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Vaccination to prevent infectious disease is one of the most successful public health
interventions ever developed. And yet, variability in individual vaccine effectiveness
suggests that a better mechanistic understanding of vaccine-induced immune
responses could improve vaccine design and efficacy. We have previously shown that
protective antibody levels could be elicited in a subset of recipients with only a single dose
of the hepatitis B virus (HBV) vaccine and that a wide range of antibody levels were elicited
after three doses. The immune mechanisms responsible for this vaccine response
variability is unclear. Using single cell RNA sequencing of sorted innate immune cell
subsets, we identified two distinct myeloid dendritic cell subsets (NDRG1-expressing
mDC2 and CDKN1C-expressing mDC4), the ratio of which at baseline (pre-vaccination)
correlated with the immune response to a single dose of HBV vaccine. Our results suggest
that the participants in our vaccine study were in one of two different dendritic cell
dispositional states at baseline – an NDRG2-mDC2 state in which the vaccine elicited an
antibody response after a single immunization or a CDKN1C-mDC4 state in which the
vaccine required two or three doses for induction of antibody responses. To explore this
correlation further, genes expressed in these mDC subsets were used for feature selection
prior to the construction of predictive models using supervised canonical correlation
org October 2021 | Volume 12 | Article 6904701
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machine learning. The resulting models showed an improved correlation with serum
antibody titers in response to full vaccination. Taken together, these results suggest that
the propensity of circulating dendritic cells toward either activation or suppression, their
“dispositional endotype” at pre-vaccination baseline, could dictate response
to vaccination.
Keywords: dendritic cells, endotypes, vaccines, machine learning, canonical correlation analysis, single cell RNA
sequencing, baseline correlates
INTRODUCTION

Vaccination as a general strategy to prevent infectious disease has
been one of the most effective public health measures since its
conceptualization and implementation by Edward Jenner in the
18th century, and has resulted in the complete eradication of
smallpox, the near elimination of polio, and a dramatic reduction
in the incidences of measles, mumps and other common
diseases. In contrast to these successes, several notable failures
in the development of effective vaccines against other common
infectious diseases, including AIDS, tuberculosis, and malaria
suggest that the current empirical approach to vaccine design is
not effective in eliciting protective immunity in many cases (1).
This variability in vaccine effectiveness highlights the need to
better understand the fundamental principles of human immune
responses, the “rules of immunity”, and how this understanding
could be used to develop vaccination strategies that are
consistently effective and result in durable immunity.

Recently, several groups have applied high-throughput multi-
omics assays to produce a comprehensive systems-level evaluation
of vaccine responses, so-called “systems vaccinology” (reviewed in
(2–5). One of the key questions addressed is - can baseline (pre-
vaccine) signatures of the immune system predict vaccine
responses and differentiate between responders vs. non-
responders and, if so, what can these signatures tell us about the
mechanisms for eliciting protective immunity (6). The general
concept that specific baseline immune signatures can predict
vaccine responses has been explored in large cohort studies in
the context of hepatitis B virus (HBV), influenza and malaria
vaccines (7–12). However, the connection between these
molecular signatures and the underlying immunological
mechanisms remains tenuous. Further, the application of large-
scale multi-omics assessment of large vaccination cohorts is cost-
prohibitive, raising the question of whether advanced
computational and machine learning methods may allow for the
discovery of predictive mechanistic signatures in studies with
smaller sample sizes (13).

The hepatitis B virus (HBV) vaccine is an ideal platform to
explore these questions. First, serum anti-HBV antibody levels,
which can be easily measured in participant samples, are a well-
established correlate of protection (14). Second, the response to
the HBV vaccine is highly variable, providing a broad range of
responses, which is useful for identifying correlates and
predictors (15). Third, around 10% of subjects respond with
protective antibody titers following a single dose (16). We
recently applied a series of validated multi-omics assays to
org 2
measure the full range of cellular and molecular components
of the immune system, including immune cell composition,
DNA methylation, gene expression, protein abundance, and
fecal 16S microbiome, to provide an exhaustive picture of the
immune response to the HBV vaccine (17). Multi-omics
integrative analysis on these data sets identified a number of
candidate baseline predictors of vaccine response using serum
antibody titers to the HBV surface antigen following three
vaccine doses as the quantitative endpoint in a relatively small
cohort of 15 vaccine recipients (13). While these candidate
predictive signatures could be identified using this systems-
level approach in a relatively small cohort, a unifying
mechanistic driver did not emerge. Furthermore, multi-omic
analysis of whole blood failed to reveal features predictive of
the variable protective responses following only a single
vaccination dose.

In this report, we sought to determine if a more granular
approach, namely single cell RNA sequencing in the context of an
integrated multi-omic analysis, could identify the relevant cellular
phenotypes and functions associated with vaccine responses.
Using machine learning to identify the most discriminative gene
expression features for dimensionality reduction to optimize
performance of canonical correlation analysis (CCA), a truly
integrative machine learning approach emerged that helps to
overcome small sample sizes through a hypothesis-generation-
and-hypothesis-testing-in-orthologous-datasets workflow.
METHODS

Descriptions of all methods not detailed below have been
published recently in (13, 17).

