colony-stimulating
factor; ICAM-1, intercellular cell adhesion molecule 1; VCAM1, vascular cell
adhesion molecule 1; MADCAM1, mucosal addressable cell adhesion molecule 1.
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review, we briefly summarize the development of TLSs and
focus on discussing the function of TLSs and multiple
approaches that had been developed to induce TLS formation.
DEVELOPMENT AND FORMATION
OF TLSS

SLO development is a highly organized process that is initiated and
continued during embryogenesis, which has similarities to TLS
formation and provides a classical model for understanding TLS
development (33).However, there are somedifferences between the
canonical SLOs andTLSs.A chronic inflammatory state is sufficient
to induce TLS formation even in the absence of lymphoid tissue
inducer (LTi) cells (34), indicating that chronic inflammation may
be an important factor that favors lymphoid neogenesis and
promotes TLS formation (35). Some studies have revealed that
DCs (36), T helper 17 (Th17) cells (37, 38), B cells (39), M1
macrophages (40), and T follicular helper (TFH) cells (41) can
initiate TLS neogenesis in various pathological conditions. In
addition, group 3 innate lymphoid cells (ILC3s) are associated
with ectopic lymphoid aggregates (42). Tumor-infiltrating ILC3s
may interact with fibroblasts and lung tumor cells to facilitate
cytokine release, contributing to protective TLS formation (43).
Lymphotoxin (LT) signaling plays a vital role inTLS formation (44,
45). The LTa1b2-LTb receptor (LTbR) interaction initiates
signaling that leads to the production of various chemokines and
adhesionmolecules, such asCCL19,CCL21,CXCL13, andCXCL12
(46). CCR7-expressing T cells are recruited by their homologous
ligands CCL21 andCCL19, and this recruited population forms a T
cell zone. In addition, B cells can express CXCR5 and CXCR4 on
their surface to transmigrate to the follicle through the activity of the
CXCL12-CXCR4 and CXCL13-CXCR5 axis (47, 48). These
findings show that the CCL19/CCL21-CCR7 and CXCL13-
CXCR5 axes are vital for regulating TLS development (49).
Although the knowledge of TLS formation mechanisms is widely
researched, the possible mechanisms and factors need to be further
explored in future studies. The main molecular and cellular
mechanisms of TLS formation are shown in Figure 1.
THE FUNCTION OF TLSS IN THE TME

Favorable Impact of TLSs on
Antitumor Properties
Mature TLSs are similar to SLOs, which contain T cell-rich areas
with CD3+ T cells and dendritic cell (DC)-lysosomal associated
membrane protein+ (DC-LAMP) mature DCs and follicular
CD20+ B cell-rich zones (12). The B cell follicles in TLSs
comprise follicular dendritic cells (FDCs), B cells, plasmablasts,
and TFH cells required for GC formation and B cell
differentiation (50). Macrophages, neutrophils, and regulatory
T (Treg) cells have been discovered in the TLSs of lung cancer,
pancreatic cancer, and ovarian cancer (51–54). TLSs are divided
into classical and nonclassical structures. Classical structures are
mature and contain T cells, DCs, B cells, and FDC compartments
July 2021 | Volume 12 | Article 689270
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and comprise more active components than nonclassical
structures, mainly B cells. Nonclassical TLSs usually contain B
cells that are less activated than those in classical structures (14).
TLSs are distributed intratumorally and peritumorally and are
more abundant in the invasive margin than in the tumor core
(12). Intratumoral TLSs may have greater prognostic
significance, but this has not been widely established. In some
studies, intratumoral TLSs are a favorable prognosticator in
pancreatic cancer and hepatocellular carcinoma (20, 21). One
study proposed a hypothesis to explain the better prognosis of
intratumoral TLSs. Tumors with, rather than without,
intratumoral TLSs are less invasive, especially regarding blood
vessel invasion, and have a role related to the immune response.
These tumors retain a relatively complete vascular network to
transport immune cells and other molecules into the tumor and
initiate a more effective antitumor immune response (17).

