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Two-dimensional (2D) materials have emerged as an important class of nanomaterials for
technological innovation due to their remarkable physicochemical properties, including
sheet-like morphology and minimal thickness, high surface area, tuneable chemical
composition, and surface functionalization. These materials are being proposed for new
applications in energy, health, and the environment; these are all strategic society sectors
toward sustainable development. Specifically, 2D materials for nano-imaging have shown
exciting opportunities in in vitro and in vivo models, providing novel molecular imaging
techniques such as computed tomography, magnetic resonance imaging, fluorescence
and luminescence optical imaging and others. Therefore, given the growing interest in 2D
materials, it is mandatory to evaluate their impact on the immune system in a broader
sense, because it is responsible for detecting and eliminating foreign agents in living
organisms. This mini-review presents an overview on the frontier of research involving 2D
materials applications, nano-imaging and their immunosafety aspects. Finally, we highlight
the importance of nanoinformatics approaches and computational modeling for a deeper
understanding of the links between nanomaterial physicochemical properties and
biological responses (immunotoxicity/biocompatibility) towards enabling immunosafety-
by-design 2D materials.

Keywords: nanomaterials, bioimaging, immunotoxicity, nanobiotechnology, nanosafety
INTRODUCTION

Two-dimensional (2D) materials constitutes an emerging class of nanomaterials, characterized
mainly by their high surface-area-to-mass ratio due to a sheet-like morphology; responsible for their
outstanding physicochemical properties (e.g., electronic, optical, mechanical, and magnetic) with a
currently leading position in materials science and technology (1, 2). Since the pioneering work of
org June 2021 | Volume 12 | Article 6895191
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Novoselov et al. (3) in 2004, several 2D materials have been
produced for many applications in energy, catalysis, composites,
sensors, biomedicine, agriculture, and environmental
remmediation (4–7).

Beyond graphene-based materials (GBMs), other 2D
materials have also emerged, by replacing carbon elements for
other heteroatoms (P, B, O, and N) (8). Black phosphorus (BP),
transition metal dichalcogenides (TMDs), transition metal
carbides, nitrides, and carbonitrides (MXenes), layered double
hydroxides (LDHs), antimonenes (AM), boron nitride
nanosheets (BNNs) are the most common graphene analogs
under investigation (9–17).

Among several applications, 2D materials have attracted
special interest to be applied in the bioimaging field because of
their high electrical and thermal conductivity, high degree of
anisotropy, exceptional mechanical strength, and unique
optical properties (18). Due to such properties, 2D materials
have been developed to be applied in molecular imaging
techniques, such as computed tomography (CT), magnetic
resonance imaging (MRI), optical imaging (fluorescence and
luminescence), and nuclear imaging including positron
emission tomography (PET) and single photon emission
computed tomography (SPECT) (19). Besides, 2D materials
allow multimodal imaging by providing a variety of properties
useful for more than one imaging technique and/or because of
their facility to combine them to form nanocomposites and
hybrid materials (20). Given the applicability and growing
interests in 2D materials, unveiling their impact on the
immune system is a key step towards safe use and responsible
innovation (21, 22). These materials’ intrinsic characteristics,
such as chemica l composi t ion , surface chemistry ,
functionalization, morphology, lateral size, purity, and
crystallinity are directed related to their degradability,
dispersion stability, and protein corona profile; hence, their
adverse effects in a biological system (23–26). Such parameters
modulate the biotransformation and biodistribution of 2D
materials under in vitro and in vivo models, influencing their
interaction with the immune system, fate, and toxicological
profile (27–30).

Biocompatibility, biodegradability, and eliciting an adequate
biological effect in the organisms are crucial to the applicability
of 2D materials (22, 24, 31). Indeed, the complexity of
toxicokinetic and toxicodynamic events of 2D materials under
physiological conditions associated with a lack of harmonized
protocols for experimental research represents majors challenges
for clinical translation and safety regulation involving these
emerging materials (32–35). Therefore, combining systems
toxicology and nanoinformatics is a foremost strategy in the
integration of 2D material design on a safe and sustainable basis
(36–38).

In this mini-review, we present the recent advances involving
2D materials, nano-imaging, and immunosafety. Briefly, the
main findings associated with the adverse immunological
effects were shown in in vitro and in vivo models. Finally, we
highlight the great potential of nanoinformatics approaches
towards immunosafety-by-design 2D materials (Figure 1).
Frontiers in Immunology | www.frontiersin.org 2
TECHNOLOGICAL APPLICATIONS AND
INNOVATION OF 2D MATERIALS

A literature review on the Web of Science™ database was
performed, considering articles published from 2000 to 2021
(25/03/2021), and over these last 20 years, many 2D materials
have been synthesized as exemplified in Figure 2A. The number
of publications of 2D materials and their applications is growing,
in which nano-imaging and drug release systems stand out and
are present mostly in the health sector (Figures 2B, D). For
energy application, the structural and electronic properties of 2D
materials have been shown to improve the energy accumulation
in devices such as lithium-ion, metal-air batteries (LIBs) (9, 39,
49, 50) and electrochemical devices (51, 52). Moreover, these 2D
materials are of particular interest as catalysts and nanoscale
substrates, replacing transition, or noble metals normally used to
catalyze an acid-basic reaction, producing metal free-catalysts
(53, 54). In environment, the 2D materials have been used as
adsorbents for removing pollutants to treat contaminated water
(55–57). Their atomic thickness and antibacterial activity
contribute to superior water permeability and anti-fouling
capacity in the development of membranes for desalination
(58–62) and cleaning purposes (63–65). Sensing has covered
both environmental and health sectors, contributing to the
detection and monitoring of traces of pollutants (66, 67) and
blood biomarkers (68–71). The thin structure, large surface area,
chemical modifications and quenching ability of 2D materials
provide high sensitivity, durability, stability, selectivity, and
conductivity for sensors and biosensors (72–82).

Considering biomedical applications, 2D materials have been
applied in bone tissue engineering, conferring improved
mechanical characteristics and great osteoconductivity for
scaffold design (83–87). However, due to the higher surface
area of 2D materials and distinguish light-material interactions,
research has mostly given attention to their usefulness in nano-
imaging and therapeutics (theranostics) (88) (Figures 2B, C),
including early detection, monitoring, and treatment of diseases,
which are the main examples described in this mini-review (89).
For example, in cancer, malign tumors are sensitive to heating
when compared to healthy tissues. Graphene oxide decorated
with gold nanoparticles (GO-AuNPs), TMDs (MoS2, WS2), and
MXenes (MoC2, Ti3C2) have shown effective agents in
photothermal and photodynamic therapy for inducing tumor
necrosis (40, 41, 90–92). 2D materials have been successfully
modified with numerous polymers to enhance their
cytocompatibility and dispersibility (90) and used as
nanoplatforms carrying active molecules or imaging agents to
improve their biological function (93) and clinical visualization
for imaging-drug delivery guiding (12, 94). MoS2 and BNNs have
been employed as effective fluorescence quenchers and
associated with aptamers, substituting antibody-based therapy
(69, 95–97). Compared to the other 2D inorganic materials, and
in addition to the previous features, the ultrathin structure of the
BP nanosheets results in an exceptional biodegradability in
physiological media it shows promising in theranostics (98,
99). Magnetic nanoparticles have been used as contrast agents
June 2021 | Volume 12 | Article 689519
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and incorporated into 2D materials in MRI, in place of
conventional ones (100, 101). In this respect, 2D magnetic
materials production can be very useful for accurate
bioimaging and therapy of diseases in vivo using MRI and CT
techniques (10, 102).
2D MATERIALS AND THE IMMUNE
SYSTEM: ADVERSE EFFECTS IN
IN VITRO AND IN VIVO MODELS

As far as it is known, 2D materials have proven their significance
and innovation perspective in almost all industrial areas and
sectors, making it imperative to assess their environmental
health risks and safety aspects (24, 103–105). However,
toxicological studies, including immunotoxicity, are still in
their infancy for GBMs and 2D inorganic materials (31).
Table 1 is an extensive literature revision reporting major
findings of 2D materials and their adverse effects in the
Frontiers in Immunology | www.frontiersin.org 3
immunological system considering in vitro and in vivo models.
The terms used for the literature research is detailed in the
supplementary material.

