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Vaccination is the most effective measure to prevent infections in the general population.
Its efficiency strongly depends on the function and composition of the immune system. If
the immune system lacks critical components, patients will not be fully protected despite a
completed vaccination schedule. Antigen-specific serum immunoglobulin levels are
broadly used correlates of protection. These are the products of terminally differentiated
B cells – plasma cells. Here we reviewed the literature on how aberrancies in B-cell
composition and function influence immune responses to vaccinations. In a search
through five major literature databases, 6,537 unique articles published from 2000 and
onwards were identified. 75 articles were included along three major research lines:
extremities of life, immunodeficiency and immunosuppression. Details of the protocol can
be found in the International Prospective Register of Systematic Reviews [PROSPERO
(registration number CRD42021226683)]. The majority of articles investigated immune
responses in adults, in which vaccinations against pneumococci and influenza were
strongly represented. Lack of baseline information was the most common reason of
exclusion. Irrespective of study group, three parameters measured at baseline seemed to
have a predictive value in assessing vaccine efficacy: (1) distribution of B-cell subsets
(mostly a reduction in memory B cells), (2) presence of exhausted/activated B cells, or B
cells with an aberrant phenotype, and (3) pre-existing immunological memory. In this
review we showed how pre-immunization (baseline) knowledge of circulating B cells can
be used to predict vaccination efficacy. We hope that this overview will contribute to
optimizing vaccination strategies, especially in immunocompromised patients.
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INTRODUCTION

Vaccination is the most effective measure to prevent infectious
diseases in the general population (1). However, its efficiency
strongly depends on the fitness of the immune system. If the
immune system is suppressed or lacks critical components,
individuals are not fully protected despite a completed
vaccination schedule. As a result, the immunocompromised
population is at increased risk of morbidity and mortality
caused by vaccine-preventable diseases (2–4). Aside from people
suffering from inherited or acquired immunodeficiencies, also
relatively healthy individuals can have weakened immune
responses, i.e. early in life or as a consequence of aging (5–8). In
this review, we evaluated the current literature on vaccine
responsiveness in individuals with (temporarily) altered B-
cell systems.

An effective immune response depends on the cooperation of
multiple cell types. During the immune response, innate immune
cells are rapidly recruited to the place of damage or infection (9–
11). They initiate the immune response by means of local
inflammation, but also act as antigen (Ag)-presenting cells (10, 11).
Frontiers in Immunology | www.frontiersin.org 2
The innate response is followed by activation of adaptive immune
cells (T and B cells), which results in the formation of effector and
memory cells (8).

In healthy adults, the majority of B cells are of the naive
mature or memory B-cell (MBC) phenotype [Figure 1, adjusted
from (13, 14)]. Additionally, low numbers of transitional/
immature B cells (recent bone marrow migrants) and plasma
cells (terminally-differentiated effector B cells) can be detected in
peripheral blood (12). While the breadth of the naive B-cell
repertoire (number of naive B cells carrying a unique B-cell
receptor) is crucial in the response to neoantigens, the diversity
within the MBC compartment, shaped by previous antigen
encounters, plays an important role in recall responses,
such as to a booster vaccination. Within MBCs, two major
subpopulations can be defined: the non class-switched MBCs
and class-switched MBCs. Most non class-switched MBCs are
believed to be derived from T-cell independent immune
responses to antigens such as polysaccharides, nucleic acids
and lipids. In contrast, formation of class-switched MBCs is
mostly T-cell dependent and takes place in germinal centers
upon recognition of protein antigens (15). However, it should be
A B

FIGURE 1 | Simplified representation of major B-cell subsets detectable in blood (A) along with an overview of markers (B) used to define atypical B-cell
populations. (A) From left to right: Immature/Transitional B cells are recent bone marrow migrants and present in low numbers in the peripheral blood. They mature
into naive B cells, which constitute the major part of the circulating B-cell population. The number of naive B cells with unique B-cell receptors forms the naive B-cell
repertoire, which is crucial for recognition of neoantigens (primary antigen encounters). Naive B cells which encountered T-cell dependent antigens (e.g. a protein),
will enter germinal centers to receive T-cell help. As a consequence, they will upregulate AID (Activation Induced Cytidine Deaminase) and subsequently improve
affinity for antigen by introducing Somatic Hypermutations (SHM) and change effector functions in the process of Class-Switch Recombination (CSR). Only B cells
that express receptors with increased affinity to the encountered antigen survive and can leave the germinal center as class-switched memory B cells (MBC) or as
plasma cells. When a B cell is activated by a T-cell independent antigen (e.g. a polysaccharide, nucleic acid or lipid), it does not enter the germinal center, but
differentiates into a non class-switched MBC instead. Class-switched and non class-switched MBCs make up a large part of the circulating B-cell compartment, and
are present in other parts of the peripheral lymphoid system, such as the spleen or lymph nodes. These MBCs are important during recall responses (recall antigen
encounter) when they can re-enter germinal centers and undergo further processes of affinity maturation and class-switching. Lastly, plasma cells are the terminal
effector B cells and responsible for massive antibody production after antigen encounter. Upon infection or vaccination, a transient peak of plasma cell numbers is
observed, but in steady state, plasma cell numbers are low. Part of the plasma cells generated during an immune response becomes long-lived plasma cells that
migrate to the bone marrow, where they can stay for many years and produce low quantities of antibodies, which are detectable in serum. Underneath each
phenotypic description we provide reference values for each of the populations. The median % (of total B cells) and median cell count in the periphery (cells/µl) are
indicated (12). These values are based on the publication by Blanco et al., JACI, 2018, who derived these numbers from a cohort of 32 healthy adults, aged 18-39
years. (B) An overview of different cellular and genetic markers that were used in the reviewed publications to define atypical B-cell subsets, such as exhausted,
tissue-like, anergic, activated or immunesenescent phenotypes. The right column indicates the most prominent function or process involvement for each marker.
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noted that several exceptions to these general observations have
been described, such as T-cell independent IgA responses in
mucosa-associated lymphoid tissues or T-cell dependent origin
of a part of IgM+ MBCs (16). Additionally, comparative studies
in B cells are further complicated by the existence of multiple
different phenotypic descriptions and the existence of atypical B-
cell populations associated with both physiological and
pathological processes (Supplemental Table 1).

In general, vaccine trials evaluate immune response in healthy
adults. However, in several health conditions/situations the
immune system is not comparable to that of a healthy adult,
which may have an impact on vaccination efficacy and, in case of
live-attenuated vaccines, also on safety. For example, in the
elderly, B-cell numbers can be lowered and show signs of
immunosenescence, the repertoire is restricted, and protective
responses mostly rely on immunological memory (17). Other
situations in which immune responses may be impaired include,
but are not limited to, patients rebuilding their immune system
after bone marrow transplantation or B-cell depletion,
immunodeficient individuals with impaired cell maturation or
human immunodeficiency virus (HIV)-infected individuals
showing premature signs of immune system aging (5–7). In
such situations, B-cell composition may be altered, and other B-
cell phenotypes, such as exhausted or age-associated B cells, may
get a more prominent place in the B-cell compartment.

The ability to predict vaccination responses in immuno-
compromised individuals is crucial to ensure safety and optimal
protection. Here we set out to determine if this goal can be achieved
by assessing the B-cell compartment by one of multiple available
techniques, e.g. flow cytometry, ELISpot or gene expression analysis.
We reviewed whether B-cell characteristics of immuno-
compromised patients and aged individuals correlated with
vaccination outcomes.
METHODS

Search Strategy
This review was conducted in accordance with the
Preferred Reporting Items for Systematic reviews and Meta-
Analyses checklist (PRISMA) (18). The protocol for this review
can be found in the International Prospective Register of
Systematic Reviews (PROSPERO) under registration number
CRD42021226683 (https://www.crd.york.ac.uk/prospero/
display_record.php?RecordID=226683).

Literature databases of PubMed, Embase, Web of Science,
COCHRANE Library, and Academic Search Premier were
searched using the search strategy provided in Supplemental
Text 1. The search strategy included components for ‘B cells’,
‘vaccination’ and a variety of immunocompromising conditions
affecting the B-cell compartment.

Inclusion and Exclusion Criteria
We included studies that used standard vaccines included in
national immunization programs or travel recommendations.
Studies on novel or anti-cancer vaccines were excluded. B-cell
Frontiers in Immunology | www.frontiersin.org 3
status at baseline in blood or bone marrow had to be well-
documented, either quantitatively or qualitatively. Studies in
immunocompromised patients with an unaffected B-cell
compartment as well as healthy children, young and middle-
aged adults were excluded. Lack of detectable B cells at the time
of vaccination was another reason for exclusion. Both humoral
and cellular outcomes were eligible for inclusion.

Studies were excluded if no English full text was available. Case
reports, review articles, editorials, meeting abstracts, book chapters
or conference summarieswere excluded aswell. They could however
be used for ‘snowballing’: finding original research articles not
retrieved by the initial literature search. Animal studies were
excluded, as were studies published before 2000. Other reasons for
exclusion included lack of quantitative or functional B-cell defect
(wrong cohort), wrong type of vaccine, wrong timing of vaccination
(e.g. before immunosuppressive treatment), insufficient baseline
details, insufficient follow-up details, wrong tissue or wrong scope
(B-cell data insufficiently discussed).

Specific inclusion and exclusion criteria were added for the
three subtopics (extremities of life, immunodeficiencies, and
immunosuppression). In the extremities of life, term and
preterm infants were maximum 12 months (m) old, and elderly
at least 64 years old. For publications on immunodeficiencies and
immunosuppression, quantitative data of at least two B-cell
subsets or ELISpot data were required. Manuscripts that used
neoantigen vaccination to evaluate B-cell defects or immune
system reconstitution were included only if more than
serological outcomes were reported post-vaccination.