Increasing evidence shows that TLSs play an important role in
controlling tumor invasion. Mature TLSs exhibit evidence for the
formation of GCs (24) and GC B cells in TLSs are characterized
by FDCs and Ki67+ proliferating B cells (51). Oligoclonal B cell
responses have been identified in melanoma, which suggests an
active humoral antitumor response within TLSs that is driven by
B cells (55). High PC counts are associated with higher numbers
of TLSs and B cells in breast cancer and neck carcinomas (56,
57). PCs surrounded by TLSs are associated with the highest
levels of TILs and cytotoxicity-related gene products in ovarian
cancer. This study showed that CD8+ TILs can predict prognosis
only in combination with PCs, CD20+ TILs, and CD4+ TILs,
suggesting that these four lymphocyte subsets work in concert to
Frontiers in Immunology | www.frontiersin.org 3
promote antitumor immunity, which indicates that TLSs may
facilitate coordinated antitumor responses involving the
combined actions of cytolytic T cells and PCs (58). B cells in
TLSs are organized and highly differentiated and can produce
tumor-specific antibodies in adenocarcinomas and ovarian
cancer (59). In omental metastases from ovarian cancer,
memory B lymphocytes essentially located within TLSs had
higher clonality and somatic hypermutation rates, and they
produced chemokines attracting DCs, T cells, and natural killer
(NK) cells. The density of B cells also correlated with that of
mature DCs in the stroma of tumors (53). Recent studies have
shown the important role of TLSs and B cells in immunotherapy.
The frequencies of memory B cells, PCs, and GC-like B cells in
the tumors of responders treated with immune checkpoint
blockade (ICB) therapy are significantly higher than those in
nonresponders. Increased B cell proliferation indicating GC
activity and formation within TLSs has been observed (60).
High expression of B-lineage markers is associated with
improved prognosis and TLS formation in sarcoma (61).
B cells within TLSs can predict favorable prognosis in
melanoma patients receiving ICB therapy. In addition, B cell-
rich tumors are associated with elevated levels of initial and
memory T cells. T cells in tumors without TLSs possess a
dysfunctional molecular phenotype, which indicates that TLSs
have a key role in the melanoma TME by conferring distinct T
cell phenotypes (62). In summary, these studies demonstrate a
major role of TLS-associated B cells in TLS function. B cells
probably act together with key immune constituents of TLSs by
altering T cell activation and function. Memory B cells may act as
FIGURE 1 | Main molecular and cellular mechanisms of TLS formation in tumors. The development of TLSs is similar to that of SLOs. A chronic inflammatory state
is sufficient to induce TLS formation in the absence of lymphoid tissue inducer (LTi) cells. Many immune cells can be used as LTi cells, such as B cells, DCs, M1
macrophages, Th17 cells, ILC3s, and TFH cells. Immune and stromal cell cross-talk mediates TLS formation mainly through the binding of lymphotoxin (LT) ab and
LTbR, which can further release many chemokines (CXCL13, CXCL12, CCL21, and CCL19) and adhesion molecules (VCAM1, ICAM1, and MADCAM1). These
chemokines recruit lymphocytes from HEVs and form T and B cell zones. ILC3s, group 3 innate lymphoid cells; VCAM1, vascular cell adhesion molecule 1; ICAM1,
intercellular adhesion molecule 1; MADCAM1, mucosal addressable cell adhesion molecule 1.
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antigen-presenting cells (APCs) to drive the expansion of both
memory and naive T cell responses. B cells can also activate and
recruit other immune effector cells by secreting an array of
cytokines (60). The potential functions of TLSs in the TME are
shown in Figure 2.

The existence of TLSs at metastatic tumor sites is the key
factor in the level of TILs, which directly determines the
antitumor effect (19). Moreover, the presence of TLSs led to
increased infiltration and activation of T cells and other immune
cells and was associated with a good prognosis in liver cancer and
pancreatic carcinoma (21, 63, 64). There is evidence that TLSs
can activate effector T cells in tumors (65). In MC38 tumors,
T cells from TLSs exhibited a largely enhanced baseline level of
IFN-g (interferon-gamma) release. This finding revealed
successful antitumor T cell priming activity within induced
TLSs, and TLSs may act as immune factories where T cells
activate effector cells to mediate synergistic antitumor effects
(66). Studies of lung and ovarian cancers showed that TLS-
associated DCs establish unique immune states characterized by
a strong T helper (Th) 1 orientation and facilitate a good
Frontiers in Immunology | www.frontiersin.org 4
prognosis, indicating that antigen presentation allows local T
cells to initiate responses to tumor-associated antigens in TLSs
(67, 68). Whether TLS-associated DCs present tumor antigens
directly to CD8+ T cells or whether CD4+ Th cells participate in
the production of CD8+ cytotoxic T cell responses in TLSs
remains to be further studied. TFH cells produce CXCL13,
potentially resulting in the formation of TLSs to trigger the GC
B cell response (69). FDCs can also produce chemokines and
cytokines involved in B cell proliferation and migration in LN,
such as interleukin (IL) -6 and CXCL13 (70). B cells produce
LTa1b2, which has a crucial function in the differentiation of
FDCs within TLSs (71).