Studies have demonstrated that 2D materials can induce
immunological system activation with a consequent induction
of an inflammatory response (145). This immunological system
activation showed itself to be dependent of the 2D materials’
physicochemical properties, such as size (106–109, 144), surface
chemistry (114, 115, 123), number of layers, shape (118, 119), and
functionalization (109, 112, 114, 128, 135, 139). For example, Yue
et al. (106) demonstrated that larger graphene oxide (GO) (2 µm)
has induced a higher immunological activation than smaller GO
(350 nm) both in vitro (peritoneal macrophages) and in vivo
(C57BL/6 mice). Similarly, Ma et al. (107) showed a lateral-size-
dependent pro-inflammatory effect of GO under in vitro and in
vivo conditions, wherein the largest GO (L-GO; 750–1300 nm)
elicit higher inflammatory response than smallest GO (S-GO; 50–
350 nm). Moreover, the mechanism of inflammation has also
differed according to the lateral size, with L-GO being more prone
to plasma membrane adsorption and the toll-like receptors
FIGURE 1 | Two-dimensional materials applications, nano-imaging and their links with immunosafety and nanoinformatics approaches.
June 2021 | Volume 12 | Article 689519
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(TLRs) and nuclear factor-kB (NF-kB) pathways activation,
whereas S-GO was mostly taken up by macrophages. In
another study that investigated the effects of small GO (S-GO <
1 µm) and large GO (L-GO, 1–10 µm) on human peripheral
immune cells, it was found that the S-GO has a more significant
impact on the upregulation of critical genes implicated in
immune responses and the release of cytokines IL1b and TNFa
compared to L-GO (108). However, it is important to clarify here
that the S-GO in this study presented similar lateral size of the L-
GO in the previous studies cited, which means that all these
studies are in agreement, and we may erroneously interpret them
because attention to the lateral size was not devoted. Indeed, a
nomenclature harmonization of GBMs is urgently needed to
allow a clear understanding on the impacts of GBM
physicochemical properties on their biocompatibility.

Besides to assess the effect of lateral size, Duarte and
coworkers (109) investigated the impacts of two different
surfaces functionalization: pegylated graphene oxide (GO-PEG,
Frontiers in Immunology | www.frontiersin.org 4
200–500 nm) and flavin mononucleotide-stabilized pristine
graphene with two different sizes (200–400 nm and 100–200
nm). Their results showed that the cellular uptake of GBMs was
mainly influenced by their lateral size, with smaller particles
showing greater internalization, while the inflammatory
response depended also on the type of functionalization, with
GO-PEG showing the lower pro-inflammatory potential. This
study corroborates in number previous ones that also showed an
increased biocompatibility of GO due to the pegylation (GO-
PEG) (110, 111). Similarly, Xie et al. (139) studied PEG coated
2D titanium nanosheets (TiNS-PEG) and reported no indication
of inflammation and other negative impacts. Moreover, the
material was promising for photothermal tumor therapy and
presented a high contrast for in vivo imaging. However, Gu et al.
(129) found that MoS2 and PEGylated MoS2 induced a robust
macrophage immune response, with PEG-MoS2 eliciting
stronger cytokine secretion than the pristine MoS2. By
per forming molecular dynamics s imulat ions , they
A

B C

D

FIGURE 2 | The data obtained previously was organized into the following sectors: health (bone tissue engineering, drug delivery, imaging, sensing blood markers),
energy (catalysis and energy storage), and environment (water remediation and desalination, and water sensing contaminants). (A) Timeline showing examples of 2D
materials produced over the period established (from 2000 to 2021). (B) Number of articles from 2000 to 2021 (25/03/2021) (C) 2D materials used in nano-imaging
applications (see supporting information) (D) Percentage of 2D materials applied in health, energy and environment sectors.
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TABLE 1 | Relevant studies addressing the adverse immunological effects of 2D materials in in vitro and in vivo models from 2000 to 2021.

Nanomaterial Dose Exposure
time

in vivo/in vitro
models

Method or endpoints Adverse immunological effects Ref.

Graphene oxide
(GO) (lateral size of
350 nm and 2 µm)

2, 4, and 6 µg
ml−1

24, 48,
and 96 h

peritoneal
macrophage

Secretion of pro-inflammatory
cytokines (IL-6, IL-10, IL-12,
TNF-a, MCP-1, and IFN-ɤ)

Dose-dependent release of cytokines induced in a
higher extent by 2 µm GO than 350 nm GO.

(106)

– 21 days C57BL/6 male
mice

Histological micrographics Mononuclear cells (i.e. macrophages and lymphocytes)
infiltration and inflammation response induced by 2 µm
GO, but not by 350 nm GO.

GO (smallest S-GO
50–350 nm;
intermediate I-GO
350–750 nm; largest
L-GO 750–1300 nm)

Viability: 1-300
µg ml−1;
Others: 20 µg
ml−1

12, 24 h J774.A1 and
THP-1
macrophages

Live/dead assay, TNF-a, IL-6
and IL1b release; and
macrophage polarization, NF-kB
signaling activation.

All GO materials have induced a decrease in cell
viability, and a production of cytokines. The L-GO
significantly elicited higher response than S-GO. Higher
macrophage polarization to the M1 phenotype by L-GO
than S-GO.

(107)

Ip1: 5000 mg
kg−1 bw;
Lung2: 2500
mg kg−1 bw;
It3: 5000 mg
kg−1 bw

Ip: 72 h;
Lung:
72 h; It: 24
h

BALB/c male
mice

Local and systemic
inflammation: TNF-a, IL6
release, recruitment of immune
cell.

Both S-GO and L-GO have induced an inflammatory
response by cytokines production and leukocytes
recruitment, been the L-GO response higher than the
S-GO response in all endpoints.

GO S-GO (<1 µm)
L-GO (1-10 µM)

25, 50, and 75
µg ml−1

24 h PBMCs,
Jurkat and
THP-1 cells

Annexin-V FITC (apoptosis),
LIVE/DEAD FITC (late apoptosis
and necrosis), and propidium
iodide (necrosis), cell activation
(expression of CD69 and CD25
markers), cytokine release,
expression of 84 genes related
to innate and adaptive immune
responses

Only S-GO presented a decrease in cell viability at
highest dose (75 µg/ml). None of GO tested have
induced the cell activation (expression of CD69 and
CD25 markers). However, both GO induced cytokines
release and upregulation of genes related to immune
response, being that the S-GO response was
significantly higher compared to L-GO response.

(108)

GO-PEG (200-500
nm) and PG-FMN
(L) (200-400 nm)
and PG-FMN (S)
(100-200 nm)

10 mg ml−1 24 h RAW-264.7
macrophages

Cellular uptake, nitric oxide
production, NMR metabolic
profiling, expression of cell
surface markers CD80 and
CD206.

PG-FMN (S) was internalized in a greater extent
compared to GO-PEG and PG-FMN (L), which
presented a similar uptake. GO-PEG did not induce NO
production, whereas PG-FMN (S) and PG-FMN (L)
caused significant NO increases of 21% and 12%,
respectively. Only PG-FMN (S) caused increases in
intracellular succinate and itaconate, similarly to LPS,
while PG-FMN (L) did not alter the levels of TCA cycle
intermediates and GO-PEG caused a decrease of
succinate. Besides, GO-PEG decreased the TNF-a
secretion compared to control cell, and do not affected
the cell surface markers.

(109)

GO-PEG (200-500
nm)

40 and 80 mg
ml−1

24 and 48
h

Murine
peritoneal
macrophages

Cell surface markers of M1
(CD80 and iNOS) and M2
(CD206 and CD163)
phenotypes.