Cohort and Sampling Description
A prospective, observational study (ClinicalTrials.gov:
NCT03083158) of immune responses to the HBV vaccine
(ENGERIX®-B) was undertaken, with recruitment occurring at
the Vaccine Evaluation Center (VEC), British Columbia
Children’s Hospital Research Institute in Vancouver, Canada.
Briefly, a total of 15 eligible individuals aged 44 – 73 were
enrolled in the study. One ml (20 µg) of ENGERIX®-B vaccine
was administered via intramuscular deltoid injection at three
different times during the study (Day 0, Day 28 and Day180).
HBV titres were measured at screening, Day 28 after the initial
vaccine dose (immediately prior to second dose), Day 180
(immediately prior to the third dose), and Day 208 (one
October 2021 | Volume 12 | Article 690470
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month after the final dose). For the purposes of this study,
participants were categorized as “dose 1 responders” if their anti-
HBV serum antibody titer was >10 mIU/ml at Day 28 after a
single dose of HBV vaccine, (a response considered as
protective), “dose 1 marginal responder” if they had detectable
anti-HBV serum antibody titer above baseline (3.1 mIU/ml) but
<10 mIU/ml at Day 28, or “dose 1 non-responders” if they had
no detectable anti-HBV serum antibodies at Day 28. Note that
due to funding constraints, only a subset of participants and
samples were used for some of the mechanistic assays.

Various omics studies were performed as described (13, 17).
Briefly, peripheral whole blood cells were profiled by flow
cytometry, genome-wide DNA methylation (Illumina Infinium
MethylationEPIC BeadChip), transcript abundance (bulk RNA-
Seq), and proteome-wide protein abundance (mass spectrometry)
at various time points. Additionally, the bacterial composition
(microbiome) of the gut was assessed by 16S rRNA microbiome
profiling pre- (Day -14 and Day 0) and post-vaccination (Day 14).
Procedures for the collection and processing of PBMC samples
for single cell RNA sequencing are described below.

Single Cell RNA Sequencing
Four innate immune cell subsets (monocytes, natural killer (NK)
cells, myeloid dendritic cells (mDCs), and plasmacytoid dendritic
cells (pDCs)), were single cell sorted for RNA sequencing
as described (17, 18) (Supplementary Figures 1, 2 and
Supplementary Table 1). Briefly, 1.5 ml blood samples were
stained and single cells sorted for each cell population of interest
before performing subsequent single cell RNA sequencing. 20 mM
of EDTA (Fisher #BP120-500) was diluted 1:10 in 1.5 ml blood and
red blood cells lysed by adding RBC lysis buffer (eBiosciences, cat
#00-4333-57) per manufacture’s recommendations. After 10min at
room temperature, PBS (Gibco # 14190) was added and the cell
suspension separated by centrifugation at 500 × g for 5 min. The
cell pellet was resuspended in an antibody mixture diluted in PBS
and 0.5% BSA (bovine serum albumin, Sigma Aldrich, cat #A7906)
according to themanufacture’s recommendations. APC-eFluor 780
(eBioscineces, cat #65-0865-14) viability dye was added to cells
prior to staining to sort viable cells. The cell mixture was incubated
at room temperature in the dark for 30 min, then washed once in
PBS, and resuspend in 3 ml of PBS for immediate single cell sorting
into wells of a 96-well microtiter plate chilled on ice using a BD
FACS Aria. Innate immune cell subsets were sorted from the APC-
eFluor 780- viable cell gate as follows: NK cells (CD45+CD66-
CD14-HLA-DR-CD3-CD16+), monocytes (CD45+CD66-
CD14+), mDCs (CD45+CD66-CD14-HLA-DR+CD11c+), and
pDCs (CD45+CD66-CD14-HLA-DR+CD11c-CD123+)
(Supplementary Figure 2). Prior to sorting, 96-well plates were
pre-loaded with 2ml lysis buffer (0.2% Triton X-100, (Sigma
Aldrich, cat #9002-93-1), 2 Units/ml RNase inhibitor (Applied
Biosystems, cat #N8080119), 1:2,000,000 dilution of ERCC spike-
in RNAs (Life Technologies, cat #4456740) and centrifuged at
300 x g at 4°C for 1 minute to distribute liquid in the bottom of the
well. After sorting, each plate containing the single cell lysates was
immediately sealed, frozen on dry ice, and stored at −80°C.

Processing of the frozen 96-well plates containing single cell
lysates was performed as previously described (19) with
Frontiers in Immunology | www.frontiersin.org 3
modifications to accommodate an Agilent BioCel automated
liquid handling platform (20). Briefly, single cell lysates
contained in the 96-well sorted plates were processed in
batches of eight plates, with each plate containing wells
reserved for 10 pg Universal Human RNA (Clontech
Cat#636538) as a positive control, an ERCC-only control, and
water as a negative control. Smart-seq2 cDNA synthesis, reverse
transcription, and PCR were carried out in a reduced volume
(12.5 µL) and with ERCC internal controls spiked-in at a reduced
concentration (55 million-fold dilution of the ERCC stock in the
first strand cDNA synthesis step). Amplified cDNAs from the
eight 96-well plates were consolidated to two 384-well plates and
purified with Ampure magnetic particles. A 10-fold diluted
portion of each cDNA was assessed for expression of the
human beta-actin (ACTB) housekeeping gene by qPCR for
quality control of the amplified cDNAs. A total of 14,592
sample wells were processed through cDNA synthesis and
ACTB qPCR on the automated platform.