HEVs in TLSs are associated with T and B cell infiltration and
indicate favorable outcomes in oral carcinoma and breast cancer
(72, 73). The emergence of HEVs also contributes to the
formation of TLSs (74). There is ample evidence that the
function of HEVs in TLSs is similar to that in LNs, providing
a channel for immune cells to accumulate in the tumor. HEVs in
TLSs express molecules similar to those expressed in LNs, such as
CCL21 and peripheral node addressing (PNAd), and cells
FIGURE 2 | Potential functions of tertiary lymphoid structures in the TME. As in canonical SLOs, TLSs may constitute a critical site where specific T and B cells can
undergo terminal differentiation into effector cells. GC B cells can differentiate into memory B cells and plasma cells in TLSs, and fully differentiated B cells and exert
their antitumor effects. T cells can differentiate and expand, and they are activated as effector cells that exert cytotoxic effects. B cells and T cells in TLSs may interact
with each other and play a synergistic role, which needs to be confirmed by more studies. Treg cells within TLSs could exert a negative influence on the capacity of
TLSs to generate effector and memory lymphocytes.
July 2021 | Volume 12 | Article 689270
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expressing CCR7 and L-selectin ligands for receptors on HEVs
are found in TLSs (75). PNAd expression indicates that HEVs
are essential for recruiting lymphocytes to lymphoid organs (76),
an event that orchestrates the extravasation of Lselectin+ and
CCR7+ immune cells into TLSs (77, 78). LTab plays a key role in
PNAd expression in HEV (79). Single-cell analysis revealed the
heterogeneity of HEVs in LN. LTbR signaling and inflammation
also have crucial effects on HEV transcriptomes (80). However,
the study showed that HEV neogenesis is dependent on tumor
necrosis factor receptor (TNFR) rather than LTbR signaling in
Treg-depleted tumors, suggesting another mechanism for HEV
formation. The expression of PNAd is not dependent on the
LTbR signal but is stimulated by activation of TNFRmediated by
LTa3 derived from CD8+ T cells (81). HEV formation is
associated with increased T and B lymphocyte infiltration and
activation inmurine pancreatic cancer andbreast cancer (82, 83). In
mouse models of melanoma and lung cancer, the LN-like
vasculature in tumors, characterized by the expression of PNAd
and chemokine CCL21, induced by effector lymphocytes allows
naive T cells to enter tumors and enhance antitumor immunity.
Vasculogenesis is regulated by amechanism involving CD8+ T cells
that secrete IFN-g and LTa3 (84). In summary, T cells may
contribute to the formation of the peripheral vasculature andHEV.

The Adverse Impact of TLSs on Tumors
Nevertheless, a few studies have indicated that TLSs have a
negative impact on prognosis in colorectal cancer and breast
cancer (25–27). The studies showed that TLSs that develop in the
inflamed liver during hepatitis can function as a niche for tumor
progenitor cells in hepatocellular carcinoma and are associated
with an increased risk of late recurrence and decreased survival.
It can be postulated that TLSs, which persist in the liver and are
associated with a viral infection, play a different role than TLSs
induced by tumors (25). Lymphoid aggregates are associated
with more advanced diseases and indicate an adverse prognosis
in colorectal cancers. These structures form in association with
more advanced tumors, suggesting that they are a reaction to
progressive tumor invasion, and their prognostic significance
varies with disease progression and according to the inherent
immunogenicity of the tumor (26). TLSs are associated with
adverse prognosis in renal carcinoma with lung metastasis. TLSs
are rarely found in lung metastasis of renal carcinoma, and
studies speculated that the presence of T cells may not be
educated in peritumoral TLSs but may reflect a chronic
inflammatory response, which is known to be harmful to the
host. At the same time, the high expression of vascular
endothelial growth factor (VEGF) and IL-6 genes in renal
carcinoma may also inhibit the differentiation of DCs, resulting
in an impaired T cell response and poor prognosis (85). TLS Treg
cells are detected in breast and colorectal cancers (86, 87). The
decrease in the number of TLS Treg cells is associated with tumor
regression in metastatic prostate cancer (88). Treg cells are
present in TLSs in tumor-bearing lungs and exhibit activated
phenotypes. Costimulatory ligand expression by DCs and T cell
proliferation rates increased in TLSs after Treg cell depletion,
enhancing the antitumor immune response. The reason may be
that Treg cells in TLSs regulate DC function by reducing
Frontiers in Immunology | www.frontiersin.org 5
costimulatory levels, the immunosuppression of Treg cells to
DCs is relieved after Treg cell depletion, and the TLS
microenvironment may become more immunostimulatory to
promote antitumor responses by T cells (54). The recruitment of
Treg cells and myeloid-derived suppressor cells (MDSCs) to
lymphoid aggregates in mouse B16 melanomas expressing
CCL21 was found to correlate with the promotion of tumor
growth (89). Therefore, TLS-associated Treg cells and MDSC
presence may exert a negative influence on the capacity of TLSs
to generate effector and memory lymphocytes.
DEVELOPMENT OF MULTIPLE
APPROACHES TO INDUCE THE
TLS FORMATION

A variety of LN modifications to improve the efficacy of tumor
immunotherapy have been widely discussed and researched.
Targeting LN can affect the efficacy of cancer vaccines, ICB
therapy, and adoptive cell transfer (ACT) at the cellular level.
Macroscopic biomaterials mimicking LN characteristics can be
used as immune niches for cell reprogramming and in vivo
transmission and can be used for preclinical testing of drugs and
vaccines in vitro at the tissue level (90). TLSs may be the first line
of T cell differentiation and expansion and are the key to
inducing intratumoral immune sensitization in situ. Therefore,
similar principles can be used for developing strategies to induce
TLS formation, and a new antitumor immune strategy can be
constructed. Although biomaterials for transporting or recruiting
APCs can mimic the cellular characteristics of SLOs, other
strategies aim to induce TLS formation specifically, as observed
in situ. These strategies aim to mimic the chemokine and
inflammatory signals of the main molecular and cellular
mechanisms of TLS formation. In the next section, we discuss
strategies that induce TLS formation through the delivery of
chemokine-expressing cells or chemokines, implantation of
biomaterial scaffolds containing these inflammatory factors and
agents, and multiple therapeutic approaches.