PEG-GO did not induce the macrophage polarization
towards the M1 pro-inflammatory phenotype, with a
slight shift towards M2 reparative phenotype.

(110)

GO-1PEG (~100
nm) GO-6PEG
(~300 nm)

2.3–75 µg ml−1 24 h RAW-264.7
macrophages
and primary
splenocytes
(B-cells and T-
cells)

Proinflammatory cytokine
secretion (IL-1b, TNF-a and IL-
6) and proliferation of immune
cells.

Only GO-6PEG increased the secretion of TNF-a by
RAW-264.7 macrophages without alteration of IL-6 and
IL-1b levels. The treatment of primary splenocytes with
GO-1PEG and GO-6PEG in the presence of
concanavalin A, anti-CD3 antibody, and LPS, produced
significant dose-dependent decrease of cell proliferation
and IL-6 levels.

(111)

GO and PVP
coated-GO

25, 50, and
100 µg ml−1

48 h Human DC,
macrophages
and T cells

Differentiation and maturation of
DC cells, cytokine release,
apoptosis of T cells, and
phagocytosis

GO induced the differentiation and maturation of DC
cells; a dose-dependent release of pro-inflammatory
cytokines by DC cells; a dose-dependent apoptosis of
T cells; and a susceptibility of phagocytosis by
macrophages. The coating with PVP has reduced the
cytokines secretion and the differentiation and
maturation of DC cells; delayed the apoptotic process
of T cells; and avoid the phagocytosis by macrophages.

(112)

(Continued)
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TABLE 1 | Continued

Nanomaterial Dose Exposure
time

in vivo/in vitro
models

Method or endpoints Adverse immunological effects Ref.

GO GO-NH2, GO-
PAM, GO-PAA GO-
PEG

1, 2, 4, 10, 20,
50, 100, or
200 mg ml−1

1, 6, and
24 h

J774A.1 cell
line

Viability, cellular adhesion,
uptake, membrane permeability
and fluidity, Ca2+ flux and
transcriptome analysis.

GO caused the impairment of cell membrane integrity
and functions including regulation of membrane- and
cytoskeleton- associated genes, membrane
permeability, fluidity, and ion channels. The -NH2 and
-PAA showed similar toxicity to GO, but -PEG and
-PAA significantly decreased the GO cytotoxicity.

(113)

It: 1 mg kg−1 24 h Male BALB/c
mice

Survival, body weight increase,
complete blood count (numbers
of RBC, WBC, PLT, neutrophils,
lymphocyte), blood
biochemistry, GO distribution,
histological analysis of lung, liver
and spleen.

GO induced platelet depletion, pro-inflammatory
response and pathological changes of lung and liver in
mice. The -NH2, -PAA and -PEG modifications greatly
reduced the toxicity of GO in mice. The -PAM
modification was more toxic than pristine GO.

GO and reduced
GO (rGO) (100 nm)

20, 40, 60, 80,
and 100 µg
ml−1

24 h THP-1 cells Cellular viability, proliferation,
oxidative stress, mitochondrial
membrane potential, ATP
synthesis, antioxidants,
apoptosis, DNA damage, and
the inflammation response

Both GO and rGO caused dose-dependent loss of cell
viability and proliferation, increased level of LDH, MMP,
decreased level of ATP content, redox imbalance,
mitochondria-mediated apoptosis, cell death due to
oxidative stress, increased secretion of various
cytokines and chemokines. Overall, the toxic response
of rGO was more severe than GO for all endpoints.

(114)

GO nanoplatelets
(GONPs) and
reduced GONPs
(rGONPs)

GONP (5 µg
ml−1) or
rGONP (50 µg
ml−1

24 h THP-1 cells Cell viability, ROS production,
expression of genes related to
the oxidative and inflammatory
response, cellular uptake,
endocytosis and phagocytosis,
Rho/ROCK pathway,
cytoskeleton analysis,
differentiation of THP-1 cells into
macrophage-like cells (THP-1a)

Both GO induced a dose-dependent loss in cell viability,
an increase in ROS production, and a disruption of the
F-actin cytoskeletons leading to the loss of the
adherence ability of THP-1a and a reduction in the
phagocytosis capability of THP-1a cells. GONP
presented higher upregulation of HO-1 and SOD-2
expressions, and higher levels of IL-1b, TNF-a, IL-8,
and MCP-1, compared to rGONP. rGONP exhibited a
greater expression of NF-кB (p65), higher uptake and a
higher decrease of Rho/ROCK expression than GONP.

(115)

Pristine graphene
with 1% pluronic
F108

20 µg ml−1 24 h Primary and
immortalize
(RAW264.7)
macrophages

Quantification of cytokines and
chemokines (IFNɤ, IL-1a, IL-2,
IL-4, IL-5, IL-6, IL-10, IL-17,
TNFa, and GM-CSF, MCP-1,
MCP-3, RANTES, MIP-1a and
MIP-1b). RT-PCR analysis of the
mRNA levels of TNF-a, IL-1b,
IL-6, iNOS and COX-2.
Adhesion, phagocytosis and
cytoskeleton assay.

Increased transcription and secretion of cytokines and
chemokines, which is triggered by activation of the NF-
kB signaling pathway; The cytokines and chemokines
secreted by graphene-exposed macrophages further
impaired the morphology of naïve macrophages by
affect the actin structures and podosomes expansion,
decreasing the adhesion and phagocytosis.

(116)

Pristine graphene
with 1% pluronic
F108 (500–1000
nm)

20 µg ml−1 12, 24,
and 48 h

Murine RAW
264.7
macrophages

Cell viability, ROS production,
MMP, apoptosis, expression of
proteins (Phospho-p38
MAPKinase (P-p38), p38
MAPKinase (p38), Phospho-JNK
(P-JNK), JNK, Phospho-ERK (P-
ERK), ERK, Phospho- Smad2,
Smad2, Bim, Bax, caspase 3,
Bcl-2, PARP and b-actin) and
genes (TNF-a, TGF-b TGF-b
receptor I, TGF-b receptor II,
Smad2, Smad3, Smad4,
Smad7, b-Actin)

Loss of cell viability at highest concentration (100 µg/
mL); induction of intracellular ROS generation, depletion
of MMP and apoptosis, all in a time- and dose-
dependent way; activation of the mitochondrial
pathways: MAPKs (JNK, ERK and p38) as well as the
TGF- b-related signaling pathways.

(117)

Graphene
nanoplatelets (1-10
layers)

1, 5 and 10 mg
cm2

24 h THP-1
macrophages

Phagocytosis, cytokine release
and the involvement of the
NALP3 inflammasome.

Frustrated phagocytosis, loss of membrane integrity at
higher concentration, increase in cytokines expression,
and activation of the NALP3 inflammasome.

(118)

pharyngeal
aspiration: 50
mg per mouse.

24 h C57BL/6 strain
mice

BAL cells analysis, Histological
sections of lungs. Pleural space
lavage: total and differential cell

BAL and pleural lavage showed an increased number of
polymorphonuclear leucocytes (neutrophils and
eosinophils); and an increase in the levels of cytokines.

(Continued)
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TABLE 1 | Continued

Nanomaterial Dose Exposure
time

in vivo/in vitro
models

Method or endpoints Adverse immunological effects Ref.

intrapleural
injection: 5 mg
per mouse

count, histological examination
of the parietal pleura.

Histological analysis: presence of granulomatous lesions in
the bronchiole lumen and near the alveolar region;
presence of histiocytic aggregates along the mesothelium.

Graphene
nanoplatelets (~10
layers; particle size
~ 2 µm; thickness
~3–4 nm)

Intratracheal
instillation:
1.25, 2.5 and
5 mg kg-1

90 days ICR mice Blood and BAL analysis:
concentrations of pro-
inflammatory cytokines (IL-1b,
TNF-a, IL-6, IL-2, Th1-type
cytokines, Th2-type cytokines) and
chemokines (MIP)-1a, MCP-1,
and GM-CSF in BAL fluids and
immunoglobulins (Ig, IgE, IgG, and
IgM) in serum. Expression of
genes encoding actin family
cytoskeletal proteins, calcium-
binding proteins, and natriuretic-
related genes. Histopathological
analysis of lung.