Primary and Secondary Endpoints
The primary endpoint was vaccine efficacy as measured by
qualitative and quantitative changes in B cells, plasma cells and
Ag-specific immunoglobulin (Ig) levels, and their kinetics over
time following vaccination. A secondary endpoint was the
feasibility of the use of neoantigen vaccination to evaluate
immunological defects.

Selection Process
Each article identified by the search strategies in Supplemental
Text 1 was independently screened by two reviewers, first based
on title and abstract, and then on full text. Unanimously selected
studies were included, and unanimously rejected studies were
excluded. Reasons for exclusion were documented. Studies that
were assessed eligible by only one of the reviewers were
reassessed to reach consensus. In addition, the citations and
reference lists from review articles found in the initial search
were checked to ensure that no relevant studies had been missing
in the initial search.

Data Collection Process
Data was extracted from the included studies, using a data
extraction sheet developed by all reviewers and reviewed by co-
authors. The extracted data included article title, authors, country,
year of publication, study design, study cohort(s), type and timing
of vaccination, methods of measurement of baseline B-cell status,
methods of measurement of vaccination response, baseline B-cell
status of study cohort(s), B-cell related post-vaccination outcomes
September 2021 | Volume 12 | Article 690328
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of study cohort(s), and correlations between B-cell parameters at
baseline and post-vaccination outcomes.

Risk of Bias Assessment
The risk of bias was assessed by one of the reviewers using the
ROBINS-I tool for non-randomized studies and the RoB 2 tool
for randomized studies (19, 20). This assessment was reviewed
by the other reviewers.
RESULTS

Characteristics of Included Studies
The literature search was performed on 16 December 2020 and
yielded 10,641 results, of which 6,537 results remained after
exclusion of duplicates. 6,117 articles were excluded based on
title and abstract. The full text was retrieved for the 420
remaining articles (101 for extremities of life, 178 for
immunodeficiencies, 142 for immunosuppression). After
evaluation of the full text, 346 additional articles were
excluded. One additional article was included using
‘snowballing’ technique. Thus, 75 articles (13 for extremities of
life, 33 for immunodeficiencies, 29 for immunosuppression)
were selected for final inclusion in this review (Figure 2). For
three topics, (neonates/infant vaccination studies, vaccination
studies in pregnancy and evaluation of the immune system using
a neoantigen), a single or no article met the inclusion criteria.
Therefore, these topics were not reviewed in this manuscript. To
facilitate the reading, we summarized vaccines utilized in
reviewed studies in Supplemental Table 2.

Elderly
Multiple factors influence overall vaccine responsiveness in the
elderly, such as decreased cell numbers, reduced B- and T-cell
repertoire diversity, increased frequency of Ag-experienced cells,
low-grade systemic inflammation and presence of exhausted
immune cells (17, 21–23). In contrast to infants, in the elderly
the immune system mostly relies on memory responses. For the
elderly, pneumococcal and annual influenza vaccinations are
recommended and responses to these vaccines are broadly
discussed in literature. We included 13 publications evaluating
vaccine responses to pneumococcal (polysaccharide) and
influenza (protein) vaccines (Supplemental Table 3). In
contrast to protein vaccines, polysaccharide vaccines trigger T-
cell independent responses (15). Therefore, we have split the
result sections of this review into polysaccharide, protein studies,
and, when appropriate, polysaccharide-conjugate studies.

All studies in the elderly used younger adults as control
group. However, between studies, the age difference between
the elderly and controls differed from as little as 1 year (i.e. <65y/o
and > 65y/o), up to 50 years. The age difference between groups
is indicated in each study description (Supplemental Table 2).
To exclude the impact of factors other than aging, we selected
studies performed in individuals ≥64 years old in whom no or
very limited comorbidities were reported. Studies focused
primarily on pre- and post-vaccination differences between
Frontiers in Immunology | www.frontiersin.org 4
elderly and younger adults, and the elderly were in general
presumed to be lower responders. Although information about
the impact of baseline status on immune response could be
retrieved, overall correlations with outcome variables were
limited, especially in polysaccharide vaccine studies.

Responses to Polysaccharide Vaccines in Elderly
Six papers describing five different pneumococcal polysaccharide
vaccine (PPV) studies in the elderly were included. In 2/5 studies,
no significant differences were reported between the younger and
older cohort regarding outcome variables (24–26). However,
once only the oldest individuals were compared to the
controls, significant differences were found in one of these
studies (24, 25). Strictness of inclusion criteria varied between
studies. Notably, the study reporting no differences between the
elderly and controls, by Carson et al., had most stringent
inclusion criteria. The overall risk of bias of the studies
evaluating the response to PPV in elderly was low/moderate.

Baseline vaccine-specific Ig serum levels were heterogenous,
with lower (27), comparable (26), or higher (25, 28) serum Ig
levels in the elderly compared to controls. All studies reported
increased vaccine-specific serum Ig levels post-vaccination in the
elderly. For specific IgG serum levels, no differences between the
elderly and controls were found. However, vaccine-specific IgM
and/or IgA production was lower in the elderly post-vaccination
(27, 28). Baseline avidity in the elderly seemed slightly higher,
but was only commented on in one study (significantly higher),
and post-vaccination avidity was comparable to (26) or stronger
than (25) in controls. Lastly, opsonization capacity increased
post-vaccination, but was lower compared to controls (25).

The (total) B-cell repertoire pre- and post-vaccination was
evaluated by Kolibab et al. and Ademokun et al. When measured
by spectratyping, clear changes were observed in total B-cell
repertoire at d7 post-vaccination (after PPV and influenza
vaccination) in both the elderly and controls (28).
Nevertheless, at baseline and d28 the repertoire showed a
reduced diversity in the elderly. Likewise, sequencing data
indicated a lack of diversity even in absence of challenge
(considerable clonality of the switched sequences). This was
confirmed by Kolibab et al., who reported lower frequencies of
somatic hypermutations and decreased oligoclonality in
response to pneumococcal polysaccharides (PPS)4 and 14 (two
PPV serotypes) in elderly (24). In the latter publication, the
authors suggested for certain loci a possible association between
gene utilization and antibody avidity.

Although Ig quantity, quality and diversity were well-covered,
cellular aspects were evaluated to a lesser extent. In the elderly,
total B-cell counts were lower (29) or comparable (25, 26) to
controls, with one study showing a trend towards lower B-cell
counts in the elderly. One study investigated B-cell subsets
instead of total B-cell counts (27). Populations comprising
primarily class-switched (CD20+CD27+IgD-) and non class-
switched (CD20+CD27+IgM+IgD+) MBCs decreased with age
(percentage and absolute cell counts). In contrast, naive B-cell
percentages (CD20+CD27-IgD+) increased with age, although
absolute cell numbers were reduced. In vitro stimulation of B
cells resulted in lower Ig synthesis or plasma cell production in
September 2021 | Volume 12 | Article 690328
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the elderly. Aside from this in vitro assay, only one study
reported kinetics of (Ag-specific) B-cell subsets at d7 post-
vaccination. Here, the authors found that Ag-specific B cells in
controls were mostly CD27+IgM+ and in the elderly mostly
CD27+IgM- (29).

Overall, the PPV studies limitedly assessed the impact of B-
cell status on vaccine responsiveness and focused primarily on
differences between age groups. The elderly appeared to have
lower Ig production, lower B-cell counts and reduced B-cell
repertoire diversity, which may result in an overall lower vaccine
responsiveness. Although no direct predictive factors were
deduced from these PPV studies, it is noteworthy that the only
study finding no differences between the elderly and controls had
Frontiers in Immunology | www.frontiersin.org 5
the most stringent criteria, possibly decreasing the biological age
of the elderly cohort.

Responses to Protein Vaccines in Elderly
Eight studies evaluated responses to protein vaccines in the
elderly; one to diphtheria/tetanus (DT) vaccine, and all others
to influenza vaccine. All studies reported differences between the
elderly and controls in at least one pre- or post-vaccination
outcome variable. Although the overall risk of bias of the studies
was low/moderate, the study by Nipper et al. had a serious risk of
bias, mainly because of the data of this publication being
comprised out of several separate study cohorts (30).
Importantly, reporting methods differed between included
FIGURE 2 | Prisma 2009 Flow Diagram. Overview of the screening process and article selection.
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publications, with some reporting fold changes and others
reporting absolute values.

For influenza vaccination, multiple studies used
neutralization or inhibition assays complementary to or
instead of quantitative Ig detection (Supplemental Table 2).
Only 3/8 studies reported a quantitative Ig readout. For baseline
Ag-specific Ig serum levels, IgG was found to be lower compared
to controls (26), and IgA higher (31). One study reported
responses to influenza vaccination in three consecutive years
and found in two years a higher and in one year a lower baseline
Ig level in the elderly (32). All studies reported increased Ig levels
post-vaccination, but serum IgG was consistently lower
compared to controls (26, 31, 33). For IgM and IgA, serum
levels were significantly (or tended to be) lower compared to
controls too (31, 33). However, when comparing fold changes
instead of absolute increases, no such differences were found for
IgG (26).

Differences in neutralization or inhibition capacity (NIC) of
antibodies pre- and post-vaccination were assessed in 6/8 studies.
Three studies measured baseline antibody NIC in the elderly,
which was lowered (34, 35) or comparable (33) to controls. Post-
vaccination antibody NIC in the elderly was assessed more often,
and was lower [fold change (33), titer (35)] or comparable [fold
change (23), titer (31, 32, 34)] to controls. Interestingly, Abreu
et al. found comparable inhibition titers in the elderly and
controls, but reported a clear bias towards the H1HA vaccine
component (present in vaccine for multiple years) over the
H3HA component (updated annually) in the elderly, but not
controls (32). Additionally, Kurupati et al. measured comparable
neutralizing antibody levels, but reported a delayed increase and
more rapid decay of these neutralizing antibody levels in the
elderly (31).