Chemokines and Cytokines
A chemokine delivery strategy for TLSs provides a convenient
way to generate ectopic lymphoid tissue in tumors. Recent
electronic screening techniques involving the identification of
TLS-related chemokine genes that induce lymphocyte
chemotaxis have offered a framework for a more effective
design of TLSs (91, 92). A 12-chemokine gene signature also
provided a promising starting point for the potential
construction of designed TLSs (93–96). In early studies,
chemokines produced by lymphoid structures were expressed
in various ways, which led to the formation of lymphoid tissue
structures. For example, transgenic mice expressed B lymphocyte
chemokines in pancreatic islets, and the expression of B
lymphocyte chemokines resulted in the formation of LN-like
structures that included HEVs, interstitial cells, and B and T cell
zones and illustrated that the maintenance of B lymphocyte
chemokine-induced lymphoid structures depends on LTbR
July 2021 | Volume 12 | Article 689270
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signaling (97). CCL21 exhibits a stronger capacity than CCL19 to
induce more organized infiltrates in the islets of transgenic mice
(98). Intratumoral injection of CCL21 facilitated lymphocyte
infiltration into pancreatic tumors (99), and targeting
lymphotoxin-a can induce lymphocyte infiltration and
lymphoid-like tissue formation in B16 melanoma (100). LN-
like lymphocyte infiltration was also found in transgenic mice
expressing CCL21 driven by the thyroglobulin promoter in the
thyroid gland and transgenic pancreas (101, 102). Type I
interferon can also drive B cell recruitment by CXCR5–
CXCL13 signaling and initiate ectopic GC formation within TLSs
in pulmonary virus infection (103). In the salivary glands of adult
mice, IL-7 regulates lymphatic vessel expansion and promotes the
neogenesis of TLSs in the first phase, and LTbR signaling regulates
TLS neogenesis in the second phase (104). Th17 cytokines can
regulate TLS development and function. For instance, IL-22
modulates CXCL12, CXCL13, and IL-23 production, contributing
to the formation of TLSs (105–107). In conclusion, these studies
show that many chemokines and cytokines involved in lymphoid
structure formation can be used as novel and feasible inducers in
combinationwith other stimulants andmultiplemethods to induce
the formation of TLSs.

LIGHT, the 14th member of the tumor necrosis factor
superfamily (TNFSF14), is a protein primarily expressed on
activated T cells and immature DCs (108). LIGHT can function
as both a soluble and cell surface-bound type II membrane
protein and interact with its two primary functional receptors:
Herpes Virus Entry Mediator and LTbR (109). LIGHT can
interact with Herpes Virus Entry Mediator and deliver co-
stimulatory signals to T cells (44). LTbR is found on the surface
of epithelial, stromal, and myeloid cells (110). LIGHT-LTbR
signaling plays an important role in immune responses,
functioning to repair tumor vasculature and to support effector
cells cell trafficking to and infiltration into tumors (111). Recently,
LTbR signal transduction induced by LIGHT has become a focus
of the investigation. When combined with an anti-VEGF
antibody, LIGHT can activate LTbR signaling and mediate
chemokine production to recruit T cells (112). In pancreatic
cancer, targeting LIGHT for homing to tumor vessels via a
vascular targeting peptide (VTP), LIGHT-VTP showed a dual
ability to induce TLS formation and regulate the angiogenic
vasculature (83). LIGHT targeting to tumor vessels induces
vessel normalization, and HEVs and TLS formation may occur
through a self-amplifying loop in pancreatic cancer. The
mechanism may involve the LIGHT-triggered expression of
inflammatory cytokines in macrophages, such as IL-1b, IL-6,
CXCL13, TNF, and CCL21, These chemokines further recruit T
cells. Macrophages and T cells have been deemed essential for
HEV and TLS formation (83, 113) (Figure 3A). LIGHT-VTP in
combination with ICB therapy can produce intratumoral memory
T cells and Teff cells and improve prognosis (114). In addition,
LIGHT-VTP combined with anti-VEGF and ICB therapy can
increase the frequency of HEVs and normalize tumor vessels and
the accumulation of T cells in glioblastoma and lung metastases
(115, 116). The LT-LIGHT axis provides key differentiation
signals guiding the differentiation of the reticular network and
vascular system, maintaining the mesenchymal differentiation
Frontiers in Immunology | www.frontiersin.org 6
pathway of the specialized network, and remodeling reactive
LNs (117). The LTbR signaling pathway plays a critical role in
HEV differentiation and function in LN (44). Because of the
similarity between SLOs and TLSs, it is speculated that LTbR
signaling is also involved in HEV differentiation and function in
TLSs. Further studies are required to understand the precise
mechanisms by which HEV formation in TLSs is induced and
the effects of HEVs on different types of cancer. This knowledge
may guide the therapeutic objectives of cancer interventions.
Other means can also be used to deliver LIGHT to tumor sites,
and the oncolytic activity of attenuated Salmonella Typhimurium
was enhanced by the stable insertion of the gene encoding
LIGHT. Attenuated S. Typhimurium expressing LIGHT
inhibited the growth of primary tumors and the spread of lung
metastasis (118). The findings suggest that avirulent bacteria can
be used as targeted carriers for the local production of therapeutic
proteins in tumors. In recent years, the potential use of exosomes
in the treatment and control of many diseases has expanded
because of their inherent characteristics in regulating complex
intracellular pathways. The characteristics of exosomes can also
be exploited to induce TLSs. Exosomes are extracellular vesicles
derived from endosomes and have a diameter of approximately
40-160 nm. They can carry a variety of substances, such as
proteins and DNA, to allow these substances to be absorbed by
other cells (119, 120). Therefore, we hypothesize that exosomes
can be used as carriers to load many chemokines and cytokines to
induce the formation of TLSs.