BAL: increased number of lymphocytes, GNP-engulfed
macrophages and apoptotic cells; general increase in
cytokine and chemokine secretion; blood: increased
number of macrophages and neutrophils, and elevated
production of IgG, IgM and IgA. Gene expression:
elevated expression of gens related to actin family
cytoskeletal proteins and calcium-binding proteins; and
alteration of natriuretic-related genes expression.
Histopathological analysis: presence of GNP-engulfed
macrophages without pathological lesion

(119)

Single- and multi-
layered GO (SLGO
and MLGO) in the
presence or
absence of Pluronic
F-127

10, 20, 40, 80
and 100 mg
ml−1

6 h THP-1 cells Cell viability, membrane integrity,
cell morphology levels of
cytokine and ROS production,
phagocytosis, and cytometric
apoptosis.

SLGO induced ROS and IL-1b production, necrosis,
and apoptosis to a lesser extent than MLGO. However,
SLGO induced higher membrane damage and
decrease in cell viability.

(120)

Iv: 10 mg kg-1 24 h
(acute
toxicity) or
10 days
(chronic
toxicity)

Mice Histological analysis of lung and
kidney: immunohistochemistry
(IHC) for MCP-1 and TGF-b.

Both SLGO and MLGO induced acute and chronic
damage to the lung and kidney in the presence or
absence of Pluronic F-127.

GO-PEG with mean
thickness of 1.1 nm
and lateral
dimension ranged
from 20 to 80 nm

It: 25 mg/kg 28 days Balb/c mice:
Age: 6 - 8
weeks;
Weight: 18–
22g

Blood circulation test;
Hematologic and Biochemical
marker analysis;
Histopathological evaluation:
trace element biodistribution
observation in heart, liver spleen,
lung, kidney and lymph.

Blood exposure to GO under the maximum safe
starting dose caused accidental death in 1/5 Macaca
fascicularis and 7/221 mice, while remains general
amenable in others. Elevated levels of immunoglobulin E
and severe lung injury were found in dead animals,
suggesting the GO-induced acute anaphylactic
reactions.

(121)

4 mg/kg 90 days Macaca
fascicularis:
Age; 4–5
years; weight:
4–5 kg

Graphene oxide –

silver nanoparticles
hybrid material
(GOAg)

5, 10, and 25
mg mL−1

24 h J774 and
primary murine
macrophages

Cell viability, apoptosis/necrosis,
mitochondrial depolarization,
lipid peroxidation, cytokines
release (IL-1b, TNF-a and IL-
10), ratio between CD80 and
CD206 macrophage populations
and NO production.

GOAg induced a dose-dependent mitochondrial
depolarization, apoptosis, and lipid peroxidation to J774
macrophages. However, no effects were observed on
cytokines release, macrophages polarization toward M1
and NO production.

(122)

Bimetallic oxide
FeWOx -PEG
nanosheet (FeWOx-
PEG)

0-200 mg ml−1 24 h 4T1 and CT26
cells

Cell viability, internalization, ROS
generation.

No significant toxicity was observed, however FeWOx-
PEG could internalize via cell endocytosis and efficiently
active OH generation and GSH depletion.

(123)

Toxicity: 10 mg
kg−1

Biodistribution:
120 mg kg−1

BALB/c mice Body weight, histological
analysis, blood chemistry,
cytokines secretion (IL-6, IL-12
and TNFa) and biodistribution.

No significant differences in blood chemistry were
observed for FeWOx-PEG treated mice. Also, H&E
staining and histology analysis showed no obvious
tissue damages and adverse effects and no significative
body weight changes. However, FeWOx-PEG induce
strong immune responses, showed by the increase
levels of IL-6, IL-12 and TNFa. Biodistribution analyses
showed that the material could accumulate in liver and
spleen, however, it was observed a decrease
concentration after 7 and 14 days indicating the
biodegradable and clearable behavior of FeWOX -PEG
nanosheets.
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TABLE 1 | Continued

Nanomaterial Dose Exposure
time

in vivo/in vitro
models

Method or endpoints Adverse immunological effects Ref.

FePSe3@APP@CCM 0-160 mg ml−1 Viability: 6
h Cytokine
secretion:
48 h

PBMC, CT26
and RAW-
264.7 cells

Viability and cytokines secretion
(IL-10, IL-12 and IFN- g)

No obvious cytotoxicity was caused by the
nanomaterial However, taken together, upon NIR laser
irradiation, FePSe3@APP@CCM matured and activated
immature DCs, enhanced the secretion of IFN-g and IL-
12, and decreased the expression and the consequent
inhibitory effect of IL-10 on T cells, resulting in the
enhanced immunity of T cells for killing CT26 cancer
cells in the coculture system.

(124)

10 mg kg−1 25 days C57BL/6J
mice

Body weight, blood biochemical
parameters (ALT, AST, BUN,
CRE, LDH and PLT), histological
analysis and cytokines secretion.

No obvious abnormality, inflammation and exudation or
other pathological lesions were observed. Also, it was
observed the increased expression of DC-secreted
cytokines, including IFN-g and IL-12, while the level of
IL-10 was found to be decreased.

Ferrimagnetic
vortex-domain iron
oxide nanoring and
graphene oxide
(FVIOs-GO) hybrid
nanoparticle

50 or 75 mg
ml−1 Fe

8 and 24 h 4T1 breast
cancer cell and
RAW264.7

Cell viability, uptake, apoptosis/
necrosis, ROS generation,
macrophages polarization.

Increased ROS generation and macrophage polarization
to pro-inflammatory M1 phenotypes.

(125)

Iv: 3 mg kg−1 24 days Balb/c mice
Subcutaneous
4T1 Breast
Tumor Model

Measurement of tumor width
and length for 24 days.

Control group exhibited a rapid increase in the tumor
volume, while FVIOs-GO group had tumor growth
inhibition by 97.1%.

Borophene
nanosheets (B NSs),
graphene
nanosheets (GR
NSs) and
phosphorene
nanosheets (BP
NSs)

Viability: 60,
80, and 100
mg ml−1

Membrane
damage: 100
mg ml−1

Uptake: 200
mg ml−1

Viability:
24 h
Uptake: 6
h

dTHP-1 and
SC cells

Cell viability, membrane
damage, cell uptake, intracellular
localization, inflammatory
cytokines secretion (IL-1b, IL-6,
IL-8, IFN- g and TNFa).

Corona coated 2D monoelemental nanosheets
decreases cytotoxicity and cell membrane damage. For
B NSs it was observed an increase in cellular uptake
when the material was coronated, therefore corona may
promote phagocytosis. Protein corona also stimulates
the secretion of inflammatory cytokines. GR NSs and B
NSs had immunoregulation behaviors only in the
presence of plasma corona, while BP NSs had stronger
immunoregulation behavior regardless of the absence
and presence of corona.

(126)

Aggregated MoS2

and 2D MoS2

(exfoliated by
lithiation or
dispersed by
Pluronic F87)

6.25–50 mg
ml−1

24 h THP-1 and
BEAS-2B cells

Measurement of IL-8, TNF-a,
and IL-1b levels

Aggregated MoS2 induced significant increases in IL-8,
TNF-a, and IL-1b production, while there were
significantly less effects of 2D MoS2 on cytokine and
chemokine production.

(127)

2 mg kg−1 40 h and
21 days

C57Bl/6 mice BALF and lung tissue were
collected for measurement of
LIX, MCP-1, IL-6, TGF-b1, and
PDGF-AA levels and
performance of Hematoxylin and
Eosin (H&E) or Masson’s
trichrome staining.

Aggregated MoS2 induced robust increasing in LIX, MCP-1
and IL-6 responses along with neutrophilic exudation into
the BALF; while 2D MoS2 did not trigger cytokine or
chemokine production in the lung. Histopathological
changes were observed with aggregated MoS2 inducing
focal areas of inflammation around small airways, while 2D
MoS2 had little or no effect.