In contrast to PPV studies, most protein vaccination studies
evaluated cellular kinetics post-vaccination. Three studies
reported total B-cell counts in the elderly, which were lower
(30, 33) or comparable (26) to controls. In 6/8 studies baseline
and/or post-vaccination kinetics of B-cell subsets were
investigated. In general, MBC numbers (percentages or cells/
106 PMBCs) in the elderly were lower (23, 33, 35) or comparable
(30) to controls. Again, naive B-cell percentages were higher (23,
33), but the naive B-cell count (per 106 PBMCs) was lower in the
elderly (35). In one study, phenotypic distinction between naive
B cells and MBCs was doubtful; these counts were not included
in this review (31). In the elderly, baseline plasmablasts
percentages were lower (34) or comparable (30) to controls.
Likewise, plasmablast expansion at d7 was lower (31) or
comparable (33–35) to controls. Interestingly, Kurupati et al.
found a lower plasmablast expansion in the elderly when using
flow cytometry, but not when using ELISpot (31).

In addition, five studies explored specific age-associated B-cell
phenotypes or differences in marker expression between the
elderly and controls. Here, several unique phenotypes were
evaluated, and in four studies correlations with vaccine
responsiveness were reported.

Kurupati et al. reported reduced CD38 expression and loss of
CD27 expression on part of the IgG producing cells (CD20-IgD-
Frontiers in Immunology | www.frontiersin.org 6
CD27-CD38int) in the elderly, and suggested this may be part of
the immunosenescence process (31). Although no correlation
with vaccine responsiveness was reported, the authors reported a
delayed and less prolonged vaccine-specific Ig serum production
in the elderly.

Next, Nipper et al. investigated vaccine responsiveness with a
special focus on so-called age-associated B cells (CD21-T-
bet+CD11c+) (30). Increased age was associated with expansion
of atypical MBCs (CD10-CD20+CD21-CD27-) and reduced
expression of PAX5 – a key regulator of B-cell identity and
differentiation – and inhibitory molecules CD72 and CD85j on B
cells. Additionally, lower PAX5 expression was associated with
poorer vaccine responses. Lastly, a trend towards higher counts
of atypical age-associated B cells (CD21-T-bet+CD11c+CD27-)
and significantly lower resting MBC numbers (CD10-

CD20+CD21+CD27+) were found in donors who responded
poorly to vaccination.

Frasca et al. studied in vitro and in vivo responses to the
monovalent pandemic (p)H1N1 influenza vaccine in the elderly
(33). The percentage of class-switched MBCs at baseline
correlated with the hemagglutinin inhibition response.
Additionally, the level of AID expression at baseline (upon
CpG stimulation) significantly correlated with in vivo vaccine
responses. Thus, baseline AID expression and the percentage of
class-switched MBCs may have predictive value for the
vaccine responsiveness.

In another study, Frasca et al. reported the response to
trivalent influenza vaccination (23). Here, the authors focused
on the Senescent-Associated-Secretory-Phenotype (SASP),
which may contribute to inflammaging. Significantly higher
percentages of late/exhausted MBCs (CD27-IgD-) were found
in the elderly. Within total MBCs, the late/exhausted MBCs
showed the highest levels for many evaluated SASP markers.
Class-switched MBCs (CD27+IgD-) positively correlated with in
vivo responses, whereas late/exhausted MBCs showed a negative
correlation. Thus, the percentage of late/exhausted MBCs may
have predictive value for vaccine responsiveness.

Lastly, Kannan et al. studied responses to trivalent influenza
vaccination, with focus on the anti-H1N1 response, and reported
a trend towards lower numbers of transitional (CD20+IgD+

CD27+/-CD38+/-), class-switched memory (CD20+IgD-

CD27+CD38-) and double-negative B cells (CD20+IgD-CD27-

CD38-) in the elderly (35). Moreover, the elderly had
significantly lower baseline BTLA (B- and T-lymphocyte
attenuator) expression on B cells, which inversely correlated
with age. High BTLA expression on total mature B cells was
linked to higher IgG and lower IgM vaccine-specific antibody
responses irrespective of age. BTLA expression levels were linked
to a better preservation of neutralizing antibody titers and
improved recall responses. Lastly, the authors suggested that
the decline in BTLA during immunosenescence may contribute
to the lack of sustained antibody responses in the aged and their
reduced ability to mount recall responses.

To summarize; multiple factors with potentially predictive
value for the responsiveness to a protein vaccine (mainly
influenza) were found in the elderly. For serum Igs, different
September 2021 | Volume 12 | Article 690328
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patterns were observed for IgG, IgA, IgM or total serum Ig.
Although different factors and B-cell subsets were evaluated,
there was one clear predictor: the ‘age’ of the immune system. In
5/8 studies, a factor that was affected by age was evaluated, and
donors with the least affected B cells showed better vaccine
responsiveness. Although not surprising, these studies hint
towards the assessment of the (baseline) immunological age as
a predictor of vaccine responsiveness.

Primary Immunodeficiency and Common
Variable Immunodeficiency Disorders
Primary immunodeficiency disorder (PID) refers to a
heterogeneous group of inborn disorders characterized by
poor or absent function in one or more components of the
immune system (36, 37). Individuals with a primary humoral
immunodeficiency who meet specific criteria [e.g. ESID criteria
(38)], among which markedly decreased IgG levels in combination
with markedly decreased IgM or IgA levels, are classified as
common variable immunodeficiency disorder (CVID) patients.
Among 33 articles selected for immunodeficiencies, we included 9
studies performed in CVID patients (Supplemental Table 4).
Studies in other PID patients were mostly case reports or did not
meet other inclusion criteria, and therefore were excluded from
this review.

Most (8/9) vaccination studies in CVID evaluated responses
to polysaccharide vaccines. Goldacker et al. additionally
evaluated five peptide vaccines and Gardulf et al. studied
responses to Pandemrix (39, 40). Risk of bias was low in 8/9
studies and moderate in Gardulf et al. because of a substantial
number of study drop-outs (9/57) (39). Most studies reported
substitutive therapy, either with intravenous or subcutaneous Igs,
while 3 manuscripts failed to provide such information
(Supplemental Table 4). Only two studies indicated when
samples were collected in relation to the treatment (39, 41).

Several classifications have been developed to describe the
severity of phenotype in CVID patients (42). These
classifications are either based on the ability to produce Igs
upon stimulation in vitro (London), frequency of major B-cell
subsets (Paris, Freiburg, EUROclass), or presence of defects in B-
cell development (Supplemental Table 5) (43–46). Most of the
here-described studies set out to determine to what extent
classifications are predictive of vaccination responses.

Responses to Polysaccharide Vaccines in CVID
Yazdani et al. evaluated PPV responses in 25 patients and
correlated vaccination outcome with four different CVID
classifications. 22 (88%) patients were hyporesponsive
(evaluated by the increase in vaccine-specific Igs), while 3
(12%) responded normally (42). Among responders two
belonged to MB0 in Paris classification and group Ib in
Freiburg classification, and one to Paris MB1 and Freiburg
group II. In EUROclass classification, one responder was smB-

21low smB-Trnorm, one smB-21norm smB-Trnorm and one smB+

21norm. Finally, two represented B-cell pattern 3 and one B-cell
pattern 4 (Supplemental Table 6). Thus, classifications did not
predict vaccination outcome. Similar conclusions were reached
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by Rezaei et al., who studied responses to meningococcal
polysaccharide vaccine in 12 CVID patients (47). Out of seven
responders (evaluated by serum bactericidal assay; SBA), two
belonged to Freiburg group Ia, three to Freiburg group Ib, and
two to Freiburg group II.

Goldacker et al. studied immune responses to PPV in 21
CVID patients (40). Here, both IgM and IgG responses to 10
PPSs were evaluated. Both IgM and IgG responses were
identified in one patient from Freiburg group Ib (London A,
Paris MB1) and one from Freiburg group II (London C, Paris
MB1), only IgM responses were identified in one patient from
Freiburg group Ib (London B, MB0 in Paris classification), and
only IgG responses in one donor from Freiburg group II
(London C, Paris MB2). In contrast to the above-mentioned
studies, when the sum of all positive serotype-specific IgG anti-
PPS reactions was correlated to the ‘Freiburg’ classification, a
clear pattern emerged in favor of type II patients. This difference
in conclusions seems to originate from a more detailed
evaluation in the latter study. Moreover, only patients with
normal IgM+ MBC percentages (>8%) produced anti-PPS
antibodies. Thus, normal percentages of IgM+ MBCs appeared
necessary, but not sufficient, for an efficient response.

Two bigger studies by Cavaliere et al. and Pulvirenti et al. also
found an association between B cells and vaccination responses
as evaluated by anti-PPS IgAs and/or IgMs (48, 49). In Cavaliere
et al., 10/125 patients had detectable anti-PPS IgM and IgA, 25
only IgM and 2 only IgA. From all evaluated B-cell subsets, non-
responders more often had reduced (<20 cells/ml) IgM+ MBCs
(CD27+IgM+IgD+) and class-switched MBCs (<21 cells/mm3;
CD27+IgM-IgD-). Since the relative distribution of B-cell subsets
was not provided, direct translation to CVID classifications was
impossible. A crucial role of class-switched MBCs in responses to
PPV was further acknowledged by Ko et al. (50). Here, 53
patients were divided into Freiburg group I (33 patients) and II
(20 patients). Group I mounted protective responses only against
median 0.5/12 vaccine serotypes in contrast to 3/12 in group II.

In Pulvirenti et al., 14/74 patients were classified as IgA-
responders (49). Non-responders had an increased frequency of
naive B cells (CD27-CD21+CD38+) and a lower frequency of
class-switched MBCs (CD27+CD21+IgM–) compared to
responders, but no differences in other B-cell subsets.
Interestingly, non-responders belonged to all three Freiburg
classes (IA: 28%, IB: 56%, II: 16%), whereas the responders
belonged to IB (27%) or II (73%) classes only. All responders
belonged to the EUROclass smB+, while non-responders were B-

(9%), smB- (36%), or smB+ (55%). Finally, long-lasting
responders (seropositive after m36 ± 6) had a higher frequency
of class-switched MBCs, in comparison to those, who lost their
IgA response after the first assessment.