Toll-like receptors (TLRs) have also been researched concerning
TLS formation. Myofibroblasts were stimulated with TLR agonists
and cytokines in giant cell arteritis, which upregulated B cell-
activating factor and CXCL13 and resulted in the formation of
TLSs (121). Inhalation of TLR9 agonists can generate profound
remodeling of tumor-bearing lungs and lead to TLS formation in
adjacent tumors (122). In addition, both the anti-HBV response to
the TLR7 agonist GS-9620 and TLR4 agonists in mouse models of
myasthenia gravis can induce TLS generation (123, 124).
Transforming growth factor-b (TGF-b) plays a noncanonical role
in coordinating immune responses against ovarian cancer. CD8+ T
cells in the presence of TGF-b upregulate the secretion of CD103
and CXCL13, and CD8+ TILs play a role in mediating B cell
recruitment and TLS formation (125).

Cells
An alternative approach to produce TLSs is to deliver cells that
express chemokines or to engineer chemokines that are associated
with lymphomagenesis. DC-based therapeutic strategies can be
used therapeutically to promote the extranodal priming of
antitumor immunity (126). DCs expressing T cell chemokines
were injected into melanoma tumors, which yielded rapid T cell
infiltration and initiation of intratumor responses (127).
Additionally, intraperitoneal injection of murine DCs promoted
the acute infiltrationof immatureT cells andNKcells into theTME,
an effect related to upregulated expression of NK and T cell
recruitment chemokines by murine DCs (128). DCs engineered
tooverexpressT-bet suppressed the growthof sarcomas in vivo after
intratumoral injection and prolonged the overall survival of mice
(126, 128). DCs promote LT signaling through LTbR for HEV
July 2021 | Volume 12 | Article 689270
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differentiation and function in LN (129). DCs, which coordinate
adaptive immune responses, have historically been a promising
target. DCs are a source of LT, and homeostatic chemokines
(CXCL12, CXCL13, CCL19, and CCL21) are known to contribute
to TLS formation in the lungs of influenza virus-infected mice.
Similar to the depletion of DCs, blockade of LTbR signaling after
virus clearance leads to the disintegrationofTLSs andGCreactions.
It is suggested that the DC-mediated LTBR pathway contributes to
the formation of TLSs (36). Other methods have focused on
modifying and editing DCs to express the transcription factor T-
bet and secrete IL-36g to play a vital role. IL-36 cytokines are an IL-1
subfamily consisting of three agonists that signal through the
common heterodimeric receptor IL-36R (130), which is expressed
on endothelial cells and many immune cells, including T cells and
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DCs (131). IL-36g is involved in polarizing type-1 immune
responses. It is a downstream target of the type-1 transactivator
T-bet andcan induceT-bet expression in target cells (132).Research
has shown that IL-36g predominantly expressed by M1
macrophages and vasculature cells, including smooth muscle cells
andHEVs,mediates polarization towarda type1 immune response.
This pattern of IL-36g expression increased CD4+ central memory
T cell infiltrate and the density of B cells and led toTLS formation in
human colorectal cancer (133). The injection of tumors with DCs
engineered to secrete a bioactive form of mIL-36g also initiated
therapeutic TLS formation and slowed tumor progression in a
mouse model of colorectal carcinoma. Furthermore, DC.IL-36g
cells show strongly upregulated expression of T-bet, suggesting that
T-bet and IL-36g cooperate to reinforce each other’s expression in
A