A cycle threshold (Ct) of ≤35 for ACTB amplification was used
as a cutoff for the selection of 3,072 cDNAs (768 per cell type) for
library preparation and sequencing. A Star liquid handling platform
(Hamilton) was used to consolidate cDNAs selected for Illumina
Nextera XT library preps (Illumina cat# FC-131-1096) into 384-
well plates. An automated 1/8th Nextera XT reaction was carried
out on 125 pg of the selected cDNAs for the Tn5 tagmentation step,
with limited 15 cycle PCR followed by AmPure XP (Beckman
Coulter Cat# A63881) bead purification. Nextera XT PCR was
carried out with a combination of 384 barcode pairs using Nextera
XT Index Kit V2 barcode sets A and D (Illumina cat# FC-131-2001
and -2004). Concentrations of the purified Nextera XT reactions
were normalized to 1 ng/µL and combined into a 2ng pool of 384
dual-barcoded samples. RNA-seq was carried out with a total of
eight 384 barcoded pools loaded across 16 lanes of an Illumina
HiSeq 2500 according to manufacturer’s specifications for a total of
3,072 samples sequenced, including controls. A HiSeq SBS V4 250
cycle kit (Illumina cat# FC-401-4003) and a Paired End V4 Cluster
Kit (Illumina cat# PE-401-4001) was used for an estimated 2
million reads per sample.

Sequence Data Processing
Single cell RNA-seq data was processed according to published
methods (19, 21). Briefly, raw fastq sequencing files were
demultiplexing using Illumina barcodes. Sequencing primers
and low-quality bases were removed using the Trimmomatic
software package (22). Trimmed reads were then aligned using
HISAT (23) in two steps: first to a reference of ERCC sequences,
and then to GRCh38 (Ensembl). StringTie (23) was used to
assemble the resulting alignments into transcript structures using
GENCODE v25 annotation (Ensembl 87; 10-2016) and gene
expression values (TPM) estimated. HTSeq-count (24) was used
to generate raw gene alignment counts.

Quality control analysis was performed using sequencing and
laboratory metrics, including average Phred score, percent
duplicate reads, and transcript isoform count, to classify cell
samples as pass or fail using a Random Forest quality control
classification model previously described (21). Expression values
for the top 2500 genes ranked based on variance from cell
October 2021 | Volume 12 | Article 690470
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samples that passed quality control classification were fed into
Scanpy (25) for principal component analysis (PCA) and
Uniform Manifold Approximation and Projection (UMAP)-
based non-linear dimensionality reduction and visualization
(26, 27). Unsupervised clustering was performed for the entire
dataset, while additional supervised clustering guided by flow
cytometry marker panels was performed to investigate within
cell type variation. Lastly, cell type marker determination was
performed using the Louvain unsupervised clustering results and
the NS-Forest algorithm (28, 29). The end result of this
computational pipeline produced a set of unbiased cell type
clusters, a gene expression matrix with the expression levels of
genes in individual single cells grouped into cell type clusters,
and a set of sensitive and specific marker genes for each cell type
cluster (Supplementary Table 2) for use in downstream
quantitative PCR assays and semantic representations (30).

qRT-PCR
Aliquots (2 µL) of the Smart-seq2 cDNAs from single sorted
myeloid dendritic cells (mDCs) were diluted 10-fold in low TE
(10mM Tris, 0.1mM EDTA) and 2.5 µL of the diluted cDNAs
were subjected to 10 µL Taqman™ qPCR assays for the human
beta actin (ACTB) housekeeping gene (ThermoFisher
Hs01060665_g1 FAM-MGB) using 5 µL of a 2X PerfeCTa
qPCR SuperMix ROX (Quantabio cat# 95050-500) as an initial
screen for endogenous gene expression. Thermocycling
conditions were completed on a Quantstudio 6 qPCR
instrument (Applied Biosystems) using the following
thermocycling profile: initial 95°C activation for 2 minutes
followed by 45 cycles of 95°C for 10 seconds and 60°C for 30
seconds. Positive reactions - cycle threshold (Ct) of less than 35
for ACTB amplification - were identified and their
corresponding cDNAs screened using two additional marker
genes selected from the NS-Forest analysis, CDKN1C
(ThermoFisher Hs00175938_m1 FAM-MGB) and NDRG2
(ThermoFisher Hs01045114_g1 FAM-MGB), using the same
thermocyling conditions as for ACTB.

In Vitro Whole Blood Stimulation
Pre-vaccination (baseline) blood samples were stimulated in vitro
(Milieu Interieur) with LPS (Invivogen - tlrl-3pelps), poly I:C
(Invivogen - vac-pic), or SEB (Kindly given by Bernard Nocht
Institute) with appropriate negative controls and incubated in
TruCulture tubes within 15 minutes of blood collection, inserted
into a dry block incubator, and maintained at 37°C (± 1°C) for
22 hours as described (13, 17). Cell fractions were collected and
lysed in Trizol for RNA extraction. cDNA was prepared using the
SmartSeq 2 protocol as described above. Quantitative PCR (qPCR)
was performed in triplicates for each sample targeting CDKN1CC
and NDRG2 using ACTB as a housekeeping gene. The data were
analyzed using the standard delta-delta Ct method (2-ddCt) in
order to generate fold difference in gene expression values.