Exfoliated pristine
and covalently
functionalized MoS2

1, 10, 25, 50,
75, and 100
mg ml−1

24 h Raw-264.7
and human
monocyte-
derived
macrophages

Cell viability, CD86 expression
and secretion of TNFa and IL6.

Cell viability was reduced only at high concentration; no
variation of CD86 levels in both RAW 264.7 cells and
human monocyte-derived macrophages was registered;
no increase in cytokine secretion was observed for both
cell lines.

(128)

Pristine MoS2 and
PEGylated MoS2

10 mg ml−1 24 h Primary mouse
macrophages

Cytokine secretion (IL-6, IL-10,
MCP-1, IFN-g, TNF-a and IL-
12).

Both materials significantly increased the secretion of
cytokines such as IL-6, IL-12, TNF-a, IFN-g and MCP-
1. Interestingly, MoS2-PEG was found to elicit stronger
cytokine secretion than the pristine MoS2, particularly
involving IL-6, TNF-a, IFN-g, and MCP-1.

(129)

MoS2 alone, MoS2–

PEG or MoS2–PEG–
CpG

0, 5, 10, 20,
30, 40 and 50
mg mL-1

48 h RAW-264.7
cells and 4T1
cells

Cell viability, Cytokine release
(TNF-a and IL-6),

MoS2 alone, MoS2–PEG or CpG alone had no effect on
cytokine release while the MoS2–PEG–CpG significantly
elevate the cytokine level. MoS2–PEG–CpG could
elevate the expression of CD86 & CD80 and the
percentage of matured DCs (CD80+ CD86+ DCs) was
remarkably raised to 79.8% when combined with NIR
irradiation.

(130)
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TABLE 1 | Continued

Nanomaterial Dose Exposure
time

in vivo/in vitro
models

Method or endpoints Adverse immunological effects Ref.

Protein coated with
different proteins
(HSA, Tf, Fg and
IgG) MoS2 NSs

500 mg ml−1 12 and 24
h

THP-1 cells Cellular viability, cellular uptake
and cytokine release.

Protein coated MoS2 NSs increase viability and
decrease cytoplasmic membrane damage comparing
with MoS2 NSs. Also, the presence of a protein corona
decreased the secretion of cytokines. Among the four
NSs the IgG coated MoS2 NSs enhanced uptake and
cause more inflammatory cytokines.

(31)

MoS2 nanosheets
(100 and 500 nm)

0 – 128 mg
ml−1

48 h DC cells Cell viability, apoptosis, ROS
generation, expression of CD40,
CD80, CD86 and CCR7,
secretion of proinflammatory
cytokines (IL-12p70, IL6, IL-1b
and TNF-a, DC homing ability.

Overall, there were no significant differences in
cytotoxicity assays, however high doses could promote
DC maturation as observed by the expression of CD40,
CD80 and CD86 and enhanced secretion of IL-6 and
TNF- a. Also, MSNs upregulate ROS generation in
DCs, further promoting cytoskeletal rearrangement and
promoting the local lymphoid homing ability of DCs.

(131)

Black phosphorus
nanosheet (BPNSs)
and black
phosphorus
quantum dot
(BPQDs) (~300 nm)

100, 50, 25,
12.5 mg ml−1

48 h H1299, L0-2,
293T, THP-1
cell line and
SC human
macrophages

Cell viability, cellular uptake (1,
3, or 6 h), intracellular
localization, ROS generation,
cytokines release (IL-1 b, IL-6,
IL-8, IL-9, IL-10, IFN- g), NO and
TNF- a generation.

A reduction of cytotoxicity was observed when BPNSs
and BPQDs were coated with protein corona reduced.
However, the corona facilitated the BP internalization
and induced an increase in inflammatory cytokines and
in ROS generation. Also, an induction of NO and TNF-
a production were provoked by BP and corona coated
BP.

(132)

Black phosphorus
nanosheet (128 nm)

15 mg ml−1 24 h 4T1, F10,
CT26 and
Raw-264.7 cell
lines

Cell morphology, cell expression
differences, expression of the
surface marker CD80 using flow
cytometry, proteomic analysis,
western blot analysis and
immunofluorescence to analyze,
expression of IL-10 (M2-related
marker) and TNF- a (M1-related
marker).

Corona coated black phosphorus nanosheet increase
the expression of calcium signaling pathways and
interact with STIM2 protein facilitating Ca2+ influx
promoting macrophage polarization.

(133)

Few-layer two-
dimensional black
phosphorous (2D
BP)

10 to 500
mg.ml−1

24 h
(acute
toxicity) or
21 days
(chronic
toxicity)

SAOS-2, HOb,
L929 and
hMSC cell
lines

Cell viability and proliferation,
ROS production,
immunofluorescence to analyze
cell morphology, inflammatory
marker expression tested by
LPS to analyzed cytokine
generation (IL-10 and IL-6).

Black phosphorus did not show cytotoxicity on human
mesenchymal stem cells and inhibits the metabolic
activity of SAOS-2 cell line while inducing both
proliferation and osteogenic differentiation in HOb cell
and mesenchymal stem cells. Also, the presence of BP
inhibits the ALP (an early marker of osteogenesis)
expression in SAOS-2 cells and induces antiproliferative
and apoptotic effects by increasing the production of
ROS on SAOS-2 cells. Besides, increase the
inflammatory cytokine generation but inhibits
proinflammatory mediators for the co-culture of SAOS-2
and HOb.

(134)

Black Phosphorus
nanoflakes
functionalized with
TGF-b inhibitor and
neutrophil
membrane (NG/BP-
PEI-LY)

20 mg ml−1 24 h (in
vitro)

4T1 and
HUVEC cell
line

Cell viability, ROS production,
apoptosis, cytokine generation
(IL-6 and TNF-a)

NG/BP-PEI-LY induced acute inflammatory responses,
cause a decrease in viability, and increase apoptosis
and ROS production when laser irradiated.

(135)

72 h (in
vivo)

BALB/c mice Mice NIR fluorescent imaging,
immunofluorescent staining of
CD31 (red) and ICAM-1 (green).

Besides, when laser irradiated increased the ICAM-1
expression, enhancing intracellular delivery by adhesion
molecule mediated targeting.

Black Phosphorus
nanosheet (BPNS)
and Black
Phosphorus
nanocomposite
(BPCP) modified
with PEG and OD
CpG or CpG-Cy5.5

Up to 100 mg
ml−1

24 h 4T1, RAW-
264.7 and
Hep62

Cell viability, necroptosis, protein
expression, cytokine generation
(IL-6 and TNF-a) and
hemocytolysis.

No obvious cytotoxicity was observed, also no
significant hemolysis. For BPTT treatments it was
observed that necroptosis play an important role,
mediating death process in cancer cells. These results
were confirmed by the expression of necroptosis-
related proteins, where it was observed a significantly
expression of RIP1 and RIP3. Caspase-8 and Caspase-
3 levels were not significantly changed.

(136)
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TABLE 1 | Continued

Nanomaterial Dose Exposure
time

in vivo/in vitro
models

Method or endpoints Adverse immunological effects Ref.

2 mg/kg Up to 16
days

BALB/c mice Biodistribution, expression of
immune factors (FOXP3, IL-2,
TNF- a and INF- g), histological
analysis, hematological toxicity.

No body weight loss and no systemic toxicity were
observed. Also, no tissue damage and blood physiological
indicators were within normal range. After BPTT treatments
the immune responses were activated as observed by
detection of T lymphocytes and various immune cytokines.

DSPE-PEG coated
Tao nanosheet (92.5
nm)

1 mg ml−1 30 days C57 mice Body weight, biodistribution,
immunogenicity, hematological
toxicity, liver and spleen
histopathology, oxidative stress
response.

DSPE-PEG coated TiO2 nanosheet cause a decrease in
body weight after 14 to 30 days of the injection, also, it was
observed a that the particles were accumulated in liver and
cause liver toxicity by inducing oxidative stress. Besides, an
obvious decrease in HTC and significant increase in MCH
and MCHC indicate that the particles may induce blood
system damage.