B

C

FIGURE 3 | Strategies for therapeutic induction of TLS formation. TLS inducers, such as chemokines, cytokines, DCs, and therapeutic approaches, can induce TLS
formation in different ways. (A) Cytokines and chemokines involved in lymphogenesis, including LIGHT, CCL21, CXCL13, LT, and IFN-g, can lead to the formation of
TLSs. LIGHT-VTP targeting tumor vessels can induce vessel normalization, and HEV and TLS formation may occur through a self-amplifying loop. The mechanism
may be related to the LIGHT-triggered expression of the inflammatory cytokines IL-6, TNF, and CCL21 in macrophages. These chemokines can recruit T cells.
Macrophages and T cells play an important role in the formation of HEVs and TLSs (83). HEV formation and vascular normalization can also recruit more immune
cells. (B) Some immune cells, such as modified DCs and stromal cells, leading to the formation of TLSs. DCs engineered to secrete IL-36g also initiate therapeutic
TLS formation, which can upregulate the expression of T-bet. T-bet and IL-36g cooperate to reinforce their expression and recruit immune cells, leading to TLS
formation. DCs modified with the CCL21 gene can significantly increase T cell infiltration. Activated DCs can also upregulate many factors associated with TLS
formation. (C) Biomaterials can provide 3D scaffolds in situ and deliver cells and chemokines. Collagen scaffolds containing LT, CCL21, CXCL13, and activated DCs
were transplanted into mice. The recruited lymphocytes can form artificial lymph node structures.
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DCs, rendering them competent to promote TLS formation in the
therapeuticTME(134) (Figure3B). In lungcancer, autologousDCs
transduced with an adenoviral vectormodified with the CCL21 gene
significantly reduced the tumor load and T cell infiltration (135),
accompanied by enhanced expression of IFN-g, IL-12, and CXCL10,
as well as molecules related to reduced immunosuppression in the
TME (136). Mice vaccinated with DCs charged with apoptotic/
necrotic B16 cells are protected against B16 challenge, and TLSs
form at the vaccination site (137). In conclusion, DCs play an
important role in inducing TLS formation. These results provide a
framework for the usage of DCs. Promoting the expression of
multiple chemokines by targeting DCs is a valuable strategy to
induce TLS formation.

LTi-like cells from newborn mouse LNs were injected
intradermally into adult mice and formed TLSs in the skin, and
the results indicated that hyperactivated lymphocytes can fulfill the
role of LTi cells during inflammatory responses (138).
Subcutaneous injection of the LN-derived stromal cell line
resulted in the formation of TLSs that promote infiltration of
immune cell subsets and inhibit tumor growth by improving the
antitumor activity of TILs (66). Lymphoid tissue-like organoids
were constructed by transplantation of stromal cells embedded in
biocompatible scaffolds into the renal subcapsular space in mice.
The structure is similar to that of SLOs and contains clusters of B
and T cells and HEVs, DCs, and FDC networks (139). Other cells,
such as immune fibroblasts, bone marrowmesenchymal stem cells
(MSCs), adipocytes, and macrophages, also play their roles.
Research on autoimmune conditions demonstrated that external
triggers at mucosal sites can induce gradual differentiation of
stromal cell populations into immune fibroblast networks, which
supports the establishment of TLSs at an early stage. This process is
mediatedmainlybyparacrine andautocrine signals regulatedby IL-
13. Once lymphocytes are recruited, the initial fibroblast network is
expanded by local production of IL-22 and lymphotoxin. This
finding demonstrates the role of immunefibroblasts inmaintaining
TLS and supporting their formation and identifies new therapeutic
targets (140). Human MSCs stimulated with TNF-a and IL-1b
significantly increased the expression of CCL19, VCAM1, ICAM1.
StimulatedMSCs can induceCD4+T cell proliferation.MSCs could
play a key role asLTo cells inpromoting the early inflammatory and
initiating the formation of kidney-specific TLSs (141). Mucosa-
resident CXCL13+CX3CR1hi macrophages are responsible for
recruiting B cells and CD4+ T cells to sites of Salmonella invasion
and subsequently activating them, resulting in TLS formation and a
local pathogen-specific IgA response (142). Recently, the
combination of TNF-a and lipopolysaccharide was shown to
directly induce adipocytes to produce TLS-related chemokines,
thereby coordinating the formation of functional TLSs in the
mesentery affected by Crohn’s disease (143). In summary, these
studies have further proved the various initiating factors and
mechanisms of the formation of TLSs and provided more
references and insights for inducing the TLS formation.

Biomaterials
Biomaterials can support the formation of TLSs by locally and
controllably releasing chemokines and providing cellular
Frontiers in Immunology | www.frontiersin.org 8
support. Scaffolds are usually three-dimensional microporous
structures designed to achieve cell encapsulation in vitro or cell
penetration in vivo while providing mechanical support, cell
adhesion capability, and a continuous supply of biological cues to
promote cell migration and interaction (144). Biomaterial
scaffolds can boost the efficacy of immunotherapies, such as
cancer vaccines and ACT (145–147). For instance, biomaterials
loaded with signaling molecules and engineered T cells have been
evaluated in vitro. These biomaterials were surgically implanted
near the tumor or under a resected tumor bed, where they
maintained continuous proliferation and release of specific T
cells (148).