mDC Functional Assessment
To assess the ability of mDCs to induce T cell activation, 50 ml of
whole blood was drawn from healthy adult donors and PBMC
isolated as previously described (17). Cells were stained using
Frontiers in Immunology | www.frontiersin.org 4
cocktails of surface marker antibodies (FCER1A, CD11c, CD1C,
CD14, CD3, CD123, CD16A and HLADR) to specifically sort
mDC2, mDC4 and T cells (Supplementary Figures 3, 4 and
Supplementary Table 3). Cell sorting was performed using the
BD Aria (II 85µm nozzle) in cold chambers. Sorted cells were spun
down at 600g for 10 min, resuspended in 1ml PBS (Gibco # 14190),
counted, and seeded in 96 well plates pre-filled with either LPS (100
ng/ml, Invivogen tlrl-3pelps) or polyI:C (20µg/ml, Invivogen Tlrt-
pact) or medium as a negative control. The autologous T cells
were labelled with Cell Trace ™ Oregon Green diluted in PBS
according to the manufacturer’s instructions (Invitrogen # C34555),
and then rested in AIM V medium (Gibco Cat# 12055-091) with
2% heat inactivated human AB serum (e.g., Gemini BioProducts) at
37°C for 24 hr. The next day, DC cultures were briefly treated with
20mMof EDTA to detach adherent cells, all cells harvested, washed
three times in complete medium to remove the TLR ligands, and
counted. Dendritic cells (mDC2 or mDC4) were then mixed with
labelled T cells at a ratio of 1:5 in 125µl complete AIM V medium
and incubated at 37°C for 5 days. As a positive control, Oregon
green labelled T cells were stimulated with 1µg/ml of anti CD3/28
antibody (Invitrogen #16-0037/#16-0288). On day 5, the cells were
detached using EDTA, washed and stained with a cocktail of
antibodies (Supplementary Table 4) to assess the proliferation of
specific T cells using BD LSRII flow cytometer. All flow cytometry
data were analyzed using Flowjo version 10 (Flowjo, Ashland, OR).

Diablo Supervised sGCCA
DIABLO, part of the mixOmics framework, is a data-driven,
hypothesis-free multi-omics integration approach that has been
successfully applied, by us and others, to derive novel, robust
biomarkers, and increase our understanding of the molecular
regulatory mechanisms that underlie health and disease (31–34).
DIABLO extends sparse Generalized Canonical Correlation
Analysis (sGCCA) into a supervised multi-omics data
integration framework (35, 36). DIABLO performs multivariate
dimensionality reduction and selects correlated variables from
several datasets by maximizing the covariance between linear
combinations of variables (latent component), across both multi-
omics datasets (blocks) and an outcome (response) variable, in this
case anti-HBV serum antibody titers. The data are then projected
into a smaller dimensional subspace spanned by the latent
components for classification. Here we used DIABLO to identify
correlates of vaccine response (anti-HBV IgG level measured at the
final follow-up visit, Day 208), from the multi-omics profiles in
baseline pre-vaccination samples in an integrative fashion.
RESULTS

Variable Antibody Response to
HBV Vaccination
A detailed description of the study design and sample collection
strategy has been reported previously (17). Briefly, fifteen
participants were given the standard three-dose HBV
vaccination regimen and blood samples were collected before
vaccination (Visit 3) and 28 days after each of the three vaccine
doses (Visits 8, 10, and 12). As observed in previous studies (13),
October 2021 | Volume 12 | Article 690470
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a subset of three participants showed measurable Ab titers
following a single HBV vaccine dose, with two of the three
participants achieving protective Ab levels of >10 mIU/ml
(Figure 1). Fourteen of the fifteen participants achieved
protective antibody titers after the second and third doses, with
a >2 log range in antibody titers after the third dose.

mDC Subsets With Distinct
Gene Expression
Single cell RNA sequencing (scRNAseq) of innate immune cell
subsets sorted from whole blood was used to define their
transcriptional phenotypes with relationship to HBV vaccination
responses. In order to ensure the capture of any distinct phenotype
that might correlate with vaccine response, blood samples were
collected on Day 0 pre-vaccination and Day 1, 3, 7, and 14 post-
vaccination, from a subset of participants, including the two dose 1
responders (GR01, GR04), the one dose 1 marginal responder
(GR15), and three dose 1 non-responders (GR13, GR17, GR19)
according to the HBV-specific antibody titers measured at 28 days
after the first vaccine dose.

Single monocytes (MON), myeloid dendritic cells (mDC),
plasmacytoid dendritic cells (pDC), and natural killer cells (NK)
were sorted into microtiter plate wells and single cell cDNAs
showing positive ACTB expression by qPCR analyzed by
scRNAseq and UMAP embedding of the gene expression data.
Each of the four major innate immune cell subsets were well
Frontiers in Immunology | www.frontiersin.org 5
segregated in the UMAP plot (Figure 2A). In addition, lower
abundance outlier clusters we also detected for the mDC and pDC
sorted populations, indicating some level of subtype heterogeneity.
Unsupervised clustering produced seven distinct transcriptome
clusters (Figure 2B), including the lower abundance mDC and
pDC outliers. No obvious cluster-specific enrichment of cells from
individual participants, processing batch, age group or sample
collection date was observed (Figures 2C–F).