(137)

Two-Dimensional
Core – Shell
MXene@Gold
Nanocomposites

In vitro: 3.1 to
100 mg ml−1

24 h 4T1 cell line Cell viability,
immunohistochemistry and
immunofluorescence staining.

Overall, the particle did not show apparent cytotoxicity,
and no toxic side effect was observed in mice after 30
days of injection.

(138)

In vivo: 20 mg
kg-1

30 days Balb/c mice Body weight and biodistribution. No height loss and no notable abnormality on major
organs were observed.

2D titanium
nanosheets (TiNS)
and polyethylene
glycol coated
titanium nanosheets
(TiNS-PEG)

In vitro: 10-100
ppm

4 h A1 cell line,
J774A.1 cell
line and
SMMC-7721.

Cell viability. TiNS and TiNS-PEG did not significantly affect cell
viability.

(139)

In vivo: 5 mg
kg-1

19 days Balb/c mice Histopathology, body weight,
biodistribution and
hematological toxicity.

Any significant differences on mice body weight, no
histological abnormalities, and no impact on hematological
parameters, indicating no inflammation and other negative
impact on blood and organs was observed.

PEGylated
molybdenum
dichalcogenides
(MoS2-PEG),
tungsten
dichalcogenides
(WS2-PEG) and
titanium
dichalcogenides
(TiS2-PEG)
nanosheets

In vitro: 25 –

200 mg ml−1
24 h RAW-264.7,

4T1 and 293T.
Cell viability and ROS
generation.

No significant in vitro cytotoxicity was observed for all
the three types of PEG functionalized TMDCs.

(140)

In vivo: 10 mg
kg-1

up to 60
days post
injection

Balb/c mice. biodistribution, hematological
toxicity, biochemical parameters
(ALP, ALT, AST and BUN) and
histopathology.

The materials show dominate accumulation in
reticuloendothelial systems (RES) such as liver and
spleen after intravenous injection. Also, no significant
results were observed for the analyzed biochemical and
hematological parameters and no obvious sign of
abnormality, such as inflammation, was noticed in all
examined major organs.

Two-dimensional
polyethylene glycol
modified TiS2

nanosheets (TiS2-
PEG)

In vitro: 0.0015
- 0.1 mg ml−1

24 h 4T1 cell and Cell viability No significant cytotoxicity of TiS2-PEG was observed. (141)

In vivo: 20 mg
kg-1

60 days Balb/c mice In vivo toxicity, histopathology. No histological abnormalities and no obvious toxicity to
Balb/c mice was observed.

BSA coated 2D
silicene nanosheets
(SNSs-BSA)

In vitro: 12.5 -
200 mg ml−1

24 h 4T1 and U87
cell lines

Cell viability SNSs-BSA exhibit insignificant effect on cell viability of
either 4T1 or U87 cancer cells.

(142)

In vivo: 20 mg
kg-1

4 weeks Kunming mice
and Balb/c
mice

Body weight, histopathology,
hematological toxicity,
biochemical parameters (ALT,
AST, ALP, urea, CREA, and
UA).

In a four-week duration, the mice present no significant
abnormality, body weight differences, and no significant
behavioral alterations. The histological observations of
major organs showed no significant acute pathological
toxicity. Furthermore, hematological parameters showed
no obvious sign of abnormalities indicating that the
SNSs-BSA induce negligible renal and hepatic toxicity in
mice model.

Poly
(vinylpyrrolidone)-
encapsulated Bi2Se3
nanosheets
(diameter 31.4 nm
and thickness 1.7
nm)

In vitro: 5 - 200
ppm

48 h MCF7 cell line Cell viability It was not observed any cytotoxicity effects caused by
Bi2Se3 nanosheets.

(143)

In vivo: 27 –

1168 mg kg-1
14 days Balb/c mice in vivo toxicity and

biodistribution.
At the dose of 750 or less no mice mortality nor any
reaction was observed. The nanomaterial mainly
accumulated in liver, spleen and kidney, however, the
concentration decreases with time.
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demonstrated that small MoS2 nanoflakes can penetrate the
macrophage membrane, and that the PEG chain on PEG-MoS2
lead to a prolonged passage throughout the membrane. Such a
result might explain why PEG-MoS2 triggers sustained more
stimulation of macrophages than pristine MoS2.

Other types of functionalization have also been studied in
respect to their biocompatibility to immune cells. For instance,
Zhi et al. (112) reported that the polyvinylpyrrolidone (PVP)
coating of GO has exhibited lower immunogenicity when
compared with pristine GO in relation to the inducing
differentiation and maturation of dendritic cells (DCs),
provoking a delaying in apoptotic process of T lymphocytes
and the anti-phagocytosis ability against macrophages.

Surface chemistry has also been shown to influence on the
immunotoxicity of 2D materials. Gurunathan et al. (114)
Frontiers in Immunology | www.frontiersin.org 11
reported that both GO and reduced GO (rGO) induced a
dose-dependent loss of cell viability and proliferation, cell
membrane damage, a loss of mitochondrial membrane
potential, a decreased level of ATP, a redox imbalance, and an
increased secretion of various cytokines and chemokines (IL1-b,
TNF-a, GM-CSF, IL-6, IL-8, and MCP-1) by THP-1 cells.
However, to all these toxic effects the rGO presented a
significantly worse response compared to GO. In a previous
study, Yan et al. (115) showed that different oxidation degrees
resulted in the toxicity of monocytes via different signaling
pathways, with GO nanoplatelets (GONPs) inducing the
expression of antioxidative enzymes and inflammatory factors,
whereas the reduced GO nanoplatelets (rGONPs) activated the
NF-кB pathway. The contradictory results between these two
studies, in relation to cytokine and chemokine expression, may
TABLE 1 | Continued

Nanomaterial Dose Exposure
time

in vivo/in vitro
models

Method or endpoints Adverse immunological effects Ref.

Pd nanosheets
(diameter ranging
from 5 to 80 nm)

In vitro: up to
100 mg ml−1

24 h NIH-3T3, 4T1,
Raw-264.7,
QSG-7701
and QGY-
7703 cell lines

Cell viability, mitochondrial
membrane depolarization and
ROS generation.

Pd nanosheets have no effect on cell viability,
apoptosis, ROS generation, or mitochondrial
depolarization.

(144)

In vivo: 10 mg
kg−1

30 days Balb/c mice Biodistribution, blood chemistry
and hematology analysis and
histopathology.

The in vivo results show that the particle is primarily
trapped by reticuloendothelial system (RES). Also, no
significant hepatotoxicity was induced by Pd
nanosheets of different sizes. The activity of ALP, ALT,
AST and BUN observed was within normal range and
no apparent histopathological abnormalities or lesions
were observed in any major organ.

PEGylated ultrathin
boron nanosheets
(B-PEG NSs)

25 to 500 µg
mL−1

48 h HeLa, PC3,
MCF7, and
A549

Cell viability, ROS generation. No significant cytotoxicity was observed for B-PEG
NSs. However, when exposed to an 808 nm NIR laser
(1 Wcm−2) for 5 min it was notices a strong
concentration-dependent cytotoxicity. Also, when the
B-PEG NSs were combined with DOX and NIR laser
irradiation, over 95% of the cells died at a DOX
concentration of 100 µg mL−1.