A few authors evaluated the impact of other markers on PPV
responses in CVID. Yazdani et al., studied defects in signaling
molecules, resulting in an aberrant B-cell composition, in 10
patients (41). Here, percentages of marginal zone-like
(CD27+IgMhiIgD+) B cells, class-switched (CD27+IgM−IgD−)
MBCs, non class-switched (CD27+IgMhiIgD−) MBCs, total
MBCs and plasmablasts (CD19lowCD21intCD38hiIgM−(+)) were
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significantly decreased in patients, which negatively correlated
with the expression of apoptosis marker Annexin V.
Furthermore, expression of phosphorylated (p) Akt was
reduced in B cells of these patients and correlated with the
level of PPV-specific antibodies. Sharifi et al. found that low
numbers of end-stage MBCs and hyporesponsiveness to PPV in
CVID patients were associated with higher expression of Toll-
like Receptor (TLR) 2 on PBMCs (at baseline and upon
stimulation) (51). This was further accompanied by lower
mRNA expression for myeloid differentiation primary response
88 (MyD88) implying a defect downstream of TLRs.

Responses to Other Vaccines in CVID
Only two studies evaluated immune responses to other vaccine
types in CVID. Gardulf et al. found that 8/48 CVID patients
responded to monovalent influenza vaccine (39). At the time of
CVID diagnosis, non-responders had significantly higher mean
serum IgM levels and lower mean serum IgG1 levels than
responders. No differences were found regarding absolute B-
cell counts, but non-responders had less plasmablasts and more
CD21low B cells. Responders mostly belonged to EUROclass
SmB-Trnorm21low and B-cell pattern 5.

In addition to PPV, Goldacker et al. evaluated responses to
five protein vaccines (40). Protective IgG responses against
hepatitis A or B vaccines (HAV/HBV) were raised in 7 donors
representing all groups in Freiburg (Ia:2, Ib:3, II:2), London (A:1,
B:3, C:3) and Paris (MB0:3, MB1:2, MB2:3) classifications. IgG
responses were rarely observed against recall DT vaccinations,
and 6 patients responded to the Hemophilus polysaccharide–
protein conjugated vaccine. When all positive IgG responses
were considered, they were stronger in Freiburg group II. Again,
most CVID patients with anti-protein vaccination responses had
normal IgM+ MBC counts.

In conclusion, although CVID patients responding to
vaccinations represented different groups in CVID classifications,
seroconversion was most likely in patients with higher MBC
percentages (>0.4%, consistent with Freiburg group II). This
trend was clearer when vaccination responses were evaluated for
different PPS serotypes and included analysis of IgMs and IgAs.

Secondary Immunodeficiency - HIV
Depletion of CD4+ T cells in chronically HIV-positive
individuals is accompanied by intrinsic B-cell defects e.g.
accumulation of activated-mature B cells, exhausted ‘tissue-
like’ B cells, and depletion of resting MBCs (52). Although
nowadays these defects can be mostly reversed by early
antiretroviral therapy (ART), this was not always the case in
the past (53).

Here, we summarized 20 studies performed between 2000-
2018 evaluating immune responses to PPV (n=6), influenza
(n=9) and other protein vaccines (n=5). These studies were
heterogenous regarding the design, size and age of the cohort,
route of infection or duration of treatment (Supplemental
Table 4). While in most studies all patients were on ART,
bigger cohorts also included untreated individuals. All these
factors need to be considered during results interpretation.
Frontiers in Immunology | www.frontiersin.org 8
Risk of bias was low in 13/20 studies and moderate in the
remaining 7 (mostly due to confounding).

Responses to Polysaccharide Vaccines in HIV
First, only studies with polysaccharide vaccines will be discussed,
and polysaccharide-conjugated vaccines will be discussed in the
next sub-section. Results will be presented along four major
topics: role of (I) classical and (II) atypical B-cell populations,
(III) pre-existing B-cell memory, and (IV) B-cell repertoire.

There is no consensus regarding the role of baseline B-cell
populations in PPV responses in HIV. From all classical B-cell
subsets, IgM+ and class-switched MBCs are most frequently
discussed. Tsachouridou et al. found that total and exhausted
(CD19+CD21lowCD27-) B-cell counts, but not MBC
(CD19+CD27+) and IgM+ MBC (CD19+CD27+IgMhi) counts,
at baseline correlated with vaccine-specific IgGs in patients four
weeks post-immunization (54). In contrast, correlation between
IgM+ (marginal zone) MBCs, and post-vaccination IgG serotype
coverage and opsonophagocytic killing (OPK) activity was
observed by Eisen et al. in vertically-infected HIV patients.
Also Hart et al. found a positive correlation between baseline
IgM+ MBC (CD19+CD27+IgMhiIgDlow) numbers and post-
vaccination anti-PPS IgMs (55, 56).

Several atypical B-cell subsets in HIV correlated with PPV
responses. In ART-naive patients studied by Abudulai et al., the
baseline proportions of CD21low/- or BTLA+ B cells correlated
negatively with IgG+ antibody secreting cells (ASCs) for three
serotypes. However, in ART-treated patients, the proportions of
CD21low/- B cells correlated positively with the IgG+ ASCs to one
serotype (52). A predictive role of CD21low B cells was also
shown by Eisen et al., who compared responses to PPV in
vertically- and horizontally-infected HIV patients and controls
(56). From the two patient cohorts, significant associations were
found only in vertically-infected patients, who appeared more
affected. CD21low (CD38lowCD21low) B cells correlated negatively
with IgG serotype coverage and OPK activity, and anergic
(CD27-CD21low) cell numbers correlated negatively with both
IgM and IgG serotype coverage and OPK activity post-
immunization. Of the dynamic markers, the strongest positive
correlations were seen between CXCR5 expression (marker of
cell trafficking) and IgM and IgG serotype coverage post-
vaccination and serum OPK activity. Bcl2 expression (marker
of apoptosis) correlated with post-vaccination IgG and IgM
serotype coverage. No consistent relationship was seen between
numbers of other B-cell phenotypes, CD95 and Ki-67 expression
and vaccination outcome.

Two studies evaluated the impact of pre-existing
immunological memory on immune responses to PPV. In
Eisen et al., y1 IgG serotype coverage correlated with d0 IgM
and IgG antibody responses, suggesting a predictive role of
natural immunity (56). In contrast, Farmaki et al. showed no
correlation between baseline anti-PPS IgM+ (CD19+CD10−

CD21hiCD27+IgM+) and class-switched (CD19+CD10−

CD21hiCD27+IgM−) MBC counts and anti-PPS IgG levels at
m1 after PPV (57). Moreover, IgM+ MBCs were significantly
reduced after vaccination.
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Only one study, by Chang et al., set out to determine if
differences in IGHV gene usage between HIV patients and
controls can influence their responsiveness to PPV (58). While
IgG+ B cells from HIV individuals frequently utilized IGHV4
gene family, IGHV3 and IGHV5 were more abundant in
controls. Upon vaccination, IGHV3 was further expanded in
controls, while patients showed more IGHV5.

Although not unanimous, studies in HIV point towards a
positive correlation between IgM+ MBCs and PPV outcome. In
contrast, presence of atypical B-cell subsets, especially CD21low,
seems to be a negative predictor. The role of pre-existing
immunological memory is ambivalent. While baseline antibody
levels appear to be good predictors of long-term protection, this
is not always the case for short-term cellular responses. T-
independent antigens seem to drive pre-existing MBCs into
terminal differentiation without replenishing the MBC pool.
Further differences in IGHV repertoire between patients and
controls, especially underrepresentation of IGHV3 genes crucial
for recognition of PPS, may further affect PPV responses in HIV.

Responses to Polysaccharide-Conjugated
Vaccines in HIV
Three studies investigated correlations between B-cell
parameters and vaccination outcome with conjugated
polysaccharide vaccines. Johannesson et al. subdivided HIV
patients into ART-responders, impaired ART-responders and
ART-naive (59). ART-responders had more class-switched
(CD27+CD38-IgD-IgM-) MBCs and more marginal zone-like
(CD27+CD38-IgD+IgM+) B cells compared to impaired
responders. Furthermore, ART-naive patients had more
transitional (CD27-IgD+IgM+/-CD38+) B cells and plasmablasts
(CD27+CD38+) than other groups. The concentration of
marginal zone-like B cells, class-switched MBCs and
plasmablasts correlated positively with post-PCV IgG
concentrations, of which low concentration of class-switched
MBCs was the strongest independent predictor of poor
vaccine responsiveness.

Farmaki et al., who studied immune responses to PCV (and
PPV 12 months later), quantified baseline levels of PPS-specific
IgM+ (CD10−CD27+CD21hiIgM+) and class-switched (CD10-

CD27+CD21hiIgM-) MBCs and correlated them with PPS-
specific IgGs and class-switched MBCs after each vaccination
(57). For PCV, such positive correlation was found between
baseline PPS-specific IgM+ MBCs and both PPS-specific class-
switched MBCs and anti-PPS IgGs.

Milagres et al. reported that both conventional and atypical B-
cell subsets predicted vaccination responses to conjugated
men in go co c c a l v a c c i n e ( 6 0 ) . E xh au s t e d B c e l l s
(CD27−IgD−CD21−CD38+) as well as short-lived plasmablasts
(CD27+IgD−CD21−CD38+) were increased in ART-treated HIV
patients and negatively associatedwith vaccine-induced SBA levels.

In conclusion, in contrast to PPV, PCV responses seem to
mostly depend on baseline class-switched MBC levels, which is
in line with the T-cell dependent character of B-cell responses
elicited by PCV. Furthermore, upon T-cell dependent
stimulation, PPS-specific MBCs seem to re-enter germinal
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centers and to differentiate into class-switched MBCs, which
results in positive correlations between pre-existing
immunological memory and vaccination responses. Finally,
similar to PPV, abundance of atypical B-cell subsets correlates
with poor vaccination responses.