Each unsupervised cell cluster showed distinct differential gene
expression patterns identified using both logistic regression
(Figures 3A–C) and NS-Forest-based marker gene selection
(Figures 3D, E and Supplementary Table 2). The main mDC
subset (Louvain cluster #2) appeared to exclusively express the p57
kip2 cyclin-dependent kinase inhibitor gene CDKN1C and
expressed relatively high levels of LINC01272 in comparison with
other innate cell subsets (Figures 3A–E). These cells also expressed
high levels of the Fc gamma receptor gene FCGR3A (Figures 3A–
C). In contrast, the outlier mDC cluster (Louvain cluster #4)
exclusively expressed the n-myc regulated gene NDRG2 and
expressed relatively high levels of the Fc epsilon receptor gene
FCER1A, the MHC class II gene HLA-DQA1 (Figures 3A–E), and
otherMHC class II genes (not shown). The high-level expression of
MHC class II genes suggests that the outlier mDC subset is
activated, whereas the expression of the p57 kip2 CDK inhibitor
suggests that the main mDC subset is resting. Expression of
FCGR3A in the main mDC cluster and FCER1A in the outlier
FIGURE 1 | Serum antibody response to HBV vaccination - Serum antibody titers were measured in samples collected from fifteen study participants (GR01 –

GR19) before (Visit 3) and after (Visit 8, 10, and 12) vaccination. Vaccine doses were administered on Visit 3, Visit 8 and Visit 10 (after blood collection) for a total of
three doses of HBV vaccine in all fifteen participants. Limit of detection of 3.1 mUI/ml and correlate of protection of 10 mUI/ml are indicated. These data were also
previously used to create Figure 1C in (13).
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mDC cluster suggests that these two subsets correspond to the DC4
and DC2 dendritic cell types defined previously (37) and will be
referred to as CDKN1C-expressing mDC4 and NDRG2-
expressing mDC2.

In order to determine if the NDRG2-expressing mDC2 and
CDKN1C-expressing mDC4 phenotypes had been observed in
previous studies, the NDRG2 and CDKN1 marker genes were
used to search for expression modules in the MSigDB database.
Four MSigDB modules included both of these marker genes:

• GSE17721_0.5H_VS_24H_POLYIC_BMDC_UP,
• GSE17721_0.5H_VS_8H_POLYIC_BMDC_DN,
• GSE17721_CTRL_VS_POLYIC_12H_BMDC_DN,
• GSE17721_POLYIC_VS_PAM3CSK4_12H_BMDC_UP),

which were all derived from dendritic cells stimulated with
TLR3 agonists.

Relative Abundance of mDC Subsets
Correlate With Vaccine Response
Exclusive expression of NDRG2 in mDC2 and CDKN1C in
mDC4 suggested that these two markers could be used to
distinguish these mDC subsets. Indeed, qPCR amplification
showed mutually exclusive expression of these two genes in
Frontiers in Immunology | www.frontiersin.org 6
sorted mDCs (Figure 4A). Thus, qPCR for NDRG2 and
CDKN1C was used to identify and quantify these two mDC
subsets in ten of the participants across the entire time course of
the study (Supplementary Tables 5 and 6). The relative
proportions of NDRG2-expressing mDC2/CDKN1C-
expressing mDC4 were found to be dynamic and vary between
individuals (Figure 4B). Interestingly, a relatively high ratio of
NDRG2-expressing mDC2/CDKN1C-expressing mDC4 was
found in the two dose 1 responders (GR01 and GR04) at
baseline Day 0 (Supplementary Table 6). Indeed, the average
NDRG2-expressing mDC2/CDKN1C-expressing mDC4 ratio in
dose 1 responders on Day 1 was 3.13 and in non-responders was
0.46. Interestingly, while the ratio of NDRG2-expressing mDC2/
CDKN1C-expressing mDC4 dropped dramatically following
vaccination of the two dose 1 responders, the ratio was
relatively static or increased in non-responders (Figure 4B and
Supplementary Table 6). While these findings in-and-of
themselves are not adequately powered to draw definitive
conclusions regarding these correlations due to the small
sample size of this pilot, they did produce a hypothesis
regarding the dispositional state of dendritic cells that could be
explored in orthologous data.

Given that NDRG2-expressing mDC2 and CDKN1C-
expressing mDC4 marker genes in the MSigDB database had
A B C

D E F

FIGURE 2 | Two distinct mDC subsets are found in blood of participants using scRNAseq - UMAP embedding of single cell transcriptional profiles and Louvain
clustering results (A–F) reveal seven expression clusters from the four sorted innate immune cell populations, including two distinct mDC clusters (Louvain Cluster #2
and #4). Coloring corresponds to FACS-sorted cell type (A), Louvain cluster membership (B), Participant ID (C), sample processing batch (D), age group (E), and
sample collection day before or after vaccination (F).
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A