(89)

5.3 mg kg-1 24 h Mice Body weight, histopathology,
hematological toxicity (HGB,
WBC, RBC, MCV, MCHC, PLT,
MCH, HCT, Cr, NEU, LYM,
MPV), biochemical parameters
(ALP, AST, BUN and ALT) and
cytokine generation (TNF-a, IL-
6, IFN-g, and IL-12+P40)

No obvious side effects were noted, also the levels of
TNF-a, IL-6, IFN-g, and IL-12+P40 were similar to those
in the PBS control group indicating that B-PEG NSs did
not induce obvious cytokine response. Compared with
the control group, there is no statistically significant
difference of the NSs-treated groups with PBS-treated
groups in all the parameters, no obvious induction on
cytokine response, no change in biochemical parameter
and no hematological toxicity, therefore, B-PEG NSs do
not cause obvious infection and inflammation in the
treated mice. Moreover, no noticeable signal of
inflammation or tissue damage was observed in major
organs.
June 2021 | Volume 12 | Article 68
1Ip, intraperitoneal; 2Lung, oropharyngeal aspiration; 3It, intratail.
GO-PEG, poly-(ethylene glycol)-functionalized GO; PG-FMN, flavin mononucleotide-stabilized pristine graphene; GO-NH2, aminated GO; GO-PAM, poly(acrylamide)-functionalized GO;
GO-PAA, poly(acrylic acid)-functionalized GO; PEG, polyethylene glycol; DSPE-PEG, N-(carbonyl-methoxypolyethyleneglycol 5000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine;
HSA, human serum albumin; Tf, transferrin; Fg, fibrinogen; IgG, immunoglobulin G; NSs, Nanosheets; ALP, aspartate aminotransferase; ALT, alanine aminotransferase; LDH, lactate
dehydrogenase; BUN, blood urea nitrogen; CRE, creatinine; lactate dehydrogenase; PLT, platelet; NO, nitric oxide; IHC, immunohistochemistry; Nuclear NMR, magnetic resonance
spectroscopy; TCA, tricarboxylic acid cycle; PVP, polyvinyl chloride; LPS, lipopolysaccharide; Rho/ROCK, Rho-associated protein kinase; RBC, red blood cells; WBC, white blood cells;
MMP, mitochondrial membrane potential; MAPKs, mitogen−activated protein kinase; ERK, extracellular signal-regulated kinase; JNK, c-Jun N-terminal kinase; GSH, glutathione; BALF,
bronchoalveolar lavage fluid; LYM, lymphocytes; MPV, mean platelets volume; HTC, hematocrit count; HGB, hemoglobin; MVC, mean volume cell; MCH, mean cell hemoglobin; MCHC,
MCH concentration; NEU, neutrophil count; DOX, doxorubicin; NIR, near infrared light; UA, uric acid; CpG, cytosine–phosphate–guanine; BPTT, black phosphorus based photothermal
therapy; TMDC, transition metal dichalcogenides.
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be due to differences in the GBMs studied (i.e. GO sheets versus
GO nanoplatelets), and they raise the need for further
investigation concerning the effects of the oxidative degree of
GBMs on immune cells.

In order to investigate the pristine graphene effects in vitro
(THP-1 cell line) and in vivo (C57BL/6 strain mice), Schinwald
et al. (118) have assessed the impacts of the shape of graphene
nanoplatelets (GNPs) on their inflammatory potential. This large
few-layer graphene presented as inflammogenic both in vitro and
in vivo, which was attributed to its large size that led to frustrated
phagocytosis. The authors highlighted that the potential hazard
of GNPs could be minimized by producing GNPs small enough
to be phagocytosed by macrophages. Moreover, the number of
GO layers has been shown to affect its immunotoxicity, in which
single-layer GO (SLGO) caused a more pronounced decrease in
cell viability due to membrane damage of THP-1 cells, while
multi-layer GO (MLGO) induced higher reactive oxygen species
(ROS) and IL-1b production, leading to necrosis and apoptosis
(120). In addition, the histological animal analysis revealed that
SLGO and MLGO induced acute and chronic damage to the
lungs and kidneys in the presence or absence of Pluronic F-
127 (120).

Another important parameter, when approaching
nanomaterial biosafety, is colloidal stability. Aggregation
can influence the immunological response as observed by
Wang et al. (127), when compared the toxicological profile
of 2D MoS2 versus aggregated MoS2 in lung cells and mice. In
their in vitro evaluation, in THP-1 and BEAS-2B cells, they
found that aggregated MoS2 induces strong proinflammatory
and profibrogenic responses, while 2D MoS2 have little or no
effect. In agreement with in vitro results, an acute toxicity
study in vivo showed that aggregated MoS2 induced an
acute lung inflammation, while 2D MoS2 had no or a
slight effect.

To increase the stability of 2D materials, studies have shown
that proteins can be used as a dispersant agent. Lin et al. (142)
studied silicene nanosheets modified with a bovine albumin
serum protein corona (SNSs-BSA) and observed a significant
increase in the colloidal stability in several physiological media
(0.9% saline, phosphate buffered saline and Dulbecco’s modified
Eagle medium). Furthermore, SNSs-BSA did not cause
significant toxicity in vitro neither significant acute toxicity in
vivo. Only meaningless hematological changes were observed
during the treatment duration, and no significant inflammation
or infection were caused by the SNSs-BSA.

It is imperative that in a physiological environment, the
nanomaterials will interact with biomolecules, forming a
complex biomolecular corona. Those biomolecules (e.g.,
proteins, lipids, carbohydrates) can change the identity of the
nanomaterials and influence their interaction with biological
systems, causing an increase or decrease in internalization,
toxicity, and biocompatibility as well as in colloidal stability
over time. Thus, the biotransformation of nanomaterials in a
physiological environment is an important parameter to be
studied (146). The most common and highly studied
component of biomolecular corona is the protein corona. In
Frontiers in Immunology | www.frontiersin.org 12
this sense, Mo et al. (132) studied the effect of the human plasma
protein corona on the cytotoxicity of BP nanosheets and BP
quantum dots (BPQDs) observing a reduction in cell viability for
both nanomaterials when coated with proteins. However, protein
corona facilitated BP nanosheet internalization and induced an
increase in inflammatory cytokines (IL-1b, IL-6, IL-8 and IFN-g)
and in ROS generation. Besides, it was observed that protein
corona coated BP caused an induction on the nitric oxide (NO)
and tumour necrosis factor. Further, Mo et al. (133) studied the
effect of the human plasma protein corona in BP toxicity, and
observed an increased macrophage polarization due to the
adsorption of opsonins present in the plasma, increasing the
uptake of BP and the interaction with stromal interaction
molecule 2 (STIM2) protein facilitating Ca2+ influx.

Similarly, Han et al. (126) studied the effect of plasma corona-
coated 2D monoelemental nanosheets and observed that the
protein corona decreases cytotoxicity and cell membrane damage
for borophene, phosphorene, and graphene nanosheets. The
corona coating induced the secretion of inflammatory
cytokines (IL-1b, IL-6, IL-8, and IFN-g) for all three materials.
Also, for BNNs, it was observed an increase in cellular uptake
when the material was coronated, and therefore, the corona may
promote phagocytosis. Baimanov et al. (31) also investigated the
effect of four different blood protein coronas (human serum
albumin (HSA), transferrin (Tf), fibrinogen (Fg), and
immunoglobulin G (IgG) corona) on cell viability, uptake, and
pro-inflammatory effects of MoS2 nanosheets (NSs) in the
macrophages cell line. Their results demonstrate that blood
proteins contribute to uptake and inflammatory effects, as
protein coated MoS2 NSs increase cell viability and decrease
cytoplasmic membrane damage when compared to non-coated
MoS2 NSs. Besides, it was observed that the type of protein
influences cytokine secretion, as IgG-coated MoS2 NSs causes
more inflammatory cytokine secretion (TNF-a, IL-6 and IL-1b).
The highest proportion of b-sheets on IgG led to fewer secondary
structure changes on MoS2 NSs, facilitating uptake and
producing a stronger pro-inflammatory response in
macrophages due to the recognition of an MoS2 NSs−IgG
complex by Fc gamma receptors and the subsequent activation
of the NF-kB pathways. Another interesting finding is that in a
serum-containing medium, cellular uptake of MoS2 NSs−protein
complexes was higher than that in a serum-free medium. Also,
the MoS2 NSs−Fg, and MoS2 NSs–serum complexes had similar
results in serum-free conditions and different results in a serum-
containing medium, suggesting the formation of the protein
corona layer above the previously formed MoS2 NSs−protein
complexes. Those studies can help to elucidate the mechanisms
in which protein corona can affects the toxicity of 2D materials.