Responses to Influenza Vaccines in HIV
Influenza viruses are associated with significant morbidity and
mortality in HIV-infected children and adults (61, 62). Thus,
several studies set out to determine the effect of abnormal B-cell
maturation and activation in HIV on the magnitude, quality and
memory of the immune response to various influenza vaccines.

Curtis et al. studied responses to monovalent influenza
vaccination in HIV-infected children and adolescents (63).
Among classical B-cell subsets, resting MBCs (CD21+CD27+)
correlated positively and transitional B cells (CD21-CD27-CD20-)
correlated negatively with B-cell memory (pH1N1 IgG ASCs) after
the second vaccination dose. Additionally, transitional B cells
correlated negatively with antibody avidity. Among atypical
subsets, activated (CD38+HLADR+) B cells correlated negatively
and activated immature B cells correlated positively with B-cell
memory after second dose, while tissue-like B cells (CD21-CD27-

CD20-) correlated negatively with antibody avidity. More
responders were found in the older adolescents than in children,
which was associated with pre-existing memory due to previous
influenza encounters.

Rinaldi et al. investigated the impact of HIV and age on
immune responses to (trivalent) influenza vaccine in adults (64).
Surprisingly, young HIV patients showed severe signs of
immunosenescence, i.e. increased frequencies of double-
negative B cells (IgD-CD27-) and high expression of activation
markers CD80 and PDL1 on B cells. Frequencies of CD80+ naive
B cells correlated inversely with the H1N1 titer fold change,
suggesting a negative impact of immune activation on vaccine
responses in this group. Finally, baseline plasmablast frequencies
positively correlated with H1N1-specific spontaneous ASCs at
d7. Time under ART showed negative correlation with
immunological abnormalities.

Other B-cell aberrancies observed in HIV such as increased
expression of inhibitory receptor FcRL4 (65) or elevated
frequencies of cycling (Ki-67+) and apoptotic (Annexin V+) B
cells (66) did not correlate with influenza vaccination outcome.

Several studies showed that also early B-cell responses may
discriminate between vaccination responders and non-
responders. In two separate studies, Pallikkuth et al. evaluated
immune responses to monovalent influenza vaccination in a
small cohort of patients and controls (67, 68). Although the
distribution of B-cell maturation stages at baseline differed
between patients and controls, no differences were found
between responders and non-responders among the patients.
However, after vaccination only controls and responding
patients showed an increased proliferation and expansion of
MBCs and plasmablasts. Additionally, responders showed
elevated levels of BAFF and APRIL (promotors of B-cell
activation and Ig production), as well as IL-21 (secreted by
CD4+ follicular helper T cells) upon vaccination. The latter
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was confirmed by Parmigiani et al. (65). When B-cell receptors
for these soluble factors were evaluated, it turned out that at
baseline non-responders had lower frequencies of BAFF-R and
TACI-expressing MBCs than responders. After vaccination,
BAFF-R+ B-cell frequencies decreased and TACI+ B-cell
frequencies increased in controls and responding patients, but
not in non-responding patients. H1N1 antibody titers correlated
inversely with BAFF-R+ B cells and MBCs and positively with
TACI+ B cells and MBCs at d28. IL-21R+ B cells were not
significantly different between responders and non-responders
at baseline, but increased at d28 in responders, which directly
correlated with H1N1-specific antibodies. Moreover, cells from
non-responding patients failed to respond to IL-21 in culture.
Furthermore, Cagigi et al. found a reverse correlation between
the baseline frequencies of IL-21R–expressing B cells, mature-
activated (CD10-CD21-) and double-negative (CD27-IgD-) B
cells, which were more frequent in non-responders (69).

Further studies by Cagigi et al. revealed hampered
upregulation of AID in untreated HIV patients at m1 post-
vaccination (70). Here, in vitro AID fold increase upon activation
directly correlated to the in vivo anti-A(H1N1)pdm09 antibody
increase at m1, and the maximum expression level of AID was
significantly higher in individuals with protective antibody levels
after six months. Thus, the ability of cells to upregulate AID can
predict vaccination responsiveness.

Several studies investigated if immunological memory from
previous antigen encounters can influence immune responses to
influenza vaccine in HIV. Curtis et al. found that individuals who
were seropositive at baseline (titer ≥1:40) had significantly higher
IgG ASC levels upon monovalent influenza vaccination than
seronegative participants (titer <1:40) (63). However, this was in
contrast with Luo et al., who showed a reverse trend.
Noteworthy, in the second study all participants had protective
baseline Ab levels (titer >1:40), and responses seemed to reflect a
plateau effect of vaccine-induced fold changes of antibody
responses (66).

Wheatley et al. extended the evaluation of pre-existing
memory by cellular analysis (71). Although patients and
controls raised similar Ig levels upon vaccination, post-
vaccination frequencies of MBCs against vaccine strains were
significantly higher in controls. The magnitude of MBCs induced
post-vaccination was proportional to their initial frequencies at
baseline, while the impact of pre-existing serological responses
varied for MBCs against different vaccine components.

In summary, extensive studies on influenza vaccine responses
in HIV confirmed observations from previous vaccination
models (positive role of MBC levels, negative role of
transitional and exhausted/tissue-like B-cell levels) and
extended them by demonstrating a (mostly) negative impact of
activated B-cell subsets. Furthermore, here-reviewed
manuscripts pointed at the potential role of in vitro studies
(responses to IL-21, upregulation of AID upon stimulation) in
predicting vaccination outcome. Regarding the role of pre-
existing immunological memory, positive correlation between
pre- and post-vaccination Ag-specific Ig levels seemed to exist
only within a certain titer range and reaching protective Ig levels
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was not always accompanied by effective MBC responses. Finally,
age, treatment and disease duration seemed to have an important
modulatory role on top of HIV diagnosis.

Responses to Other Protein Vaccines in HIV
A few groups investigated immune responses to tetanus and
hepatitis A or B vaccines in HIV. Only a limited number of
correlations between baseline B-cell composition and
vaccination responses was found. Weinberg et al. investigated
primary immune responses to HAV in a large cohort of HIV-
infected children on ART (72). From all investigated B-cell
subsets, total B-cell percentage at baseline was the strongest
predictor of vaccination responses (HAV antibody titer after
second vaccination dose). Additionally, children who mounted
HAV cell-mediated immunity (proliferative responses upon
stimulation), had higher HAV antibody levels and MBCs
percentage upon vaccination. In Van Epps et al., resting MBCs
at baseline correlated with anti-tetanus Ig levels at w12 post-
vaccination, while only a trend was found for HAV (53). Finally,
Paris et al. showed no role of classical B-cell subsets, or
CCR7hiCXCR5hi,or CCR7hiCXCR5low B-cell subsets at baseline
in predicting responses to HBV (increase in vaccine-specific
IgGs) (73). Noteworthy, in these studies predictive role of
MBCs was mostly found for recall, but not for primary responses.

Responses to Vaccination in Asplenia
Asplenia can be an inborn condition or a result of surgical
procedures e.g. due to an accident or underlying disease. In
health, the spleen maintains a pool of MBCs and is a major
source of IgM+ marginal zone-like B cells protecting against
encapsulated bacteria (74). Therefore, most vaccination studies
in asplenia focused on responses to bacterial polysaccharides.
Among here-discussed studies, three had low, and one had
moderate risk of bias.

Wasserstrom et al. studied patients splenectomized due to
autoimmune conditions (n=19) and hereditary spherocytosis
(n=6) vaccinated with PPV (75). In comparison to controls,
both splenectomized cohorts had fewer MBCs (total, CD27+IgM-

IgD- and IgM+), which was statistically significant for the
autoimmune group. Although splenectomized patients tended
to have higher concentrations of anti-PPS IgGs at baseline (due
to previous vaccinations), overall IgG responses upon
immunization were comparable in patients and controls. In
contrast, anti-pneumococcal IgMs were comparable at baseline,
but less expanded in autoimmune patients upon vaccination.
Despite an obvious defect in MBCs and IgM antibody responses
in autoimmune patients, there was no direct correlation between
anti-PPS IgG or IgM responses and CD27+IgM+ or class-
switched MBC numbers.

Rosado et al. revealed differences in responses to PPV and
PCV administered before and/or after splenectomy (76). 57
splenectomized adults and 11 children received PPV, and 10
children received PCV. Although splenectomy did not alter
serum anti-PPS IgG concentration, the number of PPS-specific
IgM+ and IgG+ MBCs was reduced in PPV-vaccinated individuals.
Only in children, who received PCV after splenectomy, the
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number of PPS-specific IgG+MBCs was similar to that of pediatric
controls. Thus, PCV, but not PPV, administered after splenectomy
could restore IgG+ PPS-specific MBCs.

Papadatou et al. investigated adults with b-thalassemia and
asplenia vaccinated with PCV and in the past with PPV (77).
PPS-specific IgGs were detected in all patients before and
significantly increased upon vaccination. At baseline, all study
participants had detectable IgM+ and IgG+ MBCs against at least
one serotype. PPS-specific IgG+ MBCs, but not PPS-specific
IgM+ MBC numbers, increased significantly upon vaccination.
IgG+ and IgM+ MBC numbers, as well as IgG levels on d28,
negatively correlated with number of previous PPV doses and
positively with time since last PPV dose. This finding that
multiple PPVs result in lower numbers of PPS-specific MBCs
is in accordance with the hypothesis that the PPS antigens drive
pre-existing PPS-specific class-switched MBCs into terminal
differentiation without replenishing the MBC pool.

Finally, Giesecke et al. investigated tissue distribution of
human Ag-specific MBCs, using responses to DT vaccine (78).
In steady state, the spleen was the largest reservoir of tetanus
toxoid (TT)–specific MBCs. After revaccination, controls,
splenectomized and tonsillectomized individuals exhibited
comparable emergence of anti-TT IgGs, TT-specific plasma
cells, and TT-specific MBCs in blood. Moreover, molecular
characteristics of TT-specific plasma cells were unaffected,
despite reduced frequency of, mostly IgD+, peripheral blood
MBCs in long-term splenectomized patients.