B

C

D E

FIGURE 3 | Expression cluster marker genes – (A) The top five marker genes for each cluster was determined by logistic regression. Median expression of marker
genes in cells within each cluster is shown. *Dendritic cell types reported in Villani et al. (37) were identified based on marker gene expression. (B) Expression of
logistic regression marker genes in each individual cell within each cluster. (C) Violin plots showing logistic regression marker gene expression distributions. (D) Violin
plots showing gene expression distributions for the minimum set of necessary and sufficient marker genes as determined using the NS-Forest algorithm.
(E) Expression of NS-Forest marker genes in UMAP Louvain clusters.
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been identified as malleable to polyI:C stimulation, we further
explored how TLR3 activation might lead to differential
responses in these DC subsets, we examined the changes in
expression of CDKN1C and NDRG2 in whole blood collected
from participants prior to HBV vaccination and stimulated with
a TLR3 agonist. Interestingly, the two participants that showed
the highest Ab responses to the first vaccine dose – GR01 and
GR04 – showed preferential up-regulation of NDRG2 in their
blood cells, whereas cells from non-responding participants
showed preferential up-regulation of CDKN1C suggesting they
were predisposed to a more resting/inhibitory mDC4-like
phenotype (Supplementary Figure 5).
Frontiers in Immunology | www.frontiersin.org 8
mDC Subsets Differ in Their Functional
Predisposition
To explore if there are any functional differences between these
mDC subsets, NDRG2-expressing mDC2 and CDKN1C-
expressing mDC4 subsets were sorted and incubated with
sorted T cells from the same (autologous) donor, with or
without pre-stimulation with TLR3 (pIC) or TLR4 (LPS)
agonists prior to co-culture to assess the impact of TLR pre-
stimulation on the ability to induce T cell proliferation as a proxy
read out for immune activation as described (37). When
unstimulated CDKN1C-expressing mDC4 cells were incubated
with unstimulated autologous T cells, proliferation of 13.0% of
CD4 and 15.8% of CD8 was induced (Figures 5A, B). However,
if CDKN1C-expressing mDC4 cells were first stimulated with
pI:C or LPS, this baseline T cell proliferation was inhibited
3.9-fold (mean n = 4) for both CD4 and CD8 T cells (paired
t-test p = 0.030 and 0.036 respectively). In contrast, NDRG2-
expressing mDC2 cells did not induce T cell proliferation with or
without LPS stimulation (Figure 5C). These results suggest
CDKN1C-expressing mDC4 cells exhibit tonic T cell activating
ability and that this activating ability is suppressed following
TLR3 or TLR4 stimulation, whereas NDRG2-expressing mDC2
do not activate T cell proliferation either with or without
TLR stimulation.

Machine Learning Model Using mDC TLR3
Feature Selection Improves Serum
Antibody Response Predictions
In our previous study, we found that multi-omics data could be
used to produce predictive models of antibody titers based on the
supervised sparse generalized canonical correlation analysis
implemented in the Diablo algorithm (13), even given the
relatively large feature space provided by the transcriptomic
and CpG methylation data (Figure 6A). Based on the
scRNAseq and functional studies described above, we
hypothesized that if the relative abundance of the NDRG2-
expressing mDC2 and CDKN1C-expressing mDC4 subsets
were indeed mechanistically linked to vaccine responses,
selecting features specific to these cell subsets might produce
improved correlation with serum antibody levels.

Using just the bulk gene expression and DNA methylation
data from baseline pre-vaccination samples associated with the
MSigDB marker genes derived from dendritic cells stimulated
with TLR3 agonists to build the Diablo predictive model for all
fifteen participants, a significant improvement in model
performance was obtained (Figure 6B). For example, the
Spearman’s rank correlation of the gene expression model
improved from 0.62 to 0.87 and the median error improved
from 15.66% to 7.23%. Similar improvements were observed
with the model produced using the selected CpG DNA
methylation features. And while cross-validation did not show
a significant improvement, likely due to the small sample size, we
went from ~50,000 transcripts and ~800,000 CpG sites to only a
few hundred transcripts and a few thousand CpG sites as a result
of this feature selection step demonstrating a substantial
enrichment of informative features.
A

B

FIGURE 4 | Relative proportion of mDC subsets expressing NDRG2 and
CDKN1CC are correlate with HBV vaccine response – (A) Ct values from
qPCR reactions measuring expression of NDRG2 and CDKN1C for 964
single mDC cells expressing at least one marker are plotted, showing
mutually exclusive expression of NDRG2 and CDKN1C in sorted mDCs. None
indicates no amplification. (B) Single myeloid dendritic cells were sorted from
blood collected prior to HBV vaccination (D0) and 1 day (D1), 3 days (D3) and
7 days (D7) post vaccination. Following cDNA preparation, the expression of
NDRG2 (mDC2 expressing gene) and CDKN1C1 (mDC4 expressing genes)
mRNAs were quantified by qPCR. The graph shows the change in the relative
proportion of NDRG2-expressing mDC2s/CDKN1C-expressing mDC4s at
each time point compared to D0 per study participants. Solid lines show the
HBV dose 1 responders (with anti-HBV titres higher than 10 mIU/ml at Day
28 after first dose and titers indicated next to the lines). Dotted lines show the
HBV dose 1 non-responders (less than 10 mIU/ml HBV titers) after the first
dose of vaccine. Each line shows values of individual participants; the Y axis
values were log transformed. Raw data is provided in Supplementary
Tables 5 and 6.
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A

B

C

FIGURE 5 | Stimulation of CDKN1C-expressing mDC4 cells with TLR agonists suppresses T cell activation function – (A) CDKN1C/mDC4 cells were sorted as
viable, singlets, CD14-, CD19-, CD3-, HLA-DRint-to-high, CD11c+, CD16+ cells, stimulated with polyI:C and/or LPS and mixed with autologous T cells labelled with
Oregon Green (OG) from the same patient. (Note that CD16 is encoded by FCGR3A expressed in CDKN1C-expressing mDC4.) Following 5 days, samples were
analyzed by flow cytometry. Proliferating T cells (lower OG staining) were gated. The pseudocolor dot plots are representative of 4 different experiments. (B) Percent
of CD4 and CD8 T cells proliferating using sorted cells from four different individuals (A–D) with or without stimulated. Proliferation was assessed using OG staining
after co-culture of autologous T cells with CDKN1C-expressing mDC4 cells for 5 days induced by mDC4 either unstimulated or pre-stimulated with the TLR3 agonist
polyI:C. (C) mDC2 stimulation of autologous T cells - T cell proliferation assays with unstimulated or LPS-stimulated mDC2 dendritic cells.
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These results indicate that feature selection based on TLR3-
induced dendritic cell genes produced machine learning models
that provided better correlation with serum antibody responses,
suggesting that the relative contributions of the NDRG2-
expressing mDC2 and CDKN1C-expressing mDC4 subsets
influences this vaccine response.
DISCUSSION