One important ability of the immune system is the innate
immune memory, where cells from the innate immune system
react to secondary stimulus, which mostly includes an increased
or decreased production of inflammation-related factors (147).
With regard to 2D materials studies, there is yet a little research
on this topic. Liu et al. (148) functionalize GO with lentinan
(LNT) and observed that GO-LNT was able to promote
macrophage activation by NF-kB and TLR signaling pathway,
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as well as enhance antigen protein processing after initial contact
with macrophage. Moreover, the efficiency of this material was
investigated, as a vaccine adjuvant for ovalbumin (OVA), in this
sense GO-LNT induced robust long-term OVA-specific
antibody responses due to the prolonged release of OVA.
Besides this, GO-LNT was able to sustain a long-term immune
response because it facilitated the uptake and slowed the release
rate of antigen in macrophage. Further, Lebre et al. (149),
demonstrated that pristine graphene can promote the innate
immune training, enhancing the secretion of IL-6 and TNF-a
and a decrease in IL-10 after toll-like receptor ligand stimulation
5 days after graphene exposure, indicating that pristine graphene
can activate the immune innate memory.

Immune cells, such as macrophages and neutrophils, are one
of the first line of defense of the immune system; they are capable
of engulf the foreign material (or pathogen), degrading it and
producing cytokines to enhanced the immune response (150).
The uptake of 2D materials by immune system cells have been
reported in various studies (31, 109, 115, 126, 132); however,
there are few studies that address the degradation of those
materials after internalization. Mukherjee et al. (151) studied
the degradation of large and small GO by neutrophils and
observed that not only both GO be degraded by neutrophils
but also that the product of the degradation was non-toxic to
human cells. Similarly, Moore et al. (152) studied the
degradation of few-layer MoS2 in human macrophage-like cells
and observed that internalization occurred following 4 h of
exposure and after 24 h the in vitro degradation of the material
was confirmed, which occurred within lipidic vesicles and
associated with enzymatic regions containing lysozyme.

As presented above, 2D nanomaterials may have an
inflammogenic potential and immunotoxicity, which may
impair their successful clinical translation; however, the
immunological system activation can also be useful for
theragnostic purposes. This application uses the immune
responses to protect the body and eliminate cancer cells. The
advantage of immunotherapy is that it engages the immune
system to kill tumor cells without damaging healthy cells,
additionally, it may induce immunological memory, causing
long-lasting protection (153).

Nanoinformatics Approaches Toward
Immunosafety-by-Design
In materials science, theory, computational modeling
and informatics have a substantial role in accelerating and
discovering new materials with interesting properties and
applications (154–156). Due to the growing interest in 2D
nanomaterials, computational approaches are extensively used in
the discovery, development and application of these materials by
detailed study of their structure/property relationships (156–158).

The nano-bio interface phenomena are directly related to the
physicochemical properties of nanomaterials. However, tracing
general correlations and delineating predictive models of
nanomaterials biological effects remains challenging. Some issues
include the complexity of nano-bio interactions, nanomaterials
structural heterogeneity, lack of standard methodologies, absence
Frontiers in Immunology | www.frontiersin.org 13
of systematic studies and low-quality nanomaterial
characterization (159–161). In this context, computational
methods have been incorporated into the nanotoxicology field to
support the understanding of the nano-bio interface to enable the
development of safe-by-design principles applied to nanomaterials
(162, 163). Theoretical modeling (i.e., molecular dynamics, density
functional theory) enables precise control of critical parameters of
the nanomaterials surface to study their individual effects in nano-
bio interactions, providing mechanistic knowledge (164–166). On
the other hand, machine learning (ML) techniques are used to
assess datasets of nanomaterials biological outcomes in order to
find patterns and correlations between physicochemical properties
and biological effects, often undetectable through other types of
analysis (167–169).

Applications of data-driven strategies include data filling,
grouping, and predictive modeling. Quantitative nanostructure–
activity relationships (QNAR) consist of the main strategy to
delineate prediction models based on correlations between
nanomaterial structural characteristics to their properties and
biological activities (170, 171). It is based on the assumption
that nanomaterials in their properties present similar biological
effects. Diverse algorithms can be used in QNAR models,
including support vector machine (172), artificial neural
network (173), and decision trees (174), among others, and
depending of the level of algorithms interpretability may enable
the outline of causal relationships.

The scarcity of quality data and comprehensive databases is
the major bottleneck in the application of ML to predict
nanomaterials immune reactions (175, 176). Data-driven
strategies have been making important advances in modeling
biological phenomena that have potential usage to evaluate
nano-immune interactions, such as predicting biomolecular
corona compositions (177–181), and nanomaterials and cell
interactions (e.g., cell uptake, cytotoxicity, membrane integrity,
oxidative stress) (182–185). Furthermore, the exploration of
omics approaches (e.g., genomics, transcriptomics, and
metabolomics) has promoting the development of ML models
to process the complex data generated by these techniques and
enables a better understanding of the molecular mechanisms of
nanomaterials adverse effects in a systemic context, defining and
predicting adverse outcome pathways (186–189). The omics’
potential of data generation is demonstrated by Kinaret et al.
(190), who were able to connect immune responses to observed
transcriptomic alterations in mouse airway exposed to 28
engineered nanomaterials. Together with cytological and
histological analyses (imaging processing), they generated an
extensive in vivo data set of nanomaterial adverse effects.

Allied with quality data infrastructure and processing,
computational methods are sizeable to deal with complexity of
nano-bio interface to assess and model the toxicity of
nanomaterials in a variety of environments (163, 191–194). To
support safe-by-design approaches, international efforts have been
made to provide data integration and sharing, modeling tools,
standard protocols, and ontologies, to ensure Findable, Accessible,
Interoperate, and Reusable (FAIR) data (195, 196). For example,
European projects, such as NanosolveIT and NanoCommons, and
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more recently CompSafeNano are initiatives facing on this
direction (164, 165, 197, 198). In accordance with these
initiatives, Gazzi et al. (199) recently presented the
nanoimmunity-by-design concept developed inside G-
IMMUNOMICS and CARBO-IMmap projects, which aim to
bridge the knowledge gaps in the immune characterization of
carbon-based materials, integrating data-driven methodologies
which are extendable to other 2D materials.
CONCLUSIONS AND FUTURE
PERSPECTIVES

Two-dimensional materials are key elements for nanoscience and
innovation in energy, health, and the environment. This can lead
to a broad range of technological applications, especially nano-
imaging, which has been growing exponentially in recent years.
The wide number of 2D materials with different physicochemical
properties make immunotoxicity and safety evaluation a
challenge. There are therefore still gaps and controversial data
in the literature. For example, within the same material category
(i.e., graphene oxide) different properties were observed that
might affect immunological and toxicological responses. It is
imperative to evaluate the biological effects of biomolecular
corona formation on 2D materials at nanobiointerfaces. Only
by the identification of these material properties (intrinsic and
extrinsic) and an integrated understanding on how they may
influence its immunological response, we can manage
immunotoxicity/biocompatibility and then benefit from their
unique properties for many applications. Furthermore, it is very
important to highlight the critical influence of endotoxin
contamination prior immunological studies and toxicity testing.
Special attention on this topic will avoid misinterpretation of
immunosafety results involving 2D materials (148). In addition, it
is important to advance in the understanding of the links between
nanomaterials and the immune system across environmental
species; this being a future challenge for immunosafety research
associated with 2D materials (200). Nanoinformatics and
computational modeling will have a decisive role on
immunotoxicological studies with nanomaterials toward the
practical implementation of immunosafety-by-design. However,
Frontiers in Immunology | www.frontiersin.org 14
it is very important to develop harmonized protocols, ontologies,
and public databases to facilitate and promote a global research
community for the collaboration and an exchange of knowledge
in this field, focusing efforts on FAIR data principles.
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