Overall, splenectomized patients seemed to have normal
serological IgG responses to vaccination, but hampered IgM
and MBC responses. IgG+ MBCs could be restored by protein,
but not polysaccharide, antigens. Thus, proper evaluation of
vaccine efficacy in splenectomized patients may require both
serological and cellular analysis. Although no correlations were
found between baseline B-cell subsets and vaccination outcome,
it is important to realize that none of these studies was performed
in patients with inborn asplenia, who present with a more
severe phenotype.

Immunosuppressive Treatment
Immunosuppressive treatment is prescribed for a variety of
indications, e.g. autoimmune or malignant diseases, which by
themselves already affect the immune system and vaccination
responses. Therefore, it may be challenging to distinguish
treatment effect from disease effect. However, certain study
designs allow for this distinction, such as the inclusion of
untreated or placebo-treated patients as controls. In such
designs, any difference in vaccination response could be
attributed to the only different condition: the administered
treatment. Additionally, studies identifying immune patterns
for vaccine (non-) responders are suitable for analysis in this
review. However, when a study compares treated patients with
healthy controls, it is difficult to distinguish treatment effect from
disease effect. Therefore, results from these studies should be
interpreted with caution. Nevertheless, they still provide valuable
information on possibly predictive immune biomarkers for
vaccination responses, and provide insight in the extent to
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which immunosuppressed individuals are able to mount
normal immune responses. In addition to these challenges
concerning study design, risk of selection bias is a very
prevalent problem, as the start of treatment rarely coincides
with the inclusion in the study.

In this section, we included all immunosuppressive agents or
treatments directly or indirectly affecting (a part of) the B-cell
compartment. We aimed to describe alterations in the B-cell
compartment after immunosuppressive treatment, and how they
correlate with attenuated vaccination responses. The 29 articles
included for this topic have been subdivided according to type of
treatment or indication: I) (allogeneic) hematopoietic stem cell
transplantation (HCT) (n=6), II) rituximab (n=7), III)
chemotherapy (n=7), IV) organ transplantation (n=5), and V)
autoimmune diseases (n=6). In 7/29 studies, T-cell independent
PPV responses were studied and in 27/29 studies T-cell
dependent vaccination responses were studied. Due to limited
inclusion of publications reviewing polysaccharide responses,
they were summarized in one final paragraph. An overview of
all included articles can be found in Supplemental Table 7.

Response to Protein and Protein-Conjugated
Vaccines in Patients After Allogeneic Hematopoietic
Stem Cell Transplantation (HCT)
Common indications for allogeneic HCT include malignant and
non-malignanthematologic diseases. Prior toHCT,patientsundergo
a conditioning regimen (either myeloablative or non-myeloablative)
that ablates the bone marrow, resulting in an immunocompromised
state (79). Afterwards, immunosuppressive agents are often
prescribed to prevent graft versus host disease (80). This results in a
compromised immune system, that takes time to reconstitute (81).
Six articles on the immune response in patients after HCT were
included. These publications generally report heterogeneous study
cohorts with both malignant and non-malignant indications, and a
wide variety of immunosuppressive drug combinations, varying in
mechanism of action and intensity.

Five articles that compared vaccination responses between
patients and healthy controls frequently found a significantly
poorer vaccination response in patients (82–86). Roll et al.
distinguished responders and non-responders and found that
non-responders were generally on a heavier immunosuppression
regimen (87). In one study, patients with SCID (severe combined
immunodeficiency) responded either poorer or similar to healthy
controls, depending on the type of SCID (82). Here, vaccination
outcome appeared primarily attributable to the type of
underlying molecular defect, and not to any immune parameters.

However, in all other studies baseline immune parameters
seemed predictive of vaccination responses in patients. Higher
MBC numbers distinguished responders from non-responders in
two studies (83, 87). Likewise, MBC (both class-switched and
non class-switched) counts or percentages were lower in patients
in two other studies (84, 85). Additionally, Avetisyan et al. found
that patients had fewer influenza-specific B cells as measured by
ELISpot at baseline (86).

Naive B cells discriminated responders from non-responders in
one study (87). Another study found higher baseline plasmablast
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numbers in patients, whose response was poorer than healthy
controls (84). However, in the latter study, the patient cohort was
rather heterogeneous regarding indication for HCT, graft versus
host disease occurrence, and immunosuppressive treatment.

In summary, higher levels of MBCs (class-switched and non
class-switched) in this cohort are likely to correlate with a better
vaccination response. The same might hold for a higher
frequency of naive B cells, influenza-specific B cells, and a
lower frequency of plasmablasts.

Response to Protein and Protein-Conjugated
Vaccines in Rituximab-Treated Patients
Rituximab specifically depletes CD20+ B cells, which means that
any vaccination studies regarding B cells can be performed only
after at least partial B-cell recovery (88). Seven studies reporting
the effect of rituximab on the immune response were included.

Since rituximab is often administered in addition to other
immunosuppressive agents, in a variety of conditions, it is
difficult to isolate rituximab treatment effects. One placebo-
controlled study in rituximab-treated patients reported
attenuated responses to a neoantigen, but not to recall antigens
(89). However, another placebo-controlled study did find
attenuated responses to recall antigens in rituximab patients, as
did four other studies with a slightly less suitable design (90–94).
Only one study did not find differences in vaccination responses
between patients and healthy controls, although baseline B-cell
profiles were very similar in this study (95).

In this group, a critical role for MBCs was established as well.
Remarkably, all studies found that MBC counts or percentages
were reduced in rituximab-treated patients compared to controls
(89–95). Three of them were however not able to correlate this
lack of MBCs to a poorer antibody response: Puissant-Lubrano
et al. and Pescovitz et al. found that MBC counts did not
distinguish responders from non-responders, while Cho et al.
found normal antibody responses despite a lack of MBCs in
patients (89, 92, 95). As patient antibody responses were
relatively normal in these studies, they might have been
insufficiently powered to detect these correlations.

Although MBCs did not reconstitute in any study, some
studies reported naive B-cell reconstitution. Two studies
reported low naive B-cell counts in combination with poorer
antibody responses. One of them found that higher naive B-cell
counts distinguished responders from non-responders (91). Cho
et al. reported higher transitional B-cell percentages in patients,
although antibody responses were not different from healthy
controls (95).

Additionally, some singular findings were reported. Pescovitz
et al. reported that in a neoantigen vaccination setting, rituximab
impairs class-switching up to the first booster vaccination (89).
Nazi et al. found that rituximab patients had more plasmablasts
than placebo-controls, while they responded poorer to
vaccination (90). Higher total B-cell numbers were found by
Eisenberg et al. to distinguish responders from non-
responders (91).

In summary, limited correlations between baseline B-cell
parameters and vaccine responses were found in this cohort,
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but that might be due to heterogeneity of additional
immunosuppressive treatment within study cohorts. In general,
it can be concluded that rituximab hampers antibody responses
to neoantigens and recall antigens, and that higher MBC
numbers are likely correlated with a better antibody response.
Additionally, there might be a predictive function for higher total
or naive B-cell counts, and lower plasmablast counts.

Response to Protein and Protein-Conjugated
Vaccines in Patients Treated With Chemotherapy
Although chemotherapy can consist of different agents,
intensities, and durations, a common side effect is
immunosuppression (96). Seven studies in patients using
chemotherapy were included. In these studies inclusion of a
placebo treatment would be unethical. Regardless, differences
within patient groups or between responders and non-
responders might still be of value in our analysis. One study
did use a T-cell dependent influenza vaccine, but only assessed
T-cell responses to this antigen and is therefore not included in
this section (97). It is however included in the polysaccharide
section, as it did evaluate B-cell responses for PPV.

Two studies reported adequate vaccine responses in
immunosuppressed acute lymphoblastic leukemia (ALL)
patients compared to controls (98–100). However, Ek et al.
reported that high-risk patients, who received the heaviest
immunosuppression, were less successful in mounting a
memory response (99). Two other studies, in either AML
patients or ovarian cancer patients, reported lower geometric
mean titers or seroconversion rates than in healthy controls,
although their patient cohort was rather heterogeneous
regarding immunosuppression intensity (101, 102).

Kersun et al. also performed a study in ALL patients, and
found that patients vaccinated during induction therapy instead
of later phases of chemotherapy had higher MBC counts, likely
correlating with an increase in influenza-specific antibody titers
(r=0.19) (103). Although Koskenvuo et al. described a similar
lack of MBCs in ALL patients, they did respond normally to PCV
(98). Another study, in AML patients, found that MBC counts
were significantly higher in responders (104). This was
corroborated by Reilly et al. who reported lower MBC counts
in AML patients compared to controls, in combination with a
poorer antibody response (102). Chu et al. reported lower MBC
counts in ovarian cancer patients as well, in combination with
lower seroconversion rates than in healthy controls (101).

Subnormal levels of naive B cells in patients were reported
only by Koskenvuo et al. and Reilly et al., with the former
reporting normal antibody responses and the latter poorer
antibody responses (98, 102). On the other hand, total B-cell
counts might be predictive of influenza-specific responses in
patients using chemotherapy. Kersun et al. reported a positive
correlation between total B-cell counts and antibody titers
(r=0.23) (103). Two other studies described a lack of total B
cells in combination with a lower antibody response (101, 102).
However, in a PCV setting, Koskenvuo et al. reported reduced
total B-cell numbers in patients, but normal antibody
responses (98).
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Singular findings were reported in this group as well. Ek et al.
reported normal vaccine responses despite low CD5- B-cell
counts in ALL patients (99, 100). Goswami et al. ran an
extensive flow cytometry panel and reported decreased CD86+

B-cell populations, but increased transitional B cells, in non-
responding AML patients compared to healthy controls (104).

In conclusion, it is difficult to separate disease and treatment
effects in patients on chemotherapy. ALL patients appear to
respond rather well to vaccination. However, in an influenza
vaccination setting higher total B-cell and MBC counts
distinguished responders from non-responders.