In a relatively small cohort of HBV vaccine recipients, we
identified two distinct mDC subsets using single cell
transcriptomics analysis, the ratio of which at baseline (i.e.,
before vaccination) correlated with vaccine response to a single
dose of the HBV vaccine. These two mDC subsets were
distinguishable by the differential expression of a number of
genes that allowed for their putative matching to dendritic cell
subsets identified previously (37), designated here as NDRG2-
expressing mDC2 and CDKN1C-expressing mDC4.

Three pieces of evidence suggest that these dendritic cell subsets
contribute to the immune state at baseline prior to vaccination that
influences vaccine responses. First, the two individuals who
generated serum antibody responses to a single dose of HBV
vaccine had a high ratio of NDRG2-expressing mDC2/CDKN1C-
Frontiers in Immunology | www.frontiersin.org 10
expressing mDC4 in their peripheral blood prior to vaccination.
Second, whole blood from these responding individuals showed
preferential upregulation of NDRG2 when stimulated with a TLR3
agonist. Third, machine learning developed to predict serum
antibody titers after the third vaccine dose in all fifteen
participants and built using baseline pre-vaccination sample data
and genes differentially expressed in dendritic cells stimulated with
TLR3 agonists outperformed models built without this feature
selection step. Thus, the dispositional state of these dendritic cell
subsets at baseline appears to provide improved correlation with
HBV vaccine responses.

The mechanism of how NDRG2-expressing mDC2 and
CDKN1C-expressing mDC4 impact the vaccine response to
the HBV vaccine is not yet clear. But, interestingly, ex vivo
CDKN1C-expressing mDC4 cells were able to induce autologous
CD4 and CD8 T cell proliferation yet mDC2 did not; and TLR3
or TLR4 stimulation of the mDC4 subset inhibited this T cell
stimulation. Such a high state of functional plasticity in the
mDC4 subset, and the longitudinal variation over time in the
ratio of NDRG2-expressing mDC2 and CDKN1C-expressing
mDC4 in whole peripheral blood may at least partially explain
the variability in immune responses to the HBV vaccine.

Several other groups have recently explored the identification
of baseline predictors of vaccine responses using multi-omics
assays with results that differ from those reported here. Tsang
A B

FIGURE 6 | Improved correlation of Diablo models with serum antibody (Ab) responses to HBV vaccination – Actual Ab titers at Visit 12 (after third dose) (x-axis) vs.
predicted Ab titers (y-axis) in models derived from different assay platforms are visualized. Dotted line is the identity line representing perfect prediction. Rho is
Spearman’s rank correlation when comparing actual Ab titers to predicted Ab titers. (A) Optimal Diablo models were produced using 2 components and 10 features/
component and all available assay variables. (B) Optimal Diablo models were produced using 5 components and 5 features/component and only selected variables
related to 735 dendritic cell TLR3-response genes in the DNA methylation (dnameth) and bulk transcriptomic (mrna) data. CpG sites were assigned to dendritic cell
TLR3-response genes as described previously (38, 39). Note that although the microbiome and wbc-lipidomics data are identical in the two sets, the models they
produce (features retained and their coefficients) in the generalized canonical correlation framework are different due to different correlation characteristics with the
different dnameth and mrna models. In both cases, the number of components and number of features/component were selected to maximize model performance.
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et al. used multi-omics assays to explore responses to seasonal
influenza vaccine in healthy adults (8). While neither Day 0 gene
expression nor pathway analysis alone was predictive of vaccine
responses in their study, twelve cell populations assessed by flow
cytometry, including memory, naive, and transitional B cells,
CD4 effector memory T cells, IFNa+ myeloid dendritic cells
(mDC), and several activated T cell populations correlated with
mean fold change in antibody titers. However, the responses in
these healthy influenza vaccine cohorts likely represent a recall
response to antigenically-similar prior exposure as opposed to
the primary HBV response in our study. Fourati et al.
constructed a naive Bayes classifier based on the top 15
differentially-expressed genes between PBMCs from responders
and poor-responders to the HBV vaccines, which included B cell
markers (e.g., CD20, IGHG1), downstream targets of B-cell
receptor signaling (e.g., BANK1) and molecules known to have
functional interactions with IgG (e.g., C1, FCGR3B), with a
predictive accuracy of ~63% (9). However, the use of bulk
transcriptomic analysis of PBMCs may have obscured the
contribution of the minor dendritic cell components evaluated
in our scRNAseq assays, emphasizing the value of using
scRNAseq to assess the contribution of rare cell subsets.
Bartholomeus et al. found that the GRN and IFITM1 genes
were significantly downregulated in responders while
upregulated in non-responders by whole blood transcriptomics
analysis, and absolute granulocytes numbers were significantly
higher in non-responders at Day 0 prior to vaccination with
ENGERIX®-B (11). However, the role of the dendritic cell
component was not evaluated.