In early cases, collagen scaffolds containing both thymus-
derived stromal cells expressing LTa and activated DCs were
transplanted into the renal subcapsular space of mice. The
recruited lymphocytes formed artificial lymph nodes (ALN)
structures, which contained FDC, T cell, and B cell regions and
HEV-like structures. ALN induced a potent immune response in
vivo and the accumulation of memory and effector T and B cells.
The engineered structures elicited a humoral response after
vaccination and could be transplanted into immunodeficient
mice to secrete antibodies after secondary immunization (139,
149, 150) (Figure 3C). Based on this strategy, cell-free
biomaterials have been explored. Hydrogels can provide a
controlled cellular microenvironment for immune cells so that
they can be recruited, expanded, and activated in vitro and in vivo
(151). Hydrogels can be used to deliver antigens, chemokines, and
other factors toDCsand induceTandB cell responses, and they can
effectively encapsulate immunomodulators and immune cells. DCs
canbeactivated in vitro inhydrogelsbefore implantationandcanbe
recruited and activated in gels by immobilized stimulators, as in a
bioreactor (152, 153). In another study, collagen sponge scaffolds
embeddedwith sustained-release gel beads containingLTa1b2, and
many chemokines were transplanted into the subcapsular space of
mice to establish ALN-like TLSs, recruiting memory T cells and B
cells and induced a strong antigen-specific immune response (154).
A synthetic immune priming center consisting of an in situ cross-
linking hydrogel delivering chemokines and particles loaded with
DNAand siRNAcanattractnumerousDCsandcanbothgenerate a
strong transition to a T helper 1 response and increase the cytotoxic
T lymphocyte (CTL) response. The multimode injectable system
can simultaneously deliver chemokines, DNA, and siRNA antigens
to DCs. This system constitutes a novel strategy to regulate
immunotherapy in situ and could provide an effective vaccine
strategy to prevent cancer (155).

Other biomaterials include polylactide-coglycolide (PLG),
nano-sapper, and nanoparticles. A macroporous PLG matrix was
used to deliver granulocyte-macrophage colony-stimulating factor
(GM-CSF), tumor antigens, and danger signals in vivo. GM-CSF
recruitedDCs and significantly enhanced their homing to LNs, and
danger signals and cancer antigens further activated the recruited
DCs. These materials elicited protective antitumor immunity and
showed prospects as cancer vaccines (156). A study demonstrated
improved immune function by targeting DCs with adjuvant vector
cells engineered fromMKT cell ligands loaded with tumor antigen
mRNAs.Thismethodalso enhanced the local immune response via
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TLS formation (157). Importantly, these polymersmay be designed
to program the transport of various types of cells in vivo. Nano-
sapper was co-loaded with an antifibrotic protein and a plasmid
expressingLIGHT.Bynormalizing the tumor vasculature, reducing
collagen deposition, and stimulating the expression of lymphocyte-
recruiting chemokines, Nano-sapper induces TLS formation to
promote CTL infiltration and remodel the TME (158).
Recognition of ectopic HEVs in human pancreatic ductal
adenocarcinoma by engineered MECA79-coated nanoparticles
can increase the transport of Taxol to the tumor and distinctly
reduce tumor growth (159). Nanomaterials are promising for
inducing TLS formation. Local delivery of engineered
biomaterials can play a role by establishing synthetic immune
niches to enhance antitumor immunity. Immunotherapy based
on biomaterials will facilitate the development of the next
generation of tumor therapies.

Other Therapeutic Approaches
Multiple cancer therapeutic strategies, such as cancer vaccines,
ICB therapy, antiangiogenic therapy, radiotherapy, and
chemotherapy, contribute to TLS formation. After therapeutic
vaccination against human papillomavirus serotype 16 with E6/
E7 antigens, significant immune changes in the TME were
observed in subjects with CIN2/3, and TLSs formed in the
immune-infiltrated cervical tissues. At the molecular level,
these histological changes in the matrix were characterized by
increased gene expression and associated with immune
activation (CXCR3) and effector function (T-bet and IFN-b)
(160). A prominent study of patients with resected pancreatic
cancer showed that 33 of the 39 patients treated with the GM-
CSF vaccine exhibited TLS formation after 2 weeks. Further
analysis showed that these structures could regulate adaptive
immunity. Inhibition of the Treg signaling pathway and
enhancement of the Th17 signaling pathway in TLS aggregates
were associated with increased survival and intratumoral Teff: Treg
ratios and upregulation of the mechanism of immunosuppression
(161). The findings help to guide the production of the next
generation of effective cancer vaccines and facilitate better
responses to ICB therapy. TLSs containing lymphocytes and APCs
appeared in all 11 patients who received cisplatin neoadjuvant
chemotherapy in a study on hepatoblastoma, indicating that
cisplatin can induce TLS infiltration and synergistically induce the
death of immunogenic cells and trigger an antitumor immune
response. This may involve so-called immunogenic cell death, a
controlled cell death process that produces damage-associated
molecular patterns that can be used as adjuvants to initiate an
immune response through the recruitment and activation of DCs
(162). Administration of preoperative chemoradiotherapy
(neoadjuvant chemotherapy, NAC) was associated with increased
TLS formation andmay affect the immunological composition of the
TME and confer a favorable prognosis in patients with pancreatic
ductal adenocarcinoma (163). However, corticosteroid therapy
during chemotherapy impaired GC formation and reduced TLS
prognostic value in patients with lung cancer (164). After
radiotherapy, apoptosis in tumors with TLSs increased
significantly. The TLSs also showed an acute increase in apoptosis
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and size reduction. Although their size tended to normalize after 2
weeks, the apoptotic rate remained high, suggesting active and
continuous proliferation in residual irradiated cells and providing
them with a window to optimize their unique function (165). Low-
dose stimulator of interferon genes (STING) agonist treatment can
upregulate the expression of various cytokines and increase the
infiltration of T cells and DCs to establish a proinflammatory
TME, which can also lead to normalization of the tumor
vasculature, ultimately inducing the formation of TLSs and
controlling tumor growth. Stimulating DC maturation and local
production of vascular normalization-promoting and TLS-
promoting factors, such as CCL19, CCL21, LTa, LTb, and LIGHT
(166).Astudy showed thatTregeliminationcanactivateCD8+Tcells
and promote the development of HEVs in tumors. The study
proposed a model in which a positive feedback loop of T cell
activation by Treg cell depletion can promote HEV development, T
cell infiltration, and tumor destruction (81). A prostate cancer study
showed thatTregcells andcyclooxygenase2areattractive therapeutic
targets that can be used to strengthen TLS-driven tumor immunity.
In particular, the existence of HEVs and lymphatic vessels suggests
that TLSs can also be used as a platform for cell-based or
cyclooxygenase 2 blockade therapy to control tumor growth (88).

PD-L1+, PD-L2+, LAG3+, and TIM3+ cells were detected in
some breast cancer-related TLSs, and PD-1 was used as a marker
of T cell activity in both the T and B cell areas in TLSs. The
expression levels of immune checkpoint molecules were
associated with the level of TILs and TLS formation (167). In a
group of patients with renal carcinoma, the low expression of
immune checkpoints and the localization of mature DCs in TLSs
are associated with a better prognosis (168) (NCT03387761).
Recently, some prominent studies have shown that B cell and
TLS formation promote the immunotherapy response in patients
with melanoma and sarcoma after ICB therapy (60–62). In a
study of locoregionally advanced urothelial carcinoma, the
formation of TLSs was observed in responding patients after
treatment with combined CTLA-4 and PD-1 blockade therapy,
which could be an effective preoperative treatment strategy (169).
Another study compared the metabolic, transcriptional, and
functional characteristics of intratumoral CD8+ T cell subtypes
with high, moderate, and no PD-1 expression from patients with
non-small cell lung carcinoma. PD-1+ high T lymphocytes
produce CXCL13, which mediates the recruitment of immune
cells to TLSs and has the potential to be predicted after treatment
with PD-1 blockade therapy (170). Combination therapy with
anti-VEGFR2 and anti-PD-L1 antibodies can induce HEV
formation in pancreatic and breast cancer. LTbR signaling
plays an important role in the generation and activation of
tumor HEVs. HEV formation can increase the activity of
CTLs, which makes tumors sensitive to ICB therapy (82). An
anti-mouse LTbR agonistic antibody increased TIL infiltration in
a mouse model of colon cancer. Agonistic monoclonal antibodies
targeting LTbR are a novel method for treating colorectal cancer
and potentially other types of cancer (171). Considering that the
formation of TLSs is strongly related to the LTBR signaling
pathway, targeting LTbR can also be used as an approach to
induce TLS formation and enhance antitumor immunity.
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TLSs formation induced by multiple therapeutic strategies
may involve a complex network of mechanisms, such as various
types of cells, chemokines, and molecular mechanisms. We
speculate that the main reason for TLS formation may be that
the immune suppression in the TME is relieved after multiple
therapeutic strategies, and the function of many immune cells
can be restored. These cells interact with each other to activate
LTbR signaling and other pathways and induce the production
of various chemokines and cytokines, which can ultimately lead
to the formation of TLSs. TLSs formation further enhances
antitumor immunity, which may explain why the existence of
TLSs is related to a more favorable prognosis after therapy.
CONCLUSION AND FUTURE PERSPECTIVES

In summary, current research has revealed the significance of
TLSs in tumor immunotherapy. TLSs may constitute a privileged
niche for educating T cells and B cells, which can activate and
enhance immune responses. Although the major cellular and
molecular mechanisms of TLSs have been elucidated, how to
utilize them as an important part of the immune-related cancer
control strategy is still being developed. Targeting the molecular
pathways of TLSs development to induce formation is a
promising immunotherapeutic strategy, which may directly
enhance the antitumor response in situ. HEV induction
Frontiers in Immunology | www.frontiersin.org 10
therapy deserves more research in the design of new
immunotherapies, and a more in-depth understanding of the
mechanisms in terms of the types of cytokines and chemokines
leading to the formation of HEVs in different types of cancer is
needed. In the future, we need to focus on the combination of
methods inducing HEV and TLSs formation with new
therapeutic strategies that can alleviate immunosuppression,
such as chemotherapies, radiotherapies, and ICB therapies.
These strategies may promote the formation of TLSs as well to
synergistically enhance adaptive immunity and provide insight
into ultimately effective immune-mediated tumor control.
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Tertiary Lymphoid Structures: Gene-Expression Profiling and Their
Bioengineering. Front Immunol (2017) 8:767. doi: 10.3389/fimmu.2017.00767

93. Yagawa Y, Robertson-Tessi M, Zhou SL, Anderson ARA, Mulé JJ, Mailloux
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