Response to Protein and Protein-Conjugated
Vaccines in Patients With Post-Transplantation
Immunosuppression
After solid organ transplantation, immunosuppressive therapy is
often administered to avoid graft rejection. In this case, ‘disease
effect’ is negligible, as the act of transplantation itself is unlikely to
be the cause of altered vaccination responses, although an immune
reaction against the graft might occur. Therefore, valid inferences
can still be made in less strict designs, such as comparing patients
to healthy controls. However, immunosuppressive treatment
might still be very heterogeneous among patient cohorts. Five
post-transplantation studies were included.

Struijk et al. found that kidney transplant patients were unable
to mount a response against neoantigen immunocyanin, whereas
healthy controls could (105). The mycophenolate sodium (MPA)-
treated group was unable to mount a recall response to TT, but
other patient groups (treated with cyclosporine or everolimus)
were, despite varying levels of pre-existing Ag-specific IgG levels.
Cowan et al. and Egli et al. also described a poorer response in
patients than in healthy controls (106, 107). The other two studies,
although heterogeneous regarding cohort constitution (underlying
condition and treatment), found contradictory results as their
patient cohorts responded comparably to healthy controls (85, 92).

MBCs were reduced in patients in two studies, although this
coincided with a poorer antibody response in only one study (92,
105). However, the other study used a more heterogeneous
cohort (92). Similarly, naive B cells were reduced in patients in
two studies, of which one reported a poorer response (85, 105).
Again, the study reporting normal responses had a
heterogeneous patient cohort (85).

Total B-cell numbers, which were reduced in patients,
correlated to the anti-TT response in Struijk et al. (r=0.38) (105).
A reduced number of total B cells was also found in Puissant-
Lubrano et al. (92). In other studies, a few singular findings were
reported. Cowan et al. reported low plasmablast numbers in
patients, combined with poor ELISpot and antibody responses
(106). Egli et al. found that patient-responders had a significantly
higher HLA-DR and CD86 expression at baseline across all B-cell
subsets (107). Puissant-Lubrano et al. reported normal antibody
responses in patients, despite lower CD5+ MBC numbers (92).

The heterogeneity of here-described studies hampered
identification of strong vaccination outcome predictors. In a
randomized trial, Struijk et al. concluded that patients on post-
transplantation immunosuppression were unable to mount
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normal humoral vaccination responses to neoantigens. Higher
total B-cell numbers and plasmablasts might contribute to an
adequate recall response, as well as activated B-cell subsets.

Response to Protein and Protein-Conjugated
Vaccines in Autoimmune Patients Using
Immunosuppression
In contrast to transplantation settings, the disease impact on
vaccination responses cannot be ignored in autoimmune
diseases, in which the immune system is considered abnormal
even without immunosuppressive treatment. Six studies
described such cohorts, although one assessed only PPV
responses and is therefore not included in this section (108).

Vaccination responses in patients were attenuated in two
studies (109, 110), and normal in two others (111, 112).
Noteworthy, the latter study cohorts were very heterogeneous
regarding immunosuppressive treatment.

In general, baseline B-cell parameters were less predictive of
vaccination responses in this group. Bingham et al. reported
higher MBC percentages and better vaccination responses in
BAFF-inhibited patients compared to methotrexate-only
patients (113). However, Salinas et al. reported higher amounts
of non class-switched MBCs in anti-TNF-treated patients, who
responded worse than healthy controls (110). Although
Kamphuis et al. found lower amounts of MBCs in patients
than in healthy controls, vaccine responses were normal (112).

More naive and immature B cells were found in the poorer
responding methotrexate-only group by Bingham et al. (113). On
the other hand, Salinas et al. reported lower naive B-cell numbers
in patients who responded poorer than healthy controls (110).

ELISpot data at baseline did not correlate to vaccination
responses in patients with autoimmune diseases. Kobie et al.
reported similar baseline numbers of influenza-specific cells
between patients and controls, although vaccination responses
(both humoral responses and plasmablast induction) were worse
in patients (109). Neither did Heijstek et al. find any correlation
between baseline ELISpot data and vaccination responses (111).

Salinas et al. furthermore reported an impaired degree of
somatic hypermutation in B cells of anti-TNF-treated patients,
who responded poorer to vaccination than healthy controls to
neoantigen HBV (110). Kamphuis et al. performed extensive
flow cytometry, and found that although MBCs and natural
effector B cells were significantly reduced, nearly all patients
mounted adequate antibody responses (112).

In summary, patients with autoimmune diseases who use
immunosuppression tend to mount impaired responses to
vaccination. Naive and immature B-cell counts or ELISpot data
did not predict vaccination responses. Also, MBCs appeared less
predictive in this patient group. Impairment in somatic
hypermutation might attenuate neoantigen responses.

Responses to Polysaccharide Vaccines in
Immunosuppressed Patients
Seven studies in immunosuppressed patients investigated PPV
responses, of which one in chemotherapy, one in post-
transplantation, and five in autoimmune patients.
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In 5/7 studies, an attenuated humoral anti-PPV response in
patients was reported, compared to either healthy controls or
untreated patients (90, 97, 105, 108, 110). A normal response was
found in rheumatoid arthritis patients by Bingham et al., who used
a randomized placebo-controlled design (113). Kamphuis et al. also
found normal vaccination responses in sarcoidosis patients
compared to healthy controls, but the treatment variety in this
cohort might have been too large to detect differences in vaccination
responses that could be attributed to immunosuppressive
treatment (112).

The effect of chemotherapy on PPV responses was evaluated
by De Lavallade et al. in chronic myeloid leukemia (CML)
patients on a tyrosine kinase inhibitor (97). Median pre-
vaccination anti-pneumococcal IgG levels were higher in
patients, whereas anti-pneumococcal IgM levels were lower
both pre- and post-vaccination. Responding patients had
significantly more non class-switched and class-switched MBCs
than non-responders. Non class-switched MBCs positively
correlated with anti-pneumococcal IgM titers post-vaccination.

Struijk et al. evaluated a cohort of immunosuppressed kidney
transplant recipients (105). Total, naive and memory B cells were
lower in patients than in healthy controls, and lowest in MPA-
treated patients. Pre-vaccination PPV-specific IgG levels were
lowest in MPA-treated and cyclosporine-treated patients, who
both responded significantly worse to PPV than healthy controls,
whereas the everolimus-treated group was able to mount a
normal response.

In both studies, MBCs appeared predictive of a humoral anti-
PPV response. High quality evidence for a predictive role of total
and naive B-cell numbers was provided by Struijk et al., who
conducted a randomized controlled trial.

Five studies in patients with autoimmune diseases were
included, but the heterogeneity in immunosuppressive
treatment is rather extensive. A major limitation of these study
cohorts is that the disease effect on vaccination responses cannot
be ignored, and only placebo-designs or within cohort
comparisons might allow for valid inferences.

Pre-vaccination Ig levels were assessed by all studies, of which
only two compared these levels to controls (110, 113). These two
studies did not find any significant differences in pre-vaccination
IgG titers between untreated/placebo-treated and treated patients.

Regarding cellular data, 4/5 studies reported absolute baseline
B-cell counts, and 2/5 studies reported relative B-cell subset
percentages. Higher baseline naive B-cell counts were associated
with a higher post-vaccination titer in two studies (90, 110). One
study, in which similar vaccination responses were mounted
despite a difference in naive B-cell percentages, contradicted this
result (113).

MBCs appeared less predictive of anti-PPV responses in
immunosuppressed autoimmune patients. One study reported
lower MBCs in combination with lower vaccination responses
(90), whereas two reported a difference in MBCs but not in
vaccination responses (112, 113), one reported higher non class-
switchedMBCs in combination with lower vaccination responses
(110), and one reported higher class-switched MBCs in
combination with lower vaccination responses (108).
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One study reported that higher plasmablast amounts were
associated with lower vaccination responses (90). Another
reported impaired somatic hypermutations in anti-TNF-treated
patients, in whom vaccination responses were also poorer (110).

Kamphuis et al. studied many B-cell populations by flow
cytometry (112). However, the studied sarcoidosis patient group
was highly heterogeneous regarding type and intensity of
immunosuppressive treatment, making it difficult to draw clear
conclusions regarding the predictive value of B-cell baseline data.
They found significantly reduced numbers of IgM+, IgG+, and
IgA+CD27+ MBC, CD21lowCD38low anergic B cells and natural
effector B cells, whereas CD27−IgA+ B-cell numbers were
significantly increased in patients. Despite these differences,
nearly all patients managed to mount an adequate antibody
response to all vaccines.

To summarize, this limited amount of evidence shows that it
is likely that immune responses to PPV are mainly determined
by naive B cells, and to lesser extent by MBCs. Pre-existing
immunity appears to be of inferior importance in PPV responses.
DISCUSSION

Here we reviewed 75 manuscripts that evaluated the impact of
baseline B-cell status on immune responses to vaccination with
the ultimate goal to identify parameters predictive of vaccine
efficacy. In our search, we covered a range of conditions within
three major topics: extremities of life, immunodeficiency
and immunosuppression.

Despite a comprehensive literature search, we were unable to
compare studies on vaccination responses in pregnancy and
infants as for both topics only one study fulfilled inclusion
criteria (85, 114). Similarly, no studies in PIDs or using
vaccination with neoantigens to evaluate the immune system
fulfilled the inclusion criteria. Lack of baseline information,
wrong study cohort and wrong study scope were the most
frequent reasons for exclusion. Furthermore, several studies
were excluded because they did not report results of a control
group, therefore preventing objective assessment of B-cell
aberrancies and their correlation with vaccination responses.