Our results suggest that the participants in our vaccine study
existed in one of two different dendritic cell dispositional states
at baseline – an NDRG2-mDC2 state in which the vaccine
elicited an early antibody response or a CDKN1C-mDC4 state
in which the vaccine response may have been actively
suppressed. While the possibility that challenge with a foreign
antigen (e.g., a vaccine) would be immunosuppressive seems
counterintuitive, a healthy immune system has to strike a delicate
balance between responsiveness and non-responsiveness under
many circumstances. Furthermore, ample data now supports the
conclusion that for some vaccines, including ENGERIX®-B,
reducing general immune activation and inflammation may in
fact increase the antigen-specific response to the vaccine (9, 40).

From a biochemical perspective, foreign antigens are not that
different from self-antigens. In order to avoid autoimmunity, the
immune system must carefully assess whether an antigen is truly
foreign or not. Evidence suggests that the setting in which the
naïve immune system experiences antigen may play an important
role and is only activated when some type of tissue injury signal
accompanies antigen exposure, the so-called “danger hypothesis”
(41). In the absence of this danger signal, activation of adaptive
immune cells with Signal 1 from antigen without Signal 2 from
antigen presenting cell help would be tolerated and not result in
activation. And even when the immune system responds to a truly
foreign antigen, an overexuberant response (e.g., the cytokine
storm) can do more harm than good. Thus, in addition to
mechanisms designed to activate an immune response, the
Frontiers in Immunology | www.frontiersin.org 11
immune system has also developed mechanisms for dampening
the response, with the regulatory T cell being a classic example.
Perhaps the CDKN1C-mDC4 cell is an example of a suppressive
type of regulatory dendritic cell. The extent to which these
CDKN1C-mDC4s may be similar to the myeloid-derived
suppressor cells (MDSCs) observed in some pathological
conditions, such as inflammation, chronic infection or cancer
(42–45) remains to be determined.

So, what are the implications of this hypothesis for improving
vaccination outcomes? We found that the NDRG2-mDC2/
CDKN1C-mDC4 ratio differed between individuals as well
as within the same individual over time. This suggests
that perhaps the dendritic cell dispositional state could be
modulated to establish an activatable predisposition prior
to vaccination. Since adjuvant effects appear to function
through the innate immune system, perhaps prior exposure to
adjuvant before antigen could establish the appropriate
activatable predisposition. While there is some evidence that
preconditioning injection sites with TLR agonists can enhance
dendritic cell migration (46) and protection against pathogen
infection (47) in animal models, to our knowledge this has never
been formally assessed in humans (6). This possibility could lead
to a more precision-medicine approach for vaccines by
determining at baseline who will respond well or not to
specific vaccines or who might need just a single dose (48).
This approach could readily follow the model of point-of-care
testing currently used in infectious disease settings [e.g (49)]. In
fact, the field of vaccinology already does assign different
vaccines based on individual characteristics, e.g., different flu
vaccines are given to different people based on age.

Given the relatively small cohort size of this pilot study, it was
not possible to draw definite conclusions about the ability to
predict dose 1 vaccine responses. There are many ways to follow
up on the findings described here. One approach would be a
direct expansion of the study. First, we would need to recruit a
larger cohort of patients (100-200) and follow the visitation
strategy and HBV serum Ab testing outlined in Ben-Othman
(17) and Shannon (13). Pre-vaccination, we would obtain both
HPV serum antibody levels and FACS sorted mDC populations
for all patients. Next these mDC populations could be profiled by
qPCR using probes to the marker genes discovered during this
investigation: NDRG2 and CDKN1C. Lastly, response to
vaccination would be measured by the antibody titers as
performed in this study. This experimental design would now
be possible from a cost perspective as profiling many cells from
many patients by qPCR is relatively cheap, while using single cell
RNAseq on this many patients would be cost prohibitive.

Finally, we described a novel machine learning approach to
multi-omics data integration. The results reported by Shannon
et al. (13) suggested that because different sources of background
noise and technical confounders would contribute to the results
from different omics assays, focusing on the consensus
information related to outcome using the canonical correlation
analysis approach to multi-omics data integration could reduce
overfitting and result in more robust and generalizable models (32,
34), even in studies where p>>n. However, the number of
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parameter features available in these systems biology studies makes
it impossible to complete an exhaustive search of all available
parameter combinations and makes the L1 penalized or LASSO
regression implemented in Diablo ineffective at mitigating the
effects of noisy features (50). Using single cell RNA sequencing in
this study, we were able to identify relatively rare dendritic cell
populations whose abundance and activation disposition appear to
correlate with vaccine responses. By using this finding to guide
feature selection for those genes expressed in these dendritic cell
subsets or those CpG sites that are involved in establishing cell type
identity, the correlations of the vaccine response predictive models
were dramatically improved, demonstrating the value of directed
feature selection prior to machine learning model production to
further circumvent the p>>n problem.

In conclusion, the machine learning approaches for informative
feature selection based on NS-Forest and multi-omics data
integration based on supervised canonical correlation analysis
not only produced better correlation with vaccine response but
also revealed the possible cellular mechanisms responsible. These
results suggest that vaccine recipients exist as different
dispositional endotypes that dictate their response to
vaccination. With a hypothetical mechanism in hand, developing
strategies to adjust these dispositional endotypes in preference of
dendritic cell-mediated activation rather than suppression could
lead to the development of more effective precision vaccination
strategies to achieve protective immunity from single vaccine
doses, which are of critical importance in resource-limited settings.
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