Extremities of life were represented by studies in the elderly,
immunodeficiencies by CVID, HIV and asplenia, and the
immunosuppressed group was relatively diverse. Noteworthy,
studies in the elderly were excluded if any (major) comorbidities
were mentioned. Although this approach was the most reliable to
evaluate the impact of aging, data may not be fully representative
of a general aging population in which co-existing diseases are
frequent and influence the biological age. On the contrary, in other
evaluated conditions, we included patients from different age
groups. Since age, disease duration and type of medication may
influence vaccination responses, we reported these parameters
whenever they could influence data interpretation. Direct
comparisons between publications were hampered by differences
in population definitions, use of different vaccine efficacy readouts,
but also ways of reporting the data (absolute numbers (cells or
units/mL), absolute increases and fold changes). Although not the
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scope of this study, these differences would hinder meta-analysis.
Overall, we found several B-cell factors influencing vaccination
responsiveness with a potential for vaccine efficacy monitoring.
Three topics spanned all sections: (I) lack of or reduction in end-
stage B cells, (II) presence of phenotypically aberrant cells, and
(III) impact of pre-existing immunological memory to a given
antigen. In Figure 3 we summarize parameters and assays which
may have a predictive role in evaluating vaccination efficacy in
immunocompromised individuals.

Overall, reduced MBC numbers prior to vaccination seem to
be the most common predictor of poor vaccination outcomes
(23, 27, 30, 40, 48–50, 55, 59, 83, 85, 91, 93, 94, 97, 102–104, 110).
Depending on the situation, this role can be assigned to total,
non class-switched MBCs or class-switched MBCs. While non
class-switched (IgM+, marginal zone-like) MBCs have been
shown to be involved in responses against polysaccharides,
their ambivalent role in-between the studies may be attributed
to diverse phenotypical definitions of this subset or heterogeneity
of study cohorts (97, 115). Although MBC numbers are mostly
used to classify CVID patients, low MBC numbers are also
observed in chronically infected HIV patients and in patients
using immunosuppression. In the latter case, MBC numbers
often remained low, even if naive and total B-cells had
reconstituted already, and patients struggled to mount
adequate vaccination responses. Unfortunately, a clear cut-off
value, above which vaccination responses would be successful, is
difficult to define. The range of MBC numbers or percentages in
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vaccine responders and non-responders largely overlapped.
Studies in CVID revealed that some patients can undergo
seroconversion with <0.4% MBCs. These low numbers of
MBCs are hardly ever observed in other conditions. Moreover,
impaired somatic hypermutation processes or class-switching
may hamper vaccine responses as well (24, 89, 110).

Although only a limited number of primary vaccination
studies have been included in this review, primary vaccination
responses rather depend on total or naive B-cell numbers as this
is the pool from which Ag-specific cells are recruited (72,
105, 110).

Several atypical B-cell subsets have been described to correlate
with poor vaccination responses. These were mostly classified
either as exhausted or activated and were frequently described
during aging, immunodeficiencies and autoimmunity (23, 30, 31,
52, 53, 56, 63, 64, 112, 116). Again, phenotypic description
of exhausted/tissue-like MBCs differed in-between studies,
but low expression of CD21 and/or simultaneous lack of CD27
and IgM/IgD were frequently described (Supplemental Table 1).
A study in elderly reported that these cells had reduced
proliferation and effector functions, were transcriptionally
and metabolically active, and secreted pro-inflammatory
cytokines (23).

Immunological memory exists in the form of Ag-specific
MBCs, antibody-secreting plasma cells and their products,
antibodies. In the majority of recall vaccination studies with
protein antigens, levels of Ag-specific antibodies and MBCs at
FIGURE 3 | Overview of B-cell parameters predictive of vaccine efficacy. The different evaluation levels (serum-, cell- or molecular-based) are indicated in the rows,
whereas the different B-cell parameters are indicated in the columns. Proposed detection techniques are shown in the yellow boxes. Blue boxes contain the general
conclusions per parameter. Positive impact is indicated with green arrows (and a plus-symbol), while negative impact is indicated with red arrows (and a minus-
symbol). In the ‘B-cell composition’ column, colors show general trends in polysaccharide and protein vaccines, whereas in the ‘aberrant phenotype/additional
markers’ column, colors indicate in which vaccination settings markers were evaluated. PPV, pneumococcal polysaccharide vaccine; ELISA, Enzyme-Linked
Immunosorbent Assay; HAI, hemagglutinin inhibition; OPK, opsonophagocytic killing; SBA, serum bactericidal assay; ELISpot, Enzyme-linked ImmunoSpot; w/o,
without; esp., especially; RT-PCR, reverse-transcriptase polymerase chain reaction; RT qPCR, real-time quantitative polymerase chain reaction; BCR, B-cell receptor.
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baseline seemed to positively correlate with vaccination outcome,
at least within a certain titer range (55, 56, 58, 59, 66, 86). These
pre-existing Ag-specific Igs and MBCs seemed to reflect the
ability of the immune system to generate protective responses.
Additionally, upon consecutive antigen encounters, Ag-specific
MBCs from previous responses re-enter germinal centers to
replenish the MBC pool. This situation is more complex for
vaccination with polysaccharide antigens, when re-stimulated
Ag-specific MBCs seem to undergo terminal differentiation
without replenishing the MBC pool (57). Papadatou et al. even
found a negative correlation between previous PPVs and
immune responses to PCV (77). In line with this, Musher et al.
reported that individuals who received PPV first and PCV later,
responded worse than individuals who received PCV first and
PPV later (117). Noteworthy, the ability to produce protective
antibody titers is not always reflecting the ability to effectively
generate MBCs, e.g. in splenectomized patients, MBC formation
may be hampered despite unaffected antibody responses. Thus,
both parameters should be measured to reliably assess
vaccination outcome (76, 77). Conversely, whether the
presence of MBCs in the absence of presumably protective
antibody titers is sufficient for effective responses upon re-
exposure is a viable question in the light of current SARS-
CoV-19 pandemics (118).

In line with the presence of exhausted B cells, in multiple
vaccination studies in elderly and HIV patients, individuals with
more signs of immunological aging had lowered vaccine
responses. Thus, baseline assessment of immunological age
may predict vaccine responsiveness. Aside from the already
discussed readouts, other methods may be used as alternative
or complementary assays, such as the in-depth assessment of the
B-cell repertoire or the kappa-recombination excision circles
(KRECs) to determine the number of cell divisions that the
naive B-cell population has undergone (13). Likewise, in vitro
assays performed on fresh or frozen material, as performed in
some of the reviewed publications, may give an impression of
overall B-cell responsiveness (68, 70). Alternative assessments
could include evaluation of B-cell responsiveness upon
stimulation, e.g. by analysis of calcium-flux or phosphorylation
of signaling molecules. However, these analyses require proper
standardization and generation of reference data (12, 16, 119).

While certain parameters (frequency of MBCs, presence of
exhausted B cells, pre-existing memory) were evaluated for
several vaccine types, other characteristics were only studied in
one specific model. Therefore, it is difficult to assess to which
extent these characteristics are generally applicable for
monitoring. Still, we identified an interesting set of markers, of
which the utility for predicting vaccine responsiveness may be
further investigated. Again, while certain correlations were
shared by different patient groups, we also found conflicting
findings. One example is the baseline frequency of activated B
cells, which were positively correlating with vaccine responses in
two studies involving immunosuppressed patients, but
frequently negatively correlating with vaccine responses in HIV
patients. Unification of markers used to define B-cell activation
status might verify such contrasting findings.
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Most vaccinations are administered early in childhood and
boosted later in life. Since here-reviewed studies were mostly
referring to booster responses, their heavy dependence on pre-
existing MBCs is not surprising. As mentioned in several
reviewed articles, these types of responses can be influenced
by so called original antigenic sin, which implies that the
development of immunity against pathogens/Ags is shaped
by the first exposure to a related pathogen/Ag (120). We, and
others, have recently observed that the type and magnitude
of an immune response to a pertussis booster vaccine is heavily
dependent on the type of priming and stronger in case of a
whole cell vaccine as compared to an acellular vaccine (Diks et al.,
manuscript submitted) (121–123). Additionally, in case of e.g.
respiratory pathogens, natural encounter results in IgA responses,
which can be boosted upon vaccination (12, 124). In this case,
evaluation of IgA responses may complement the detection of
IgG responses as vaccine read-out (32, 48, 49, 124). This may be
even more relevant for (alternative) vaccination routes, e.g.
administration via mucosal surfaces.

In this review, we focused on the role of B-cell status in
predicting vaccine efficacy. However important, prediction of
vaccination safety may be even more crucial. Despite
comprehensive literature search, we did not find any studies
evaluating live-attenuated vaccines in immunocompromised
individuals. This is understandable for ethical considerations.
However, it is reasonable to assume that vaccination with live-
attenuated vaccines will be safer in these patients who generate
effective responses to other vaccine types. Although we intended
to include a section on the use of neoantigen vaccination to
define B-cell defects and thus predict vaccination responses, we
were unable to include any publications on this subject.
However, we believe that this is an important topic for future
research, with clear clinical applications. Vaccination with a
neoantigen can provide in-depth insight into both quantitative
and qualitative B-cell defects. The main advantage of using a
neoantigen over recall vaccine antigens is the ability to assess
primary immune responses next to booster responses. The
immune response to neoantigens would not rely on the
remaining immunological memory from previous encounters,
but fully depend on the current status of the immune system. In
this way, a comprehensive overview of the functionality of the
immune system can be obtained, treatment can be personalized,
and vaccination responses can be predicted.

Despite covering a broad range of conditions, we are aware
that the current review does not exhaust the topic. Multiple other
factors can have an impact on B-cell composition and therefore
vaccination responsiveness. These can be other autoimmune
diseases, latent viral infections (e.g. EBV, CMV), alcoholism,
but also less obvious factors such as gender, race, the season of
the year, psychological stress or nutritional status (125–133).
Neither covered by the scope of the review are all aspects of T-cell
and innate cell immunity, which may severely influence
vaccination responsiveness. Nevertheless, we believe that the
selection made here shows the major trends and will inspire
new studies on B-cell monitoring for better evaluation of
vaccine efficacy